TWI845263B - Memory device and method of fabricating the same - Google Patents

Memory device and method of fabricating the same Download PDF

Info

Publication number
TWI845263B
TWI845263B TW112114480A TW112114480A TWI845263B TW I845263 B TWI845263 B TW I845263B TW 112114480 A TW112114480 A TW 112114480A TW 112114480 A TW112114480 A TW 112114480A TW I845263 B TWI845263 B TW I845263B
Authority
TW
Taiwan
Prior art keywords
channel
layer
stop layer
forming
plug
Prior art date
Application number
TW112114480A
Other languages
Chinese (zh)
Other versions
TW202444204A (en
Inventor
鄭宸語
楊智凱
韓宗廷
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW112114480A priority Critical patent/TWI845263B/en
Application granted granted Critical
Publication of TWI845263B publication Critical patent/TWI845263B/en
Publication of TW202444204A publication Critical patent/TW202444204A/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A memory device includes first and second interconnect structures, a stacked structure, a stop layer and channel pillar structures over a substrate. The stacked structure is located between the first and the second interconnection structures. The stop layer is located between the stacked structure and the second interconnect structure. Each channel pillar structure includes a channel pillar, a first channel plug and a second channel plug. The channel pillar extends through the stacked structure and the stop layer. The first channel plug is located at a first end of the channel pillar and connected to the first interconnection structure. The second channel plug is located at a second end of the channel pillar and connected to the second interconnection structure. A bottom surface of the second channel plug is closer to the substrate than a bottom surface of the stop layer.

Description

記憶體元件及其製造方法Memory device and manufacturing method thereof

本發明實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶體元件及其製造方法。 The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular to a memory device and a method for manufacturing the same.

非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。 Non-volatile memory devices (such as flash memory) have the advantage that the stored data will not disappear even after power failure, so they have become a type of memory device widely used in personal computers and other electronic devices.

目前業界較常使用的快閃記憶體陣列包括反或閘(NOR)快閃記憶體與反及閘(NAND)快閃記憶體。由於NAND快閃記憶體的結構是使各記憶胞串接在一起,其積集度與面積利用率較NOR快閃記憶體佳,已經廣泛地應用在多種電子產品中。此外,為了進一步地提升記憶體元件的積集度,發展出一種三維NAND快閃記憶體。然而,仍存在許多與三維NAND快閃記憶體相關的挑戰。 The flash memory arrays commonly used in the industry include NOR flash memory and NAND flash memory. Since the structure of NAND flash memory is to connect each memory cell in series, its integration and area utilization are better than NOR flash memory, and it has been widely used in many electronic products. In addition, in order to further improve the integration of memory components, a three-dimensional NAND flash memory has been developed. However, there are still many challenges related to three-dimensional NAND flash memory.

本發明提供一種記憶體元件的垂直通道的通道插塞的高 寬比小,可以降低製程的困難度,提升元件的可靠度。 The present invention provides a channel plug for a vertical channel of a memory device with a small aspect ratio, which can reduce the difficulty of the process and improve the reliability of the device.

本發明提供一種記憶體元件的垂直通道的通道插塞具有摻質,接面可以與最頂層的導體層側向部分重疊或完全重疊,因此可以在進行抹除時降低閘極誘發汲極漏電流(GIDL)。 The present invention provides a channel plug of a vertical channel of a memory element having a doping, and the junction can partially overlap or completely overlap with the topmost conductive layer laterally, so that the gate induced drain leakage (GIDL) can be reduced during erasing.

本發明的實施例的一種記憶體元件,包括:第一內連線結構、第二內連線結構、堆疊結構、停止層以及多個通道柱結構。所述第一內連線結構位於基底上方。所述第二內連線結構,位於所述第一內連線結構上方。所述堆疊結構,位於所述第一內連線結構與所述第二內連線結構之間,其中所述堆疊結構包括交替堆疊的多個導體層與多個絕緣層。所述停止層,位於所述堆疊結構與所述第二內連線結構之間。所述多個通道柱結構,延伸穿過所述堆疊結構,每個通道柱結構包括:通道柱、第一通道插塞以及第二通道插塞。所述通道柱,延伸穿過所述堆疊結構與所述停止層。所述第一通道插塞,位於所述通道柱的第一端,與所述第一內連線結構連接。所述第二通道插塞,位於所述通道柱的第二端,與所述第二內連線結構連接。所述第二通道插塞的底面比所述停止層的底面接近所述基底。 A memory element of an embodiment of the present invention includes: a first internal connection structure, a second internal connection structure, a stacking structure, a stop layer and a plurality of channel column structures. The first internal connection structure is located above a substrate. The second internal connection structure is located above the first internal connection structure. The stacking structure is located between the first internal connection structure and the second internal connection structure, wherein the stacking structure includes a plurality of conductor layers and a plurality of insulating layers stacked alternately. The stop layer is located between the stacking structure and the second internal connection structure. The plurality of channel column structures extend through the stacking structure, and each channel column structure includes: a channel column, a first channel plug and a second channel plug. The channel column extends through the stacking structure and the stop layer. The first channel plug is located at the first end of the channel column and is connected to the first internal connection structure. The second channel plug is located at the second end of the channel column and is connected to the second internal connection structure. The bottom surface of the second channel plug is closer to the substrate than the bottom surface of the stop layer.

本發明的實施例的一種記憶體元件的製造方法,包括以下步驟。形成堆疊結構,於停止層的第一表面上。所述堆疊結構包括交替堆疊的多個中間層與多個絕緣層。將部分的所述多個中間層取代為多個導體層。形成多個通道柱結構,延伸穿過所述堆疊結構。形成電荷儲存結構於所述多個通道柱結構的外表面。上 述形成每個通道柱結構包括以下步驟。形成通道柱,延伸穿過所述堆疊結構與所述停止層。形成絕緣柱,於所述通道柱之中。形成第一通道插塞,位於所述通道柱的第一端,與所述第一內連線結構電性連接。移除所述每個通道柱的所述第二端的部分所述絕緣柱,以形成凹槽。形成所述每個通道柱結構的第二通道插塞,於所述凹槽中。 A method for manufacturing a memory element according to an embodiment of the present invention comprises the following steps: forming a stacked structure on a first surface of a stop layer; the stacked structure comprises a plurality of alternately stacked intermediate layers and a plurality of insulating layers; replacing a portion of the plurality of intermediate layers with a plurality of conductive layers; forming a plurality of channel pillar structures extending through the stacked structure; forming a charge storage structure on the outer surface of the plurality of channel pillar structures; the above-mentioned formation of each channel pillar structure comprises the following steps: forming a channel pillar extending through the stacked structure and the stop layer; forming an insulating pillar in the channel pillar; forming a first channel plug located at a first end of the channel pillar and electrically connected to the first internal connection structure. Removing a portion of the insulating column at the second end of each channel column to form a groove. Forming a second channel plug of each channel column structure in the groove.

基於上述,本發明實施例之記憶體元件的垂直通道的通道插塞的高寬比小,因此在形成通道插塞的凹槽時可以降低製程的困難度,提升元件的可靠度。由於垂直通道的通道插塞具有摻質,接面可以與最頂層的導體層側向部分重疊或完全重疊,因此可以在進行抹除時降低閘極誘發汲極漏電流(GIDL)。 Based on the above, the channel plug of the vertical channel of the memory device of the embodiment of the present invention has a small aspect ratio, so the difficulty of the process can be reduced when forming the groove of the channel plug, and the reliability of the device can be improved. Because the channel plug of the vertical channel has doping, the junction can overlap partially or completely with the topmost conductive layer laterally, so the gate induced drain leakage (GIDL) can be reduced when erasing.

10:基底 10: Base

20:元件層 20: Component layer

30:內連線結構 30: Internal connection structure

30a:第一部分 30a: Part 1

30b:第二部分 30b: Part 2

31a:最頂層的導線 31a: The topmost wire

31b:最頂層的導線 31b: Top layer of wires

32:接合結構 32:Joint structure

32a:第一部分 32a: Part 1

32b:第二部分 32b: Part 2

34a:接合層 34a: Joint layer

34b:接合層 34b: Joint layer

36a:接合插塞 36a:Joining plug

36b:接合插塞 36b:Joint plug

38a:接合墊 38a:Joint pad

38b:接合墊 38b:Joint pad

40:內連線結構 40:Internal connection structure

42:介電層 42: Dielectric layer

44a:導體墊 44a: Conductor pad

44b:介層窗 44b:Interlayer window

46:接觸窗 46: Contact window

48:導線 48: Conductor wire

50:介電層 50: Dielectric layer

60:通道材料 60: Channel material

60a:通道插塞 60a: Channel plug

60b:半導體墊 60b: Semiconductor pad

93:導體層 93: Conductor layer

100:基底 100: Base

101:絕緣層 101: Insulation layer

102:絕緣層 102: Insulation layer

103:停止層 103: Stop layer

104:中間層 104: Middle layer

105:介電層 105: Dielectric layer

106:開口 106: Open mouth

107:介電層 107: Dielectric layer

108:電荷儲存結構 108: Charge storage structure

110:通道層/通道柱 110: Channel layer/channel column

111:絕緣襯層 111: Insulating lining

112:絕緣柱 112: Insulation Pillar

113:導體層 113: Conductor layer

114:通道插塞 114: Channel plug

115:介電層 115: Dielectric layer

116:分隔溝渠 116: Separation channel

117:間隙壁 117: Gap wall

126:導體層 126: Conductor layer

128:介電層 128: Dielectric layer

129:停止層 129: Stop layer

130:介電層 130: Dielectric layer

200:區域 200: Area

COA:接觸窗 COA: Contact Window

CP:垂直通道柱 CP: Vertical channel column

CP1:通道柱結構 CP1: Channel column structure

D1:距離 D1: Distance

DVC:虛設柱 DVC: Virtual column

E1:端 E1: terminal

E2:端 E2: End

H1:高度 H1: Height

JS:接面 JS: Interview

LP:下部 LP: Lower part

PIC:支撐結構 PIC: Support structure

R1:凹槽 R1: Groove

P1:第一部分 P1: Part 1

P2:第二部分 P2: Part 2

RSC:反階梯結構 RSC: Reverse ladder structure

S1:表面/底面 S1: Surface/bottom

S1、S2:表面 S1, S2: surface

S3、S5:底面 S3, S5: bottom surface

S4:頂面 S4: Top

SC:階梯結構 SC: Step structure

SK1:堆疊結構 SK1: Stacked structure

SK2:堆疊結構 SK2: Stacked structure

SLIT:分隔牆 SLIT:Separation wall

T1:厚度 T1:Thickness

TV:穿孔 TV:Piercing

UP:上部 UP: Upper part

圖1A至圖1Q是依照本發明實施例的一種記憶體元件的製造流程的剖面示意圖。 Figures 1A to 1Q are cross-sectional schematic diagrams of a manufacturing process of a memory element according to an embodiment of the present invention.

圖2是圖1Q的局部區域的放大圖。 Figure 2 is an enlarged view of a local area of Figure 1Q.

圖3至圖5是依照本發明另一些實施例的數種記憶體元件的剖面示意圖。 Figures 3 to 5 are cross-sectional schematic diagrams of several memory elements according to other embodiments of the present invention.

圖1A至圖1Q是依照本發明實施例的一種記憶體元件 的製造流程的剖面示意圖。 Figures 1A to 1Q are cross-sectional schematic diagrams of a manufacturing process of a memory element according to an embodiment of the present invention.

參照圖1A,提供基底10。基底10可為半導體基底,例如含矽基底。元件層20形成在基底10上。元件層20可以包括主動元件或是被動元件。主動元件例如是電晶體、二極體等。被動元件例如是電容器、電感等。電晶體可以是N型金氧半(NMOS)電晶體、P型金氧半(PMOS)電晶體或是互補式金氧半元件(CMOS)。由於元件層20形成在記憶體陣列的下方(例如,位於圖1Q的堆疊結構SK2下方),而元件層20例如是互補式金氧半元件(CMOS),因此,此種架構又可稱為接合互補式金氧半元件的記憶體陣列(CMOS-Bonded-Array,CbA)結構。 Referring to FIG. 1A , a substrate 10 is provided. The substrate 10 may be a semiconductor substrate, such as a silicon-containing substrate. The component layer 20 is formed on the substrate 10. The component layer 20 may include active components or passive components. The active components are, for example, transistors, diodes, etc. The passive components are, for example, capacitors, inductors, etc. The transistor may be an N-type metal oxide semiconductor (NMOS) transistor, a P-type metal oxide semiconductor (PMOS) transistor, or a complementary metal oxide semiconductor (CMOS) component. Since the component layer 20 is formed below the memory array (for example, below the stacked structure SK2 of FIG. 1Q ), and the component layer 20 is, for example, a complementary metal oxide semiconductor (CMOS), this structure may also be referred to as a CMOS-Bonded-Array (CbA) structure.

參照圖1A,在元件層20上形成內連線結構30的第一部分30a。內連線結構30的第一部分30a可以包括多層介電層(未示出)以及形成在多層介電層中的內連線(未示出)。內連線包括多個插塞(未示出)與多個導線(未示出)等。介電層分隔相鄰的導線。導線之間可藉由插塞連接,且導線可藉由插塞連接到元件層20。內連線結構30的第一部分30a可以以單金屬鑲嵌、雙重金屬鑲嵌製程或任何已知的方式形成。 Referring to FIG. 1A , a first portion 30a of an internal connection structure 30 is formed on a component layer 20. The first portion 30a of the internal connection structure 30 may include multiple dielectric layers (not shown) and internal connections (not shown) formed in the multiple dielectric layers. The internal connections include multiple plugs (not shown) and multiple wires (not shown). The dielectric layer separates adjacent wires. The wires may be connected by plugs, and the wires may be connected to the component layer 20 by plugs. The first portion 30a of the internal connection structure 30 may be formed by a single metal inlay, a double metal inlay process, or any known method.

參照圖1A,在內連線結構30的第一部分30a上形成接合結構32(示於圖1J)的第一部分32a。接合結構32的第一部分32a包括接合層34a、接合插塞36a以及接合墊38a。接合層34a例如是氧化矽、氮化矽或其組合。接合插塞36a與接合墊38a例如是銅。接合墊38a經由接合插塞36a與內連線結構30的第一部分30a的最頂層的導線31a連接。接合墊38a與接合插塞36a可 以採用單鑲嵌或是雙鑲嵌的方式形成。接合墊38a、接合插塞36a以及接合層34a可以經由化學機械研磨製程平坦化而共平面。 Referring to FIG. 1A , a first portion 32a of a bonding structure 32 (shown in FIG. 1J ) is formed on a first portion 30a of an inner connection structure 30. The first portion 32a of the bonding structure 32 includes a bonding layer 34a, a bonding plug 36a, and a bonding pad 38a. The bonding layer 34a is, for example, silicon oxide, silicon nitride, or a combination thereof. The bonding plug 36a and the bonding pad 38a are, for example, copper. The bonding pad 38a is connected to the topmost wire 31a of the first portion 30a of the inner connection structure 30 via the bonding plug 36a. The bonding pad 38a and the bonding plug 36a can be formed by single inlay or double inlay. The bonding pad 38a, the bonding plug 36a, and the bonding layer 34a can be planarized and coplanar by a chemical mechanical polishing process.

參照圖1A,提供另一基底100。基底100可為半導體基底,例如含矽基底。在基底100上形成絕緣層101與停止層103。絕緣層101例如是氧化矽。在絕緣層101上形成停止層103。停止層103可以是絕緣材料,例如是碳氮化矽(SiCN)、氮氧化矽(SiON)、氧化鋁(Al2O3)或其組合。 1A , another substrate 100 is provided. The substrate 100 may be a semiconductor substrate, such as a silicon-containing substrate. An insulating layer 101 and a stop layer 103 are formed on the substrate 100. The insulating layer 101 is, for example, silicon oxide. The stop layer 103 is formed on the insulating layer 101. The stop layer 103 may be an insulating material, such as silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ) or a combination thereof.

參照圖1A,在停止層103的表面S1上形成堆疊結構SK1的下部LP。堆疊結構SK1的下部LP包括多個彼此交替堆疊的絕緣層102與多個中間層104。在一些實施例中,絕緣層102的材料包括氧化矽,而中間層104的材料包括氮化矽。中間層104可以做為犧牲層,其將在後續的製程中被部分移除或全部移除。 Referring to FIG. 1A , a lower portion LP of a stacked structure SK1 is formed on a surface S1 of a stop layer 103. The lower portion LP of the stacked structure SK1 includes a plurality of insulating layers 102 and a plurality of intermediate layers 104 alternately stacked with each other. In some embodiments, the material of the insulating layer 102 includes silicon oxide, and the material of the intermediate layer 104 includes silicon nitride. The intermediate layer 104 may be used as a sacrificial layer, which will be partially or completely removed in a subsequent process.

參照圖1B,接著,多個虛設柱DVC穿過堆疊結構SK1的下部LP。多個虛設柱DVC可以經由單階段的微影與蝕刻製程或多階段的微影與蝕刻製程來形成開口(未示出)。開口穿過堆疊結構SK1的下部LP延伸至停止層103,甚至延伸至絕緣層101。然後,再於開口中填入填充材料(或稱為自行對準材料)來形成之。以多個階段的微影與蝕刻製程形成的開口的側壁的輪廓例如是成竹節狀。 Referring to FIG. 1B , multiple dummy columns DVC then pass through the lower LP of the stacked structure SK1. Multiple dummy columns DVC can be formed into openings (not shown) by a single-stage lithography and etching process or a multi-stage lithography and etching process. The opening extends through the lower LP of the stacked structure SK1 to the stop layer 103, and even to the insulating layer 101. Then, a filling material (or self-alignment material) is filled into the opening to form it. The profile of the sidewall of the opening formed by the multi-stage lithography and etching process is, for example, a bamboo-node shape.

參照圖1C,在基底100上方形成堆疊結構SK1的上部UP。堆疊結構SK1的上部UP包括彼此堆疊的多個絕緣層102與多個中間層104。堆疊結構SK1的上部UP的絕緣層102與中間層104的材料如上堆疊結構SK1的下部LP的絕緣層102與中間層 104的材料所述。接著,將堆疊結構SK1的中間層104與絕緣層102圖案化,以形成階梯結構SC。在一些實施例中,階梯結構SC可以經由多階段的圖案化製程來形成,但本發明不以此為限。圖案化製程可以包括微影、蝕刻與修整(trim)等製程。在基底100上方形成介電層107,以覆蓋階梯結構SC。介電層107的材料例如是氧化矽。介電層107的形成方法例如是形成介電材料,以填覆蓋階梯結構SC。之後再進行平坦化製程,例如是化學機械研磨製程,以移除多餘的介電材料。 Referring to FIG. 1C , an upper portion UP of a stacking structure SK1 is formed on a substrate 100. The upper portion UP of the stacking structure SK1 includes a plurality of insulating layers 102 and a plurality of intermediate layers 104 stacked on each other. The materials of the insulating layers 102 and the intermediate layers 104 of the upper portion UP of the stacking structure SK1 are the same as the materials of the insulating layers 102 and the intermediate layers 104 of the lower portion LP of the stacking structure SK1. Then, the intermediate layers 104 and the insulating layers 102 of the stacking structure SK1 are patterned to form a step structure SC. In some embodiments, the step structure SC can be formed by a multi-stage patterning process, but the present invention is not limited thereto. The patterning process may include processes such as lithography, etching and trimming. A dielectric layer 107 is formed on the substrate 100 to cover the step structure SC. The material of the dielectric layer 107 is, for example, silicon oxide. The method of forming the dielectric layer 107 is, for example, to form a dielectric material to fill and cover the step structure SC. A planarization process is then performed, such as a chemical mechanical polishing process, to remove excess dielectric material.

參照圖1D,進行圖案化製程,移除部分堆疊結構SK1,以形成開口(未示出),並裸露出虛設柱DVC。接著,移除開口所裸露的虛設柱DVC,以形成延伸穿過堆疊結構SK1的一個或多個開口106。在一實施例中,開口106可具有略微傾斜的側壁。在另一實施例中,開口106可具有大致垂直的側壁(未示出)。在一實施例中,開口106又稱為垂直通道(vertical channel;VC)孔洞。在一實施例中,開口106可以經由單階段的微影與蝕刻製程來形成。在另一實施例中,開口106以多個階段的微影與蝕刻製程。以多個階段的微影與蝕刻製程形成的開口106的側壁的輪廓例如是成竹節狀。 Referring to FIG. 1D , a patterning process is performed to remove a portion of the stacked structure SK1 to form an opening (not shown) and expose the dummy column DVC. Next, the dummy column DVC exposed by the opening is removed to form one or more openings 106 extending through the stacked structure SK1. In one embodiment, the opening 106 may have slightly inclined side walls. In another embodiment, the opening 106 may have substantially vertical side walls (not shown). In one embodiment, the opening 106 is also referred to as a vertical channel (VC) hole. In one embodiment, the opening 106 can be formed by a single-stage lithography and etching process. In another embodiment, the opening 106 is formed by multiple-stage lithography and etching processes. The sidewall profile of the opening 106 formed by multiple stages of lithography and etching processes is, for example, in the shape of a bamboo node.

參照圖1E,之後於開口106中形成電荷儲存結構108。電荷儲存結構108與絕緣層102以及中間層104接觸。在一實施例中,電荷儲存結構108為氧化物/氮化物/氧化物(ONO)複合層。電荷儲存結構108例如是共形層,其形成於開口106的側壁與底面上。之後於開口106剩餘的空間中形成垂直通道柱CP。垂直通道柱CP可以下述的方法來形成。 Referring to FIG. 1E , a charge storage structure 108 is then formed in the opening 106 . The charge storage structure 108 contacts the insulating layer 102 and the intermediate layer 104 . In one embodiment, the charge storage structure 108 is an oxide/nitride/oxide (ONO) composite layer. The charge storage structure 108 is, for example, a conformal layer formed on the sidewalls and bottom surface of the opening 106 . A vertical channel column CP is then formed in the remaining space of the opening 106 . The vertical channel column CP can be formed by the following method.

參照圖1E,於電荷儲存結構108的內側壁與底面上形成通道層110。在一實施例中,通道層110的材料包括未摻雜的多晶矽。接著,於通道層110的內表面上形成絕緣柱(或稱為核心絕緣柱)112。在一實施例中,絕緣柱112的材料包括氧化矽。之後,於開口106中形成通道插塞114,通道插塞114與通道層110接觸。通道插塞114從最上層的絕緣層102的頂面(未示出)延伸至開口106的某一深度。在一實施例中,通道插塞114的材料包括具有摻質的半導體材料,例如具有摻質的多晶矽。通道層110、絕緣柱112以及通道插塞114可合稱為垂直通道柱CP。垂直通道柱CP穿過堆疊結構SK1且延伸至停止層103,甚至延伸至絕緣層101。電荷儲存結構108環繞於垂直通道柱CP的豎直外表面。之後,在基底100上方形成介電層115。介電層115的材料包括氧化矽。 1E , a channel layer 110 is formed on the inner sidewall and bottom surface of the charge storage structure 108. In one embodiment, the material of the channel layer 110 includes undoped polysilicon. Then, an insulating column (or core insulating column) 112 is formed on the inner surface of the channel layer 110. In one embodiment, the material of the insulating column 112 includes silicon oxide. Thereafter, a channel plug 114 is formed in the opening 106, and the channel plug 114 contacts the channel layer 110. The channel plug 114 extends from the top surface (not shown) of the uppermost insulating layer 102 to a certain depth of the opening 106. In one embodiment, the material of the channel plug 114 includes a semiconductor material with doping, such as polysilicon with doping. The channel layer 110, the insulating column 112, and the channel plug 114 can be collectively referred to as a vertical channel column CP. The vertical channel column CP passes through the stacked structure SK1 and extends to the stop layer 103, and even extends to the insulating layer 101. The charge storage structure 108 surrounds the vertical outer surface of the vertical channel column CP. Thereafter, a dielectric layer 115 is formed above the substrate 100. The material of the dielectric layer 115 includes silicon oxide.

參照圖1F,形成多個支撐結構PIC以及多個穿孔TV。支撐結構PIC以及多個穿孔TV可以從介電層115的頂面延伸穿過堆疊結構SK1以及停止層103,以避免階梯結構SC在後續移除中間層104的過程中倒塌。在本實施例中,支撐結構PIC以及多個穿孔TV可以具有相同的結構,各自分別包括絕緣襯層111與導體層113。在其他實施例中,支撐結構PIC可以在形成電荷儲存結構108以及垂直通道柱CP同時形成。多個支撐結構PIC分別與電荷儲存結構108以及垂直通道柱CP所組合的結構具有相同的結構,但本發明不以此為限。穿孔TV將在後續製程中與內連線連接,因此又可稱為訊號接觸窗(Signal contact)。 Referring to FIG. 1F , a plurality of supporting structures PIC and a plurality of through-holes TV are formed. The supporting structure PIC and the plurality of through-holes TV may extend from the top surface of the dielectric layer 115 through the stacking structure SK1 and the stop layer 103 to prevent the step structure SC from collapsing during the subsequent removal of the intermediate layer 104. In the present embodiment, the supporting structure PIC and the plurality of through-holes TV may have the same structure, each including an insulating liner 111 and a conductive layer 113. In other embodiments, the supporting structure PIC may be formed simultaneously with the formation of the charge storage structure 108 and the vertical channel column CP. The plurality of supporting structures PIC respectively have the same structure as the structure in which the charge storage structure 108 and the vertical channel column CP are combined, but the present invention is not limited thereto. The perforated TV will be connected to the internal wiring in the subsequent manufacturing process, so it can also be called a signal contact window.

參照圖1G,於介電層115上形成介電層128。介電層128例如是氧化矽。其後,進行圖案化製程,以形成多個分隔溝渠116。分隔溝渠116延伸穿過介電層128、介電層115與堆疊結構SK1,而將堆疊結構SK1區分成多個區塊(未示出)。分隔溝渠116可具有垂直側壁(未示出)或是略微傾斜的側壁(未示出)。 Referring to FIG. 1G , a dielectric layer 128 is formed on the dielectric layer 115. The dielectric layer 128 is, for example, silicon oxide. Thereafter, a patterning process is performed to form a plurality of separation trenches 116. The separation trenches 116 extend through the dielectric layer 128, the dielectric layer 115, and the stacked structure SK1, and divide the stacked structure SK1 into a plurality of blocks (not shown). The separation trenches 116 may have vertical sidewalls (not shown) or slightly inclined sidewalls (not shown).

參照圖1G,進行取代製程,將部分的中間層104取代為導體層126。首先,進行選擇性蝕刻製程,使蝕刻劑經由分隔溝渠116與兩側的堆疊結構SK1的中間層104接觸。藉此,以移除部分的中間層104,形成多個水平開口(未示出),留下穿孔TV周圍的中間層104。選擇性蝕刻製程可以是等向性蝕刻,例如是濕式蝕刻製程。濕式蝕刻製程所採用的蝕刻劑例如是熱磷酸。然後,於分隔溝渠116以及水平開口中形成導體層126。導體層126可做為閘極層。導體層126例如是包括阻障層以及金屬層。在一實施例中,阻障層的材料包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。金屬層的材料包括鎢(W)。部分的中間層104被取代為導體層126,因而形成堆疊結構SK2。 Referring to FIG. 1G , a replacement process is performed to replace part of the middle layer 104 with the conductive layer 126. First, a selective etching process is performed so that the etchant contacts the middle layer 104 of the stacked structure SK1 on both sides through the separation trenches 116. Thereby, part of the middle layer 104 is removed to form a plurality of horizontal openings (not shown), leaving the middle layer 104 around the through hole TV. The selective etching process may be an isotropic etching, such as a wet etching process. The etchant used in the wet etching process may be, for example, hot phosphoric acid. Then, a conductive layer 126 is formed in the separation trenches 116 and the horizontal openings. The conductive layer 126 may serve as a gate layer. The conductor layer 126 includes, for example, a barrier layer and a metal layer. In one embodiment, the material of the barrier layer includes titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof. The material of the metal layer includes tungsten (W). Part of the middle layer 104 is replaced by the conductor layer 126, thereby forming a stacked structure SK2.

堆疊結構SK2包括第一部分P1與第二部分P2。堆疊結構SK2的第一部分P1包括交替堆疊的多個絕緣層102與多個中間層104。堆疊結構SK2的第二部分P2包括交替堆疊的多個絕緣層102與多個導體層126。多個垂直通道柱CP延伸穿過堆疊結構SK2的第二部分P2。多個穿孔TV伸穿過堆疊結構SK2的第一部分P1。部分的多個支撐結構PIC延伸穿過堆疊結構SK2的第二部分P2。另一部分的多個支撐結構PIC延伸穿過堆疊結構SK2的第一部分P1。 The stacking structure SK2 includes a first part P1 and a second part P2. The first part P1 of the stacking structure SK2 includes a plurality of insulating layers 102 and a plurality of intermediate layers 104 stacked alternately. The second part P2 of the stacking structure SK2 includes a plurality of insulating layers 102 and a plurality of conductive layers 126 stacked alternately. A plurality of vertical channel columns CP extend through the second part P2 of the stacking structure SK2. A plurality of through holes TV extend through the first part P1 of the stacking structure SK2. A portion of the plurality of supporting structures PIC extend through the second part P2 of the stacking structure SK2. Another portion of the plurality of supporting structures PIC extend through the first part P1 of the stacking structure SK2.

參照圖1G,接著,將形成在分隔溝渠116之中的導體層126移除,並在分隔溝渠116的側壁形成間隙壁117。間隙壁117包括與絕緣層102不同的介電材料,例如是氮化矽或是氧化矽/氮化矽/氧化矽複合層。之後,於分隔溝渠116剩餘的空間之中填入導體層93,例如是摻雜多晶矽層。在分隔溝渠116中的導體層93以及間隙壁117共同形成分隔牆(slit)SLIT。分隔牆SLIT的導體層93藉由間隙壁117隔離以避免與導體層126接觸。其後,在介電層128上形成停止層129,以覆蓋分隔牆SLIT的頂面。停止層129例如是氮化矽。 Referring to FIG. 1G , the conductive layer 126 formed in the separation trench 116 is then removed, and a spacer 117 is formed on the sidewall of the separation trench 116. The spacer 117 includes a dielectric material different from the insulating layer 102, such as silicon nitride or a silicon oxide/silicon nitride/silicon oxide composite layer. Thereafter, a conductive layer 93, such as a doped polysilicon layer, is filled in the remaining space of the separation trench 116. The conductive layer 93 in the separation trench 116 and the spacer 117 together form a slit SLIT. The conductive layer 93 of the slit SLIT is isolated by the spacer 117 to avoid contact with the conductive layer 126. Thereafter, a stop layer 129 is formed on the dielectric layer 128 to cover the top surface of the separation wall SLIT. The stop layer 129 is, for example, silicon nitride.

參照圖1H,在停止層129上形成介電層130。介電層130例如是氧化矽。接著,於介電層130至介電層107中形成多個接觸窗COA,以分別電性連接導體層126、垂直通道柱CP以及穿孔TV。接觸窗COA的形成方法可以先形成接觸窗孔,再於介電層130上形成導體材料,導體材料還填入接觸窗孔中。之後,進行回蝕刻或是化學機械研磨製程,以移除介電層130上的導體材料。 Referring to FIG. 1H , a dielectric layer 130 is formed on the stop layer 129. The dielectric layer 130 is, for example, silicon oxide. Then, a plurality of contact windows COA are formed from the dielectric layer 130 to the dielectric layer 107 to electrically connect the conductive layer 126, the vertical channel column CP, and the through hole TV. The contact window COA can be formed by first forming a contact window hole, and then forming a conductive material on the dielectric layer 130, and the conductive material is also filled in the contact window hole. Afterwards, an etch back or chemical mechanical polishing process is performed to remove the conductive material on the dielectric layer 130.

參照圖1H,在基底100上方形成內連線結構30的第二部分30b。內連線結構30的第二部分30b可以包括多層介電層(未示出)以及形成在多層介電層中的內連線(未示出)。內連線包括多個插塞(未示出)與多個導線(未示出)等。介電層分隔相鄰的導線。導線之間可藉由插塞連接,且導線可藉由插塞連接到接觸窗COA。內連線結構30的第二部分30b可以以單金屬鑲嵌、雙重金屬鑲嵌製程或任何已知的方式形成。 Referring to FIG. 1H , a second portion 30b of the interconnect structure 30 is formed above the substrate 100. The second portion 30b of the interconnect structure 30 may include multiple dielectric layers (not shown) and interconnects (not shown) formed in the multiple dielectric layers. The interconnects include multiple plugs (not shown) and multiple wires (not shown). The dielectric layer separates adjacent wires. The wires may be connected by plugs, and the wires may be connected to the contact window COA by plugs. The second portion 30b of the interconnect structure 30 may be formed by a single metal inlay, a double metal inlay process, or any known method.

參照圖1H,在內連線結構30的第二部分30b上形成接合結構32(示於圖1J)的第二部分32b。接合結構32的第二部分 32b包括接合層34b、接合插塞36b以及接合墊38b。接合墊38b經由接合插塞36b與內連線結構30的第二部分30b的最頂層的導線31b連接。接合層34b、接合插塞36b以及接合墊38b的材料與形成方法可以與接合層34a、接合插塞36a以及接合墊38a的材料與形成方法相同或相似。接合結構32、內連線結構的第一部分30a以及內連線結構的第二部分30b形成內連線結構30。 Referring to FIG. 1H , a second portion 32b of a bonding structure 32 (shown in FIG. 1J ) is formed on a second portion 30b of an inner connection structure 30. The second portion 32b of the bonding structure 32 includes a bonding layer 34b, a bonding plug 36b, and a bonding pad 38b. The bonding pad 38b is connected to the topmost wire 31b of the second portion 30b of the inner connection structure 30 via the bonding plug 36b. The materials and forming methods of the bonding layer 34b, the bonding plug 36b, and the bonding pad 38b may be the same or similar to the materials and forming methods of the bonding layer 34a, the bonding plug 36a, and the bonding pad 38a. The bonding structure 32, the first portion 30a of the inner connection structure, and the second portion 30b of the inner connection structure form the inner connection structure 30.

參照圖1I,將基底100翻轉。被翻轉基底100上的階梯結構SC變成反階梯結構RSC。接觸窗COA在反階梯結構RSC下方。接著,參照圖1I與圖1J,將接合結構32的第二部分32b與接合結構32的第一部分32a接合,以形成接合結構32。在接合結構32中,接合層34b與接合層34a接合,接合墊38b與接合墊38a接合。接合層34b與接合層34a可以藉由介電質與介電質(dielectric-to-dielectric)接合。接合墊38b與接合墊38a可以藉由金屬與金屬(metal-to-metal)接合。接合結構32位於內連線結構30之中,在內連線結構30的第一部分32a與第二部分32b之間。接合結構32、第一部分32a與第二部分32b形成內連線結構30。 Referring to FIG. 1I , the substrate 100 is flipped. The step structure SC on the flipped substrate 100 becomes a reverse step structure RSC. The contact window COA is below the reverse step structure RSC. Next, referring to FIG. 1I and FIG. 1J , the second portion 32b of the bonding structure 32 is bonded to the first portion 32a of the bonding structure 32 to form the bonding structure 32. In the bonding structure 32, the bonding layer 34b is bonded to the bonding layer 34a, and the bonding pad 38b is bonded to the bonding pad 38a. The bonding layer 34b and the bonding layer 34a can be bonded by dielectric-to-dielectric. The bonding pad 38b and the bonding pad 38a can be bonded by metal-to-metal. The bonding structure 32 is located in the inner connection structure 30, between the first portion 32a and the second portion 32b of the inner connection structure 30. The bonding structure 32, the first portion 32a and the second portion 32b form the inner connection structure 30.

參照圖1K,接著,將基底100移除,以裸露出絕緣層101。基底100可以藉由研磨、拋光或是蝕刻的方式移除。 Referring to FIG. 1K , the substrate 100 is then removed to expose the insulating layer 101. The substrate 100 can be removed by grinding, polishing or etching.

參照圖1L,以停止層103做為蝕刻停止層,進行蝕刻製程,以移除絕緣層101、部分的電荷儲存結構108以及部分的通道層110,裸露出垂直通道柱CP的絕緣柱112的頂面以及停止層103的表面S2。在此,通道層110又可稱為通道柱110。 Referring to FIG. 1L , the stop layer 103 is used as an etching stop layer to perform an etching process to remove the insulating layer 101, part of the charge storage structure 108, and part of the channel layer 110, exposing the top surface of the insulating column 112 of the vertical channel column CP and the surface S2 of the stop layer 103. Here, the channel layer 110 may also be referred to as the channel column 110.

參照圖1M,進行蝕刻製程,例如是濕式蝕刻製程,移除 部分的絕緣柱112,以形成多個凹槽R1。由於停止層103的材料與絕緣柱112的材料不同,因此在進行蝕刻製程時,停止層103可以保護下方的絕緣層102以及分隔牆SLIT。停止層103可以避免絕緣層102以及分隔牆SLIT的間隙壁117遭受蝕刻的破壞。在一些實施例中,凹槽R1裸露出通道柱110的內側壁以及剩餘的絕緣柱112的頂面。在另一些實施例中,部分的通道柱110也被移除,以使得凹槽R1裸露出電荷儲存結構108的內側壁(未示出)。凹槽R1延伸穿過停止層103,凹槽R1的底面低於停止層103的底面(即表面S1)。在一些實施例中,凹槽R1的底面例如是介於停止層103的底面(即表面S1)以及最頂導體層126的底面S5之間。凹槽R1的深度可以在進行蝕刻製程時藉由時間模式控制。凹槽R1的高寬比遠小於分隔牆SLIT的分隔溝渠116的高寬比。凹槽R1的高寬比例如是1至6.25。由於凹槽R1的高寬比小,因此,可以降低蝕刻的困難度。 Referring to FIG. 1M , an etching process, such as a wet etching process, is performed to remove a portion of the insulating pillar 112 to form a plurality of grooves R1. Since the material of the stop layer 103 is different from that of the insulating pillar 112, the stop layer 103 can protect the insulating layer 102 and the separation wall SLIT below during the etching process. The stop layer 103 can prevent the insulating layer 102 and the spacer 117 of the separation wall SLIT from being damaged by etching. In some embodiments, the groove R1 exposes the inner side wall of the channel pillar 110 and the top surface of the remaining insulating pillar 112. In other embodiments, part of the channel column 110 is also removed so that the groove R1 exposes the inner side wall (not shown) of the charge storage structure 108. The groove R1 extends through the stop layer 103, and the bottom surface of the groove R1 is lower than the bottom surface of the stop layer 103 (i.e., surface S1). In some embodiments, the bottom surface of the groove R1 is, for example, between the bottom surface of the stop layer 103 (i.e., surface S1) and the bottom surface S5 of the topmost conductor layer 126. The depth of the groove R1 can be controlled by the time mode during the etching process. The aspect ratio of the groove R1 is much smaller than the aspect ratio of the separation trench 116 of the separation wall SLIT. The aspect ratio of the groove R1 is, for example, 1 to 6.25. Since the aspect ratio of the groove R1 is small, the difficulty of etching can be reduced.

參照圖1N,在停止層103上形成通道材料60。通道材料60還填入凹槽R1之中,與通道柱110電性連接。由於凹槽R1的高寬比小,因此,可以輕易回填通道材料60。通道材料60可以包括半導體材料。半導體材料例如半導體元素或是半導體化合物。半導體元素例如是多晶矽。半導體化合物例如是矽化鍺或碳化矽。通道材料60具有摻質。摻質可以是磷或砷。摻質的濃度在1018~1021原子/立方公分。 Referring to FIG. 1N , a channel material 60 is formed on the stop layer 103. The channel material 60 is also filled into the groove R1 and electrically connected to the channel column 110. Since the aspect ratio of the groove R1 is small, the channel material 60 can be easily backfilled. The channel material 60 may include a semiconductor material. The semiconductor material is, for example, a semiconductor element or a semiconductor compound. The semiconductor element is, for example, polycrystalline silicon. The semiconductor compound is, for example, germanium silicide or silicon carbide. The channel material 60 has a dopant. The dopant may be phosphorus or arsenic. The concentration of the dopant is between 10 18 and 10 21 atoms/cm3.

參照圖1O與圖2,進行平坦化製程,以移除停止層103上的通道材料60,並在凹槽R1之中形成與通道柱110電性連接的通道插塞60a。在一些實施例中,通道材料60的摻質可以在沉 積通道材料時藉由原位摻雜(in-situ doping)來形成之。沉積製程的溫度可以低於攝氏450度。在另一些實施例中,通道材料60的摻質可以經由離子植入製程來形成之,其後再進行回火製程來活化之。回火製程例如是雷射回火。回火製程的溫度低於攝氏450度。在進行回火之後,摻質擴散所形成的接面JS(示於圖2)可以與最頂層的導體層126側向完全重疊或部分重疊。 Referring to FIG. 10 and FIG. 2 , a planarization process is performed to remove the channel material 60 on the stop layer 103 and form a channel plug 60a electrically connected to the channel pillar 110 in the recess R1. In some embodiments, the doping of the channel material 60 can be formed by in-situ doping when depositing the channel material. The temperature of the deposition process can be lower than 450 degrees Celsius. In other embodiments, the doping of the channel material 60 can be formed by an ion implantation process and then activated by an annealing process. The annealing process is, for example, laser annealing. The temperature of the annealing process is lower than 450 degrees Celsius. After annealing, the junction JS (shown in FIG. 2 ) formed by dopant diffusion may completely overlap or partially overlap the topmost conductor layer 126 laterally.

參照圖1O與圖2,通道插塞60a、通道柱110、絕緣柱112以及通道插塞114可合稱為通道柱結構CP1。通道柱結構CP1延伸穿過堆疊結構SK2的多個絕緣層102與多個導體層126。通道柱結構CP1的兩端(頂端與底端)E2與E1分別為通道插塞60a與114,其可以各自分別與其他的導電特徵,例如是導體墊44a(示於圖1P與圖2)與接觸窗COA電性連接。因此,通道柱結構CP1又可以稱為雙端垂直通道柱。電荷儲存結構108環繞在通道柱結構CP1的通道插塞60a、通道柱110以及通道插塞114的外側壁,且介於通道柱結構CP1與導體層126之間,以及介於通道柱結構CP1與絕緣層102之間。 1O and 2, the channel plug 60a, the channel pillar 110, the insulating pillar 112 and the channel plug 114 can be collectively referred to as a channel pillar structure CP1. The channel pillar structure CP1 extends through the multiple insulating layers 102 and the multiple conductive layers 126 of the stacked structure SK2. The two ends (top and bottom) E2 and E1 of the channel pillar structure CP1 are the channel plugs 60a and 114, respectively, which can be electrically connected to other conductive features, such as the conductive pad 44a (shown in FIG. 1P and FIG. 2) and the contact window COA. Therefore, the channel pillar structure CP1 can also be called a double-ended vertical channel pillar. The charge storage structure 108 surrounds the channel plug 60a, the channel column 110 and the outer wall of the channel plug 114 of the channel column structure CP1, and is located between the channel column structure CP1 and the conductive layer 126, and between the channel column structure CP1 and the insulating layer 102.

參照圖1P,在停止層103上形成內連線結構40(示於圖1Q)的介電層42、接觸窗46以及導體墊44a。接觸窗46電性連接穿孔TV。多個通道柱結構CP1的通道插塞60a電性連接同一導體墊44a。介電層42可以是單層或是多層。介電層42的材料可以是氧化矽、氮氧化矽、氮化矽或其組合。接觸窗46以及導體墊44a形成在介電層42之中。接觸窗46以及導體墊44a的形成方法如下所述。首先,經由微影與蝕刻製程在介電層42中形成接觸窗孔(未示出)以及導體墊開口(未示出)。然後,再於介電層42上形 成導電材料,並使得導電材料填入接觸窗孔以及導體墊開口中。其後,經由平坦化製程,例如是化學機械研磨製程,將介電層42上多餘的導電材料移除,以在接觸窗孔以及導體墊開口中形成接觸窗46以及導體墊44a。 Referring to FIG1P , a dielectric layer 42, a contact window 46 and a conductive pad 44a of an internal connection structure 40 (shown in FIG1Q ) are formed on the stop layer 103. The contact window 46 is electrically connected to the through hole TV. The channel plugs 60a of the multiple channel column structures CP1 are electrically connected to the same conductive pad 44a. The dielectric layer 42 can be a single layer or multiple layers. The material of the dielectric layer 42 can be silicon oxide, silicon oxynitride, silicon nitride or a combination thereof. The contact window 46 and the conductive pad 44a are formed in the dielectric layer 42. The method for forming the contact window 46 and the conductive pad 44a is described as follows. First, a contact window hole (not shown) and a conductive pad opening (not shown) are formed in the dielectric layer 42 by lithography and etching processes. Then, a conductive material is formed on the dielectric layer 42, and the conductive material is filled into the contact window hole and the conductive pad opening. Afterwards, the excess conductive material on the dielectric layer 42 is removed by a planarization process, such as a chemical mechanical polishing process, to form a contact window 46 and a conductive pad 44a in the contact window hole and the conductive pad opening.

參照圖1Q,在介電層42、導體墊44a以及接觸窗46上形成內連線結構40的其他部分,例如是多個導線48以及介電層50。多個導線48可以包括導線48a與48b。導線48a可以做為共同源極線,以連接導體墊44a。相鄰的導體墊44a可以電性連接同一導線48a。導線48b可以連接接觸窗46。導線48的材料例如是銅或鎢。介電層50可以是單層或是多層。介電層42的材料可以是氧化矽、氮氧化矽、氮化矽或其組合。內連線結構40可以經由穿孔TV電性連接內連線結構30。內連線結構40可以經由接觸窗COA電性連接內連線結構30。內連線結構40可以經由通道柱結構CP1電性連接內連線結構30。 Referring to FIG. 1Q , other parts of the internal connection structure 40, such as a plurality of wires 48 and a dielectric layer 50, are formed on the dielectric layer 42, the conductive pad 44a, and the contact window 46. The plurality of wires 48 may include wires 48a and 48b. The wire 48a may serve as a common source line to connect the conductive pad 44a. Adjacent conductive pads 44a may be electrically connected to the same wire 48a. The wire 48b may be connected to the contact window 46. The material of the wire 48 may be copper or tungsten, for example. The dielectric layer 50 may be a single layer or multiple layers. The material of the dielectric layer 42 may be silicon oxide, silicon oxynitride, silicon nitride, or a combination thereof. The internal connection structure 40 may be electrically connected to the internal connection structure 30 via a through-hole TV. The internal connection structure 40 can be electrically connected to the internal connection structure 30 via the contact window COA. The internal connection structure 40 can be electrically connected to the internal connection structure 30 via the channel pillar structure CP1.

圖2是圖1Q的局部區域200的放大圖。 FIG2 is an enlarged view of the local area 200 of FIG1Q.

參照圖2,電荷儲存結構108於通道柱結構CP1的外表面。多個通道柱結構CP1的多個通道插塞60a延伸穿過停止層103以及至少部分的最頂絕緣層102。多個通道插塞60a的高度H1大於停止層103的厚度T1。通道插塞60a的底面S3比停止層103的底面(即表面S1)接近基底10(示於圖1Q中)。亦即,通道插塞60a的底面S3可以低於停止層103的底面(即表面S1)。通道插塞60a的底面S3可以高於最頂層的導體層126的頂面S4。或是,通道插塞60a的底面S3可以低於停止層103的底面(即表面S1),且低於最頂層的導體層126的頂面S4。在一些實施例中,通道插 塞60a的底面S3介於最頂層的導體層126的頂面S4與底面之間。由於通道插塞60a具有摻質,接面可以與最頂層的導體層126側向部分重疊或完全重疊,因此可以在進行抹除時降低閘極誘發汲極漏電流(GIDL)。在一些實施例中,通道插塞60a從停止層103的表面S2至通道插塞60a的底面S3的高度H1的範圍例如是500埃至1500埃。通道插塞60a的高寬比的範圍例如是0.5至3.75。通道插塞60a的底面S3與最頂層的導體層126的頂面S4之間的距離D1的範圍例如是-300埃至300埃。 Referring to FIG. 2 , the charge storage structure 108 is on the outer surface of the channel column structure CP1. The multiple channel plugs 60a of the multiple channel column structures CP1 extend through the stop layer 103 and at least a portion of the topmost insulating layer 102. The height H1 of the multiple channel plugs 60a is greater than the thickness T1 of the stop layer 103. The bottom surface S3 of the channel plug 60a is closer to the substrate 10 (shown in FIG. 1Q ) than the bottom surface (i.e., surface S1) of the stop layer 103. That is, the bottom surface S3 of the channel plug 60a can be lower than the bottom surface (i.e., surface S1) of the stop layer 103. The bottom surface S3 of the channel plug 60a can be higher than the top surface S4 of the topmost conductive layer 126. Alternatively, the bottom surface S3 of the channel plug 60a may be lower than the bottom surface (i.e., surface S1) of the stop layer 103 and lower than the top surface S4 of the topmost conductive layer 126. In some embodiments, the bottom surface S3 of the channel plug 60a is between the top surface S4 and the bottom surface of the topmost conductive layer 126. Since the channel plug 60a has doping, the junction may partially overlap or completely overlap with the topmost conductive layer 126 laterally, thereby reducing the gate induced drain leakage (GIDL) when erasing. In some embodiments, the height H1 of the channel plug 60a from the surface S2 of the stop layer 103 to the bottom surface S3 of the channel plug 60a ranges from 500 angstroms to 1500 angstroms, for example. The range of the aspect ratio of the channel plug 60a is, for example, 0.5 to 3.75. The range of the distance D1 between the bottom surface S3 of the channel plug 60a and the top surface S4 of the topmost conductive layer 126 is, for example, -300 angstroms to 300 angstroms.

參照圖1Q與圖2,在上述的實施例中,多個通道柱結構CP1的多個通道插塞60a形成在停止層103之中,且藉由停止層103彼此分離。相鄰的多個通道插塞60a再經由形成在介電層42之中的導體墊44a(導電特徵)彼此局部電性連接。在分隔牆SLIT相對兩側的導體墊44a再經由導線(共同源極線)48a電性連接。然而,本發明並不以此為限。連接相鄰的多個通道插塞60a的導電特徵可以是在形成介電層42之前或之後形成,其位置可以在介電層42之中、之下或之上。 Referring to FIG. 1Q and FIG. 2 , in the above-mentioned embodiment, multiple channel plugs 60a of multiple channel column structures CP1 are formed in the stop layer 103 and separated from each other by the stop layer 103. Multiple adjacent channel plugs 60a are then partially electrically connected to each other via a conductive pad 44a (conductive feature) formed in the dielectric layer 42. The conductive pads 44a on opposite sides of the separation wall SLIT are then electrically connected via a wire (common source line) 48a. However, the present invention is not limited thereto. The conductive feature connecting the multiple adjacent channel plugs 60a can be formed before or after the dielectric layer 42 is formed, and its position can be in, below or above the dielectric layer 42.

圖3至圖5是依照本發明另一些實施例的數種記憶體元件的剖面示意圖。 Figures 3 to 5 are cross-sectional schematic diagrams of several memory elements according to other embodiments of the present invention.

參照圖1N與圖3,在停止層103上以及凹槽R1(示於圖1M)之中形成通道材料60之後,在形成介電層42之前,對通道材料60進行圖案化製程,以取代平坦化製程。通道材料60的圖案化製程可以藉由微影與蝕刻製程來執行。在多個支撐結構PIC以及多個穿孔TV上的通道材料60被移除。通道材料60被圖案化成在停止層103上的半導體墊60b(導電特徵),以及填在凹槽 R1之中的通道插塞60a。相鄰的通道插塞60a經由半導體墊60b彼此電性連接。半導體墊60b(導電特徵)還連接分隔牆SLIT兩側的多個通道插塞60a。其後,參照上述實施例,形成內連線結構40的介電層42、導體墊44a、導線48以及介電層50。 Referring to FIG. 1N and FIG. 3 , after forming the channel material 60 on the stop layer 103 and in the recess R1 (shown in FIG. 1M ), before forming the dielectric layer 42 , a patterning process is performed on the channel material 60 to replace the planarization process. The patterning process of the channel material 60 can be performed by lithography and etching processes. The channel material 60 on the multiple supporting structures PIC and the multiple through-holes TV is removed. The channel material 60 is patterned into a semiconductor pad 60b (conductive feature) on the stop layer 103 and a channel plug 60a filled in the recess R1. Adjacent channel plugs 60a are electrically connected to each other via the semiconductor pad 60b. The semiconductor pad 60b (conductive feature) also connects multiple channel plugs 60a on both sides of the separation wall SLIT. Thereafter, referring to the above-mentioned embodiment, the dielectric layer 42, the conductive pad 44a, the conductive line 48 and the dielectric layer 50 of the interconnect structure 40 are formed.

參照圖1P與圖4,在停止層103上形成介電層42之後,在介電層42之中形成彼此分離的多個接觸窗46以及多個介層窗44b。接觸窗46連接穿孔TV。每一個介層窗44b連接單一個通道插塞60a。多個介層窗44b,透過後續形成的導線(共同源極線)48a電性連接。相鄰的多個介層窗44b可以電性連接同一導線48a。 Referring to FIG. 1P and FIG. 4 , after a dielectric layer 42 is formed on the stop layer 103 , multiple contact windows 46 and multiple vias 44b separated from each other are formed in the dielectric layer 42 . The contact window 46 is connected to the through hole TV. Each via 44b is connected to a single channel plug 60a. Multiple vias 44b are electrically connected through a subsequently formed conductor (common source line) 48a. Multiple adjacent vias 44b can be electrically connected to the same conductor 48a.

參照圖1Q至圖4,上述的停止層103為絕緣的連續層,然而,本發明並不此為限。停止層103也可以是不連續的圖案化導體層如圖5所示。 Referring to FIG. 1Q to FIG. 4 , the above-mentioned stop layer 103 is an insulating continuous layer, however, the present invention is not limited thereto. The stop layer 103 can also be a discontinuous patterned conductive layer as shown in FIG. 5 .

參照圖5,圖案化的導體層之間被介電層105分隔。停止層103與介電層105的形成方法可以採用先形成介電層105再形成停止層103的金屬鑲嵌的方式形成。金屬鑲嵌的方式可以先形成介電層105,接著圖案化介電層105以形成多個開口。之後再於介電層105上以及多個開口中填入停止材料。然後進行平坦化製程,例如是化學機械研磨製程,以移除介電層105上多餘的停止材料,以形成停止層103。或者,停止層103與介電層105的形成方法也可以採用先形成停止材料,再將停止材料圖案化,以形成停止層103。之後,再於停止層103上以及周圍形成介電材料。然後,進行平坦化製程,例如是化學機械研磨製程,移除停止層103上的介電材料,以形成介電層105。 Referring to FIG. 5 , the patterned conductive layers are separated by a dielectric layer 105. The stop layer 103 and the dielectric layer 105 may be formed by a metal embedding method in which the dielectric layer 105 is first formed and then the stop layer 103 is formed. The metal embedding method may first form the dielectric layer 105 and then pattern the dielectric layer 105 to form a plurality of openings. Then, a stop material is filled on the dielectric layer 105 and in the plurality of openings. Then, a planarization process, such as a chemical mechanical polishing process, is performed to remove excess stop material on the dielectric layer 105 to form the stop layer 103. Alternatively, the stop layer 103 and the dielectric layer 105 may be formed by first forming a stop material and then patterning the stop material to form the stop layer 103. Afterwards, a dielectric material is formed on and around the stop layer 103. Then, a planarization process, such as a chemical mechanical polishing process, is performed to remove the dielectric material on the stop layer 103 to form a dielectric layer 105.

參照圖5,在一些實施例中,停止層103為不連續的圖案 化的導體層。圖案化的導體層的材料例如是多晶矽層或鎢。停止層103可以包括導體圖案103a、103b與103c。導體圖案103a、103b與103c彼此藉由介電層105電性絕緣。每一個導體圖案103a圍繞穿孔TV。導體圖案103b圍繞多個支撐結構PIC。每一個導體圖案103c圍繞多個通道插塞60a的其中之一。 Referring to FIG. 5 , in some embodiments, the stop layer 103 is a discontinuous patterned conductive layer. The material of the patterned conductive layer is, for example, a polysilicon layer or tungsten. The stop layer 103 may include conductive patterns 103a, 103b, and 103c. The conductive patterns 103a, 103b, and 103c are electrically insulated from each other by a dielectric layer 105. Each conductive pattern 103a surrounds a through hole TV. The conductive pattern 103b surrounds a plurality of supporting structures PIC. Each conductive pattern 103c surrounds one of a plurality of channel plugs 60a.

在本實施例中,多個穿孔TV各自分別與停止層103(導電圖案103a)電性連接,且彼此以介電層105電性絕緣。多個支撐結構PIC可以連接到同一停止層103(導電圖案103b)。多個支撐結構PIC藉由介電層105,與相鄰的穿孔TV電性絕緣。多個支撐結構PIC藉由介電層105,與相鄰的通道插塞60a電性絕緣。多個通道插塞60a周圍的停止層103(導電圖案103c)沿著水平方向從分隔牆SLIT的一側連續延伸至另一側。因此,在分隔牆SLIT相對兩側的多個通道插塞60a藉由導體墊44a及其下方的停止層103彼此電性連接,也可以藉由導體墊44a以其上方的導線48彼此電性連接。 In this embodiment, the plurality of through-holes TV are electrically connected to the stop layer 103 (conductive pattern 103a) respectively, and are electrically insulated from each other by the dielectric layer 105. The plurality of supporting structures PIC can be connected to the same stop layer 103 (conductive pattern 103b). The plurality of supporting structures PIC are electrically insulated from the adjacent through-holes TV by the dielectric layer 105. The plurality of supporting structures PIC are electrically insulated from the adjacent channel plugs 60a by the dielectric layer 105. The stop layer 103 (conductive pattern 103c) around the plurality of channel plugs 60a extends continuously from one side of the partition wall SLIT to the other side in the horizontal direction. Therefore, the multiple channel plugs 60a on opposite sides of the separation wall SLIT are electrically connected to each other through the conductive pad 44a and the stop layer 103 below it, and can also be electrically connected to each other through the conductive pad 44a and the wire 48 above it.

綜上所述,本發明實施例藉由接合兩晶片的方式來形成記憶體元件。由於其中的一個晶片設有停止層,可以在蝕刻的過程中保護停止層下方的堆疊結構,因此,在垂直通道柱的頂端設置的通道插塞可以藉由蝕刻出凹槽再回填通道材料的方式形成。之後,再於通道插塞上形成導電特徵,以使得多個通道插塞彼此電性連接。由於凹槽的高寬比小,因此,可以輕易蝕刻,且可以輕易回填通道材料。因此,採用本發明實施例的方法可以降低製程的困難度。由於通道插塞具有摻質,接面可以與最頂層的導體 層側向部分重疊或完全重疊,因此可以在進行抹除時降低閘極誘發汲極漏電流(GIDL)。 In summary, the embodiment of the present invention forms a memory element by bonding two chips. Since one of the chips is provided with a stop layer, the stacked structure below the stop layer can be protected during the etching process. Therefore, the channel plug provided at the top of the vertical channel column can be formed by etching a groove and then backfilling the channel material. Afterwards, a conductive feature is formed on the channel plug to electrically connect multiple channel plugs to each other. Since the aspect ratio of the groove is small, it can be easily etched and the channel material can be easily backfilled. Therefore, the method of the embodiment of the present invention can reduce the difficulty of the process. Because the channel plug is doped, the junction can partially or completely overlap laterally with the topmost conductive layer, thereby reducing the gate-induced drain leakage (GIDL) during erase.

50:介電層 50: Dielectric layer

48:導線 48: Conductor wire

42:介電層 42: Dielectric layer

40:內連線結構 40:Internal connection structure

SLIT:分隔牆 SLIT:Separation wall

103:停止層 103: Stop layer

102:絕緣層 102: Insulation layer

S1:表面/底面 S1: Surface/bottom

S1、S2:表面 S1, S2: surface

S3、S5:底面 S3, S5: bottom surface

S4:頂面 S4: Top

60a:通道插塞 60a: Channel plug

110:通道層/通道柱 110: Channel layer/channel column

108:電荷儲存結構 108: Charge storage structure

114:通道插塞 114: Channel plug

CP1:通道柱結構 CP1: Channel column structure

E1、E2:端 E1, E2: end

200:區域 200: Area

44a:導體墊 44a: Conductor pad

H1:高度 H1: Height

JS:接面 JS: Interview

D1:距離 D1: Distance

126:導體層 126: Conductor layer

Claims (20)

一種記憶體元件,包括:第一內連線結構,位於基底上方;第二內連線結構,位於所述第一內連線結構上方;堆疊結構,位於所述第一內連線結構與所述第二內連線結構之間,其中所述堆疊結構包括交替堆疊的多個導體層與多個絕緣層;停止層,位於所述堆疊結構與所述第二內連線結構之間;以及多個通道柱結構,延伸穿過所述堆疊結構,每個通道柱結構包括:通道柱,延伸穿過所述堆疊結構與所述停止層;第一通道插塞,位於所述通道柱的第一端,與所述第一內連線結構連接;以及第二通道插塞,位於所述通道柱的第二端,與所述第二內連線結構連接,其中所述第二通道插塞的底面比所述停止層的底面接近所述基底。 A memory element includes: a first interconnect structure located above a substrate; a second interconnect structure located above the first interconnect structure; a stacking structure located between the first interconnect structure and the second interconnect structure, wherein the stacking structure includes a plurality of conductor layers and a plurality of insulating layers stacked alternately; a stop layer located between the stacking structure and the second interconnect structure; and a plurality of channel pillar structures extending through the stacking structure, each channel pillar structure including: a channel pillar extending through the stacking structure and the stop layer; a first channel plug located at a first end of the channel pillar and connected to the first interconnect structure; and a second channel plug located at a second end of the channel pillar and connected to the second interconnect structure, wherein a bottom surface of the second channel plug is closer to the substrate than a bottom surface of the stop layer. 如請求項1所述記憶體元件,其中所述第二通道插塞延伸穿過所述停止層以及至少部分的所述多個絕緣層的最頂絕緣層。 A memory element as described in claim 1, wherein the second channel plug extends through the stop layer and at least a portion of the topmost insulating layer of the plurality of insulating layers. 如請求項1所述記憶體元件,其中所述第二通道插塞的底面介於所述停止層的所述底面與所述多個導體層的最頂導體層的底面之間。 A memory element as described in claim 1, wherein the bottom surface of the second channel plug is between the bottom surface of the stop layer and the bottom surface of the topmost conductive layer of the multiple conductive layers. 如請求項1所述記憶體元件,其中所述第一通道插塞以及所述第二通道插塞包括具有摻質的半導體材料。 A memory element as described in claim 1, wherein the first channel plug and the second channel plug include a semiconductor material with an impurity. 如請求項1所述記憶體元件,其中相鄰的第二通道插塞經由半導體墊彼此電性連接。 A memory element as described in claim 1, wherein adjacent second channel plugs are electrically connected to each other via semiconductor pads. 如請求項1所述記憶體元件,其中相鄰的第二通道插塞連接所述第二內連線結構的同一導體墊,再連接共同源極線。 A memory element as described in claim 1, wherein the adjacent second channel plugs are connected to the same conductive pad of the second internal connection structure and then connected to a common source line. 如請求項1所述記憶體元件,其中相鄰的第二通道插塞經由所述第二內連線結構的多個介層窗連接共同源極線。 A memory element as described in claim 1, wherein adjacent second channel plugs are connected to a common source line via multiple vias of the second internal connection structure. 如請求項1所述記憶體元件,更包括:接合結構位於所述第一內連線結構中。 The memory element as described in claim 1 further includes: a bonding structure located in the first internal connection structure. 如請求項1所述記憶體元件,其中所述第二通道插塞從所述停止層的頂面的高度範圍在500埃至1500埃。 A memory device as described in claim 1, wherein the height of the second channel plug from the top surface of the stop layer ranges from 500 angstroms to 1500 angstroms. 如請求項1所述記憶體元件,其中所述第二通道插塞的高寬比的範圍在0.5至3.75。 A memory element as described in claim 1, wherein the aspect ratio of the second channel plug ranges from 0.5 to 3.75. 如請求項1所述記憶體元件,其中所述第二通道插塞的底面至所述多個導體層的最頂層導體層的頂面之間的距離範圍在-300埃至300埃。 A memory element as described in claim 1, wherein the distance between the bottom surface of the second channel plug and the top surface of the topmost conductive layer of the plurality of conductive layers ranges from -300 angstroms to 300 angstroms. 如請求項1所述記憶體元件,更包括: 多個穿孔,延伸穿過所述停止層以及所述堆疊結構的交替堆疊的多個中間層與所述多個絕緣層,連接所述第一內連線結構與所述第二內連線結構。 The memory element as described in claim 1 further includes: A plurality of through holes extending through the stop layer and the plurality of alternately stacked middle layers and the plurality of insulating layers of the stacking structure, connecting the first internal connection structure and the second internal connection structure. 如請求項1所述記憶體元件,其中所述停止層包括絕緣材料或圖案化的導體層。 A memory element as described in claim 1, wherein the stop layer comprises an insulating material or a patterned conductive layer. 一種記憶體元件的製造方法,包括:形成堆疊結構,於停止層的第一表面上,其中所述堆疊結構包括交替堆疊的多個中間層與多個絕緣層;將部分的所述多個中間層取代為多個導體層;形成多個通道柱結構,延伸穿過所述堆疊結構,其中形成每個通道柱結構包括:形成通道柱,延伸穿過所述堆疊結構與所述停止層;形成絕緣柱,於所述通道柱之內表面;形成第一通道插塞,位於所述通道柱的第一端;移除所述每個通道柱的第二端的部分所述絕緣柱,以形成凹槽;以及形成所述每個通道柱結構的第二通道插塞,於所述凹槽中;形成電荷儲存結構於所述多個通道柱結構的外表面,形成第一內連線結構與第二內連線結構,使所述堆疊結構位於所述第一內連線結構與所述第二內連線結構之間,其中所述 第一內連線結構與所述通道柱的所述第一端電性連接,所述與第二內連線結構與所述通道柱的所述第二端電性連接。 A method for manufacturing a memory element comprises: forming a stacked structure on a first surface of a stop layer, wherein the stacked structure comprises a plurality of middle layers and a plurality of insulating layers stacked alternately; replacing a portion of the plurality of middle layers with a plurality of conductive layers; forming a plurality of channel pillar structures extending through the stacked structure, wherein forming each channel pillar structure comprises: forming a channel pillar extending through the stacked structure and the stop layer; forming an insulating pillar on an inner surface of the channel pillar; forming a first channel plug located at a first end of the channel pillar; removing the conductive layer; and removing the conductive layer from the first end of the channel pillar. The insulating column at the second end of each channel column is partially connected to form a groove; and a second channel plug of each channel column structure is formed in the groove; a charge storage structure is formed on the outer surface of the plurality of channel column structures, and a first inner connection structure and a second inner connection structure are formed, so that the stacking structure is located between the first inner connection structure and the second inner connection structure, wherein the first inner connection structure is electrically connected to the first end of the channel column, and the second inner connection structure is electrically connected to the second end of the channel column. 如請求項14所述的記憶體元件的製造方法,更包括:進行離子植入製程,將摻質植入於所述第二通道插塞中;以及進行回火製程,以活化所述摻質。 The method for manufacturing a memory element as described in claim 14 further includes: performing an ion implantation process to implant the dopant into the second channel plug; and performing an annealing process to activate the dopant. 如請求項14所述的記憶體元件的製造方法,更包括:形成所述第一內連線結構的第一部分,於第一基底上方;形成接合結構的第一部分於所述第一內連線結構的所述第一部分上;形成所述第一內連線結構的第二部分,於所述堆疊結構上,連接所述第一通道插塞;形成所述接合結構的第二部分於所述第一內連線結構的所述第二部分上;以及接合所述接合結構的所述第一部分與所述接合結構的所述第二部分。 The manufacturing method of the memory element as described in claim 14 further includes: forming a first portion of the first internal connection structure on the first substrate; forming a first portion of the bonding structure on the first portion of the first internal connection structure; forming a second portion of the first internal connection structure on the stacking structure to connect the first channel plug; forming a second portion of the bonding structure on the second portion of the first internal connection structure; and bonding the first portion of the bonding structure and the second portion of the bonding structure. 如請求項16所述的記憶體元件的製造方法,更包括:形成所述停止層,於第二基底上; 移除所述第二基底,並裸露出所述每個通道柱的所述第二端;以及形成所述第二內連線結構,於所述停止層的第二表面上,連接所述第二通道插塞,其中所述第二通道插塞的底面比所述停止層的所述第一表面接近所述第一基底。 The manufacturing method of the memory element as described in claim 16 further includes: forming the stop layer on the second substrate; removing the second substrate and exposing the second end of each channel column; and forming the second internal connection structure on the second surface of the stop layer to connect the second channel plug, wherein the bottom surface of the second channel plug is closer to the first substrate than the first surface of the stop layer. 如請求項17所述的記憶體元件的製造方法,其中形成所述每個通道柱結構的所述第二通道插塞的方法包括:在所述停止層的所述第二表面上以及所述凹槽中形成通道材料;以及移除所述停止層的所述第二表面上的所述通道材料,在所述凹槽中形成所述第二通道插塞。 A method for manufacturing a memory device as described in claim 17, wherein the method for forming the second channel plug of each channel pillar structure comprises: forming a channel material on the second surface of the stop layer and in the groove; and removing the channel material on the second surface of the stop layer to form the second channel plug in the groove. 如請求項18所述的記憶體元件的製造方法,其中形成所述第二內連線結構包括形成導體墊或介層窗,連接所述第二通道插塞。 A method for manufacturing a memory device as described in claim 18, wherein forming the second internal connection structure includes forming a conductive pad or a via window to connect the second channel plug. 如請求項17所述的記憶體元件的製造方法,其中在所述凹槽中形成所述每個通道柱結構的所述第二通道插塞的方法包括:在所述停止層的所述第二表面上以及所述凹槽中形成通道材料;以及圖案化所述停止層的所述第二表面上的所述通道材料,以形成半導體層,並在所述凹槽中形成所述第二通道插塞。 A method for manufacturing a memory device as described in claim 17, wherein the method for forming the second channel plug of each channel pillar structure in the groove comprises: forming a channel material on the second surface of the stop layer and in the groove; and patterning the channel material on the second surface of the stop layer to form a semiconductor layer and forming the second channel plug in the groove.
TW112114480A 2023-04-19 2023-04-19 Memory device and method of fabricating the same TWI845263B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112114480A TWI845263B (en) 2023-04-19 2023-04-19 Memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112114480A TWI845263B (en) 2023-04-19 2023-04-19 Memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI845263B true TWI845263B (en) 2024-06-11
TW202444204A TW202444204A (en) 2024-11-01

Family

ID=92541719

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112114480A TWI845263B (en) 2023-04-19 2023-04-19 Memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI845263B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020252892A1 (en) * 2019-06-17 2020-12-24 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in slit structures and method for forming the same
TW202207376A (en) * 2020-08-07 2022-02-16 南韓商三星電子股份有限公司 Semiconductor memory device
TW202228249A (en) * 2021-01-13 2022-07-16 旺宏電子股份有限公司 Memory device and method for manufacturing the same
CN114823697A (en) * 2022-04-25 2022-07-29 长江存储科技有限责任公司 Three-dimensional memory, preparation method thereof, storage system and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020252892A1 (en) * 2019-06-17 2020-12-24 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in slit structures and method for forming the same
TW202207376A (en) * 2020-08-07 2022-02-16 南韓商三星電子股份有限公司 Semiconductor memory device
TW202228249A (en) * 2021-01-13 2022-07-16 旺宏電子股份有限公司 Memory device and method for manufacturing the same
CN114823697A (en) * 2022-04-25 2022-07-29 长江存储科技有限责任公司 Three-dimensional memory, preparation method thereof, storage system and electronic equipment

Similar Documents

Publication Publication Date Title
US10886289B2 (en) Integrated circuit device including vertical memory device and method of manufacturing the same
KR102471722B1 (en) Semiconductor memory device
JP5731858B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP7114327B2 (en) Semiconductor device and method for manufacturing semiconductor device
KR100919712B1 (en) Semiconductor Integrated Circuit Device and Fabrication Method Thereof
JP2009158591A (en) Semiconductor device and process for manufacturing same
US12133384B2 (en) Semiconductor device
US8013373B2 (en) Semiconductor device having MOS-transistor formed on semiconductor substrate and method for manufacturing thereof
TWI759015B (en) Three-dimensional memory device and method for manufacturing the same
US20220392829A1 (en) Semiconductor devices including supporter
TWI845263B (en) Memory device and method of fabricating the same
US12096615B2 (en) Semiconductor devices having contact plugs
KR20010051026A (en) Semiconductor device and its manufacturing method
TWI787080B (en) 3d flash memory device
US7439125B2 (en) Contact structure for a stack DRAM storage capacitor
US20230120621A1 (en) Memory device and method of fabricating the same
US11462553B2 (en) Semiconductor device having vertical fence structures
US20240355732A1 (en) Memory device and method of fabricating the same
WO2014123176A1 (en) Semiconductor device and fabrication method therefor
US20050164491A1 (en) Bit line contact hole and method for forming the same
TWI786797B (en) Memory device and method of fabricating the same
TWI809533B (en) Memory device
US20230084281A1 (en) Semiconductor device and method of fabricating the same
TWI817405B (en) Memory device
JP7524369B2 (en) 3D MEMORY DEVICE AND METHOD FOR FORMING SEAL STRUCTURE - Patent application