TWI590419B - Dynamic random access memory structure and manufacturing method thereof - Google Patents
Dynamic random access memory structure and manufacturing method thereof Download PDFInfo
- Publication number
- TWI590419B TWI590419B TW105135306A TW105135306A TWI590419B TW I590419 B TWI590419 B TW I590419B TW 105135306 A TW105135306 A TW 105135306A TW 105135306 A TW105135306 A TW 105135306A TW I590419 B TWI590419 B TW I590419B
- Authority
- TW
- Taiwan
- Prior art keywords
- random access
- access memory
- dynamic random
- substrate
- dielectric layer
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本發明是有關於一種記憶體結構及其製造方法,且特別是有關於一種動態隨機存取記憶體結構及其製造方法。The present invention relates to a memory structure and a method of fabricating the same, and more particularly to a dynamic random access memory structure and a method of fabricating the same.
在傳統的動態隨機存取記憶體結構的周邊電路區中,電晶體元件的閘極材料採用摻雜多晶矽,因此容易產生多晶矽空乏效應(poly depletion effect),而降低元件效能。In the peripheral circuit region of the conventional dynamic random access memory structure, the gate material of the transistor component is doped with polysilicon, so that a poly depletion effect is easily generated and the component performance is lowered.
因此,目前發展出一種以金屬閘極結構來取代摻雜多晶矽閘極的電晶體元件,其可有效地防止多晶矽空乏效應產生。Therefore, a transistor element having a metal gate structure instead of a doped polysilicon gate has been developed, which can effectively prevent the occurrence of polycrystalline germanium depletion.
然而,如何有效地將動態隨機存取記憶體的製程與具有金屬閘極結構的電晶體結構的製程進行整合為目前業界亟待解決的課題。此外,如何有效地降低動態隨機存取記憶體的製程複雜度也是目前業界不斷努力的目標。However, how to effectively integrate the process of the dynamic random access memory and the process of the transistor structure having the metal gate structure has become an urgent problem to be solved in the industry. In addition, how to effectively reduce the process complexity of dynamic random access memory is also the goal of the industry.
本發明提供一種動態隨機存取記憶體結構的製造方法,其可有效地將動態隨機存取記憶體的製程與具有金屬閘極結構的電晶體結構的製程進行整合。The invention provides a manufacturing method of a dynamic random access memory structure, which can effectively integrate the process of the dynamic random access memory with the process of the transistor structure having the metal gate structure.
本發明提供一種動態隨機存取記憶體結構,其可有效地防止記憶胞區中的構件在形成過程中造成周邊電路區的電晶體結構受到損害。The present invention provides a dynamic random access memory structure which can effectively prevent components in a memory cell region from being damaged by a crystal structure of a peripheral circuit region during formation.
本發明提出一種動態隨機存取記憶體結構的製造方法,包括下列步驟。提供基底,其中基底包括記憶胞區與周邊電路區。於記憶胞區中形成動態隨機存取記憶體。動態隨機存取記憶體包括耦接至電容結構的電容接觸窗。於周邊電路區中形成具有金屬閘極結構的電晶體結構。金屬閘極結構是藉由使用虛擬閘極的製程所形成。電容接觸窗與虛擬閘極是由同一層導體層所形成。The invention provides a method for fabricating a dynamic random access memory structure, comprising the following steps. A substrate is provided, wherein the substrate includes a memory cell region and a peripheral circuit region. A dynamic random access memory is formed in the memory cell region. The DRAM includes a capacitive contact window coupled to the capacitive structure. A transistor structure having a metal gate structure is formed in the peripheral circuit region. The metal gate structure is formed by a process using a dummy gate. The capacitive contact window and the virtual gate are formed by the same layer of conductors.
本發明提出一種動態隨機存取記憶體結構,包括基底、動態隨機存取記憶體與護環結構。基底包括記憶胞區。動態隨機存取記憶體位於記憶胞區中。動態隨機存取記憶體包括耦接至電容結構的電容接觸窗。護環結構圍繞記憶胞區的邊界。電容接觸窗與護環結構是源自於同一層導體層。The invention provides a dynamic random access memory structure, comprising a substrate, a dynamic random access memory and a guard ring structure. The substrate includes a memory cell region. The dynamic random access memory is located in the memory cell area. The DRAM includes a capacitive contact window coupled to the capacitive structure. The guard ring structure surrounds the boundary of the memory cell. The capacitive contact window and guard ring structure are derived from the same layer of conductor layers.
基於上述,在本發明所提出的動態隨機存取記憶體結構的製造方法中,由於電容接觸窗與虛擬閘極是由同一層導體層所形成,因此可有效地將動態隨機存取記憶體的製程與具有金屬閘極結構的電晶體結構的製程進行整合,且可有效地降低製程複雜度。Based on the above, in the manufacturing method of the dynamic random access memory structure proposed by the present invention, since the capacitive contact window and the dummy gate are formed by the same layer of conductor layers, the dynamic random access memory can be effectively The process is integrated with the process of a transistor structure having a metal gate structure, and the process complexity can be effectively reduced.
此外,由於本發明所提出的動態隨機存取記憶體結構具有圍繞記憶胞區邊界的護環結構,因此可有效地防止記憶胞區中的構件在形成周邊電路區的電晶體結構的過程中受到損害。另外,由於電容接觸窗與護環結構是源自於同一層導體層,因此可有效地降低製程複雜度。In addition, since the dynamic random access memory structure proposed by the present invention has a guard ring structure surrounding the boundary of the memory cell region, the member in the memory cell region can be effectively prevented from being subjected to the process of forming the transistor structure of the peripheral circuit region. damage. In addition, since the capacitive contact window and the guard ring structure are derived from the same layer of conductor layers, the process complexity can be effectively reduced.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1A至圖1H為本發明一實施例的動態隨機存取記憶體結構的製造流程剖面圖。1A through 1H are cross-sectional views showing a manufacturing process of a dynamic random access memory structure according to an embodiment of the present invention.
請參照圖1A,提供基底100,其中基底100包括記憶胞區R1與周邊電路區R2。此外,可於基底100中形成隔離結構102。隔離結構102例如是淺溝渠隔離結構(STI)。Referring to FIG. 1A, a substrate 100 is provided in which a substrate 100 includes a memory cell region R1 and a peripheral circuit region R2. Additionally, isolation structures 102 can be formed in substrate 100. The isolation structure 102 is, for example, a shallow trench isolation structure (STI).
於基底100中形成埋入式導線104。埋入式導線104可用以作為動態隨機存取記憶體的字元線使用。在圖1的剖面圖中,位於記憶胞區R1中的埋入式導線104可位於隔離結構102之間。埋入式導線104的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程。埋入式導線104包括埋入式導體層104a,且更可包括頂蓋層104b與介電層104c。埋入式導體層104a設置於基底100中。埋入式導體層104a的材料例如是鎢等金屬材料。頂蓋層104b設置於埋入式導體層104a上。頂蓋層104b的材料例如是氮化矽。介電層104c設置於埋入式導體層104a與基底100之間。介電層104c的材料例如是氧化矽。A buried wire 104 is formed in the substrate 100. The buried wire 104 can be used as a word line for dynamic random access memory. In the cross-sectional view of FIG. 1, buried conductors 104 located in memory cell region R1 may be located between isolation structures 102. The method of forming the buried wiring 104 is, for example, a combination of a deposition process, a lithography process, and an etching process. The buried conductor 104 includes a buried conductor layer 104a and may further include a cap layer 104b and a dielectric layer 104c. The buried conductor layer 104a is disposed in the substrate 100. The material of the buried conductor layer 104a is, for example, a metal material such as tungsten. The cap layer 104b is disposed on the buried conductor layer 104a. The material of the cap layer 104b is, for example, tantalum nitride. The dielectric layer 104c is disposed between the buried conductor layer 104a and the substrate 100. The material of the dielectric layer 104c is, for example, ruthenium oxide.
部分埋入式導線104可位於周邊電路區R2中。舉例來說,埋入式導線104的導體層104a與頂蓋層104b可設置於周邊電路區R2的隔離結構102中。Part of the buried conductor 104 can be located in the peripheral circuit region R2. For example, the conductor layer 104a and the cap layer 104b of the buried wire 104 may be disposed in the isolation structure 102 of the peripheral circuit region R2.
可於記憶胞區R1的基底100上形成介電層106a。介電層106a的材料例如是氧化矽。可於周邊電路區R2的基底100上形成介電層106b。介電層106b的材料例如是氧化矽。介電層106a與介電層106b的形成方法例如是熱氧化法或化學氣相沉積法。介電層106a的厚度例如是大於介電層106b的厚度,但本發明並不以此為限。A dielectric layer 106a can be formed on the substrate 100 of the memory cell region R1. The material of the dielectric layer 106a is, for example, ruthenium oxide. A dielectric layer 106b can be formed on the substrate 100 of the peripheral circuit region R2. The material of the dielectric layer 106b is, for example, ruthenium oxide. The method of forming the dielectric layer 106a and the dielectric layer 106b is, for example, a thermal oxidation method or a chemical vapor deposition method. The thickness of the dielectric layer 106a is, for example, greater than the thickness of the dielectric layer 106b, but the invention is not limited thereto.
於記憶胞區R1的基底100上形成導線結構108。導線結構108可作為動態隨機存取記憶體的位元線使用。在圖1的剖面圖中,導線結構108可位於埋入式導線104之間,且部分導線結構108可位於介電層106a中。導線結構108的形成方法例如是組合使用沉積製程與圖案化製程。導線結構108可為多層結構或單層結構。在此實施例中,導線結構108是以多層結構為例來進行說明,但本發明並不以此為限。導線結構108可包括導體層108a、導體層108b與阻障層108c。導體層108a設置於基底100上,且可位於介電層106a中。導體層108a的材料例如是摻雜多晶矽。導體層108b設置於導體層108a上。導體層108b的材料例如是鎢等金屬材料。阻障層108c設置於導體層108a與導體層108b之間。阻障層108c的材料例如是Ti/TiN。A wire structure 108 is formed on the substrate 100 of the memory cell region R1. The wire structure 108 can be used as a bit line of a dynamic random access memory. In the cross-sectional view of FIG. 1, the wire structure 108 can be positioned between the buried wires 104 and a portion of the wire structures 108 can be located in the dielectric layer 106a. The method of forming the wire structure 108 is, for example, a combination of a deposition process and a patterning process. The wire structure 108 can be a multilayer structure or a single layer structure. In this embodiment, the wire structure 108 is illustrated by taking a multilayer structure as an example, but the invention is not limited thereto. The wire structure 108 can include a conductor layer 108a, a conductor layer 108b, and a barrier layer 108c. The conductor layer 108a is disposed on the substrate 100 and may be located in the dielectric layer 106a. The material of the conductor layer 108a is, for example, doped polysilicon. The conductor layer 108b is disposed on the conductor layer 108a. The material of the conductor layer 108b is, for example, a metal material such as tungsten. The barrier layer 108c is disposed between the conductor layer 108a and the conductor layer 108b. The material of the barrier layer 108c is, for example, Ti/TiN.
此外,可於導線結構108上形成頂蓋層110。頂蓋層110的材料例如是氮化矽。頂蓋層110的形成方法例如是組合使用沉積製程與圖案化製程。Additionally, a cap layer 110 can be formed on the wire structure 108. The material of the cap layer 110 is, for example, tantalum nitride. The method of forming the cap layer 110 is, for example, a combination of a deposition process and a patterning process.
請參照圖1B,可於介電層106a、介電層106b與頂蓋層110上共形地形成阻擋層(blocking layer)112。阻擋層112的材料例如是氮化矽。阻擋層112的形成方法例如是化學氣相沉積法。Referring to FIG. 1B, a blocking layer 112 may be conformally formed on the dielectric layer 106a, the dielectric layer 106b, and the cap layer 110. The material of the barrier layer 112 is, for example, tantalum nitride. The formation method of the barrier layer 112 is, for example, a chemical vapor deposition method.
可於阻擋層112上形成介電層114,而於記憶胞區R1的基底100上形成介電層結構116a,且於周邊電路區R2的基底100上形成介電層結構116b。介電層結構116a包括依序設置於基底100上的介電層106a、阻擋層112與介電層114。介電層結構116b包括依序設置於基底100上的介電層106b、阻擋層112與介電層114。在記憶胞區R1中,介電層114暴露出頂蓋層110上方的阻擋層112。介電層114的材料例如是氧化矽。介電層114的形成方法例如是先於阻擋層112上形成介電材料層,再對介電材料層進行平坦化製程(如,化學機械研磨製程)。A dielectric layer 114 may be formed on the barrier layer 112, a dielectric layer structure 116a is formed on the substrate 100 of the memory cell region R1, and a dielectric layer structure 116b is formed on the substrate 100 of the peripheral circuit region R2. The dielectric layer structure 116a includes a dielectric layer 106a, a barrier layer 112, and a dielectric layer 114 that are sequentially disposed on the substrate 100. The dielectric layer structure 116b includes a dielectric layer 106b, a barrier layer 112, and a dielectric layer 114 that are sequentially disposed on the substrate 100. In the memory cell region R1, the dielectric layer 114 exposes the barrier layer 112 above the cap layer 110. The material of the dielectric layer 114 is, for example, ruthenium oxide. The dielectric layer 114 is formed by, for example, forming a dielectric material layer on the barrier layer 112 and then planarizing the dielectric material layer (eg, a chemical mechanical polishing process).
圖2為圖1C的上視圖,其中圖1C為沿著圖2中的I-I’剖面線(記憶胞區R1)與II-II’剖面線(周邊電路區R2)的剖面圖。此外,在圖2中,為了清楚地進行說明,省略繪示記憶胞區R1中的介電層結構116a、頂蓋層110以及記憶胞區R1與周邊電路區R2中的頂蓋層104b。Fig. 2 is a top view of Fig. 1C, wherein Fig. 1C is a cross-sectional view taken along line I-I' of Fig. 2 (memory cell region R1) and II-II' hatching (peripheral circuit region R2). In addition, in FIG. 2, for the sake of clarity, the dielectric layer structure 116a, the cap layer 110, and the memory cell region R1 in the memory cell region R1 and the cap layer 104b in the peripheral circuit region R2 are omitted.
請同時參照圖1C與圖2,移除部分介電層結構116a與部分介電層結構116b,而於記憶胞區R1中的介電層結構116a中形成暴露出基底100的開口118a,且於周邊電路區R2中的介電層結構116b中形成暴露出阻擋層112的開口118b。此外,更可移除部分介電層結構116a,而於所述記憶胞區R1中的介電層結構116a中形成暴露出基底100的開口118c,其中開口118c圍繞記憶胞區R1的邊界。開口118a、開口118b與開口118c的形成方法例如是對介電層結構116a與介電層結構116b進行圖案化製程。Referring to FIG. 1C and FIG. 2, a portion of the dielectric layer structure 116a and a portion of the dielectric layer structure 116b are removed, and an opening 118a exposing the substrate 100 is formed in the dielectric layer structure 116a in the memory cell region R1. An opening 118b exposing the barrier layer 112 is formed in the dielectric layer structure 116b in the peripheral circuit region R2. In addition, a portion of the dielectric layer structure 116a is removed, and an opening 118c exposing the substrate 100 is formed in the dielectric layer structure 116a in the memory cell region R1, wherein the opening 118c surrounds the boundary of the memory cell region R1. The method of forming the opening 118a, the opening 118b and the opening 118c is, for example, a patterning process for the dielectric layer structure 116a and the dielectric layer structure 116b.
分別於開口118a與開口118b中形成電容接觸窗120a與虛擬閘極120b。電容接觸窗120a與導線結構108分別位於於埋入式導體層104a的一側與另一側。此外,更可於開口118c中形成護環結構120c。護環結構120c圍繞記憶胞區R1的邊界。電容接觸窗120a、虛擬閘極120b與護環結構120c的形成方法例如是先形成填滿開口118a、開口118b與開口118c的導體層,再對導體層進行平坦化製程(如,化學機械研磨製程)。A capacitive contact window 120a and a dummy gate 120b are formed in the opening 118a and the opening 118b, respectively. The capacitive contact window 120a and the wire structure 108 are located on one side and the other side of the buried conductor layer 104a, respectively. Further, a grommet structure 120c may be formed in the opening 118c. The guard ring structure 120c surrounds the boundary of the memory cell region R1. For example, the capacitor contact window 120a, the dummy gate 120b and the guard ring structure 120c are formed by first forming a conductor layer filling the opening 118a, the opening 118b and the opening 118c, and then planarizing the conductor layer (for example, a chemical mechanical polishing process). ).
由此可知,電容接觸窗120a與虛擬閘極120b是由同一層導體層所形成,因此可有效地將動態隨機存取記憶體的製程與具有金屬閘極結構的電晶體結構的製程進行整合,且可有效地降低製程複雜度。此外,電容接觸窗120a與護環結構120c可由同一層導體層所形成,因此可有效地降低製程複雜度。It can be seen that the capacitive contact window 120a and the dummy gate 120b are formed by the same layer of conductor layers, so that the process of the dynamic random access memory can be effectively integrated with the process of the transistor structure having the metal gate structure. And can effectively reduce the process complexity. In addition, the capacitive contact window 120a and the guard ring structure 120c can be formed by the same layer of conductor layers, thereby effectively reducing process complexity.
請參照圖1D,於記憶胞區R1中形成覆蓋電容接觸窗120a、護環結構120c與介電層結構116a的阻止層(stopper layer)122。阻止層122的材料例如是與介電層114的材料不同。舉例來說,介電層114的材料例如是氧化矽,而阻止層122的材料例如是氮化矽。阻止層122的形成方法例如是於記憶胞區R1與周邊電路區R2中全面性地形成阻止材料層(未繪示),再對阻止材料層進行圖案化製程,以移除周邊電路區R2中的阻止材料層。Referring to FIG. 1D, a stopper layer 122 covering the capacitive contact window 120a, the guard ring structure 120c, and the dielectric layer structure 116a is formed in the memory cell region R1. The material of the blocking layer 122 is, for example, different from the material of the dielectric layer 114. For example, the material of the dielectric layer 114 is, for example, yttrium oxide, and the material of the blocking layer 122 is, for example, tantalum nitride. The forming method of the blocking layer 122 is, for example, comprehensively forming a blocking material layer (not shown) in the memory cell region R1 and the peripheral circuit region R2, and then patterning the blocking material layer to remove the peripheral circuit region R2. Block the layer of material.
移除周邊電路區R2中的介電層114,而形成開口126。介電層114的移除法例如是濕式蝕刻法。此時,護環結構120c與阻止層122可用以保護記憶胞區R1中的介電層114,以避免記憶胞區R1中的介電層114受到損壞。The dielectric layer 114 in the peripheral circuit region R2 is removed to form an opening 126. The removal method of the dielectric layer 114 is, for example, a wet etching method. At this time, the guard ring structure 120c and the blocking layer 122 can be used to protect the dielectric layer 114 in the memory cell region R1 to prevent the dielectric layer 114 in the memory cell region R1 from being damaged.
請參照圖1E,可於虛擬閘極120b的側壁上形成間隙壁128。間隙壁128的材料例如是氧化矽。間隙壁128的形成方法例如是先於虛擬閘極120b上形成共形的間隙壁材料層(未繪示),再對間隙壁材料層進行回蝕刻製程。Referring to FIG. 1E, a spacer 128 may be formed on the sidewall of the dummy gate 120b. The material of the spacer 128 is, for example, ruthenium oxide. The spacer 128 is formed by, for example, forming a conformal layer of spacer material (not shown) on the dummy gate 120b, and then performing an etch-back process on the spacer material layer.
可於虛擬閘極120b兩側的基底100中形成輕摻雜區130。輕摻雜區130的形成方法例如是離子植入法。Lightly doped regions 130 may be formed in the substrate 100 on either side of the dummy gate 120b. The method of forming the lightly doped region 130 is, for example, an ion implantation method.
於間隙壁128上形成間隙壁132。間隙壁132的材料例如是氧化矽。間隙壁132的形成方法例如是先於虛擬閘極120b與間隙壁128上形成共形的間隙壁材料層(未繪示),再對間隙壁材料層進行回蝕刻製程。A spacer 132 is formed on the spacer 128. The material of the spacer 132 is, for example, ruthenium oxide. The spacer 132 is formed by, for example, forming a conformal layer of spacer material (not shown) on the dummy gate 120b and the spacer 128, and then performing an etch-back process on the spacer material layer.
此外,在形成間隙壁128與間隙壁132的過程中,會移除未被虛擬閘極120b、間隙壁128與間隙壁132所覆蓋的阻擋層112與介電層106b。In addition, during formation of the spacers 128 and the spacers 132, the barrier layer 112 and the dielectric layer 106b that are not covered by the dummy gates 120b, the spacers 128, and the spacers 132 are removed.
於虛擬閘極120b兩側的基底100中形成摻雜區134,其中輕摻雜區130位於虛擬閘極120b與摻雜區134之間。摻雜區134的形成方法例如是離子植入法。A doped region 134 is formed in the substrate 100 on both sides of the dummy gate 120b, wherein the lightly doped region 130 is located between the dummy gate 120b and the doped region 134. The method of forming the doping region 134 is, for example, an ion implantation method.
於開口126中形成介電層136。介電層136的材料例如是氧化矽。介電層136的形成方法例如是先形成填滿開口126的介電材料層(未繪示),再對介電材料層進行平坦化製程(如,化學機械研磨製程)。此外,在對介電材料層進行平坦化製程的過程中,可能會移除部分阻止層122,而使得阻止層122厚度變薄。A dielectric layer 136 is formed in the opening 126. The material of the dielectric layer 136 is, for example, ruthenium oxide. The dielectric layer 136 is formed by, for example, forming a dielectric material layer (not shown) filling the opening 126, and then performing a planarization process (eg, a chemical mechanical polishing process) on the dielectric material layer. In addition, during the planarization process of the dielectric material layer, a portion of the blocking layer 122 may be removed, so that the thickness of the blocking layer 122 is thinned.
請參照圖1F,移除位於介電層136中的虛擬閘極120b,而於介電層136中形成開口138。虛擬閘極120b可藉由自對準的方式來進行移除。虛擬閘極120b的移除方法例如是乾式蝕刻法。Referring to FIG. 1F, the dummy gate 120b in the dielectric layer 136 is removed, and the opening 138 is formed in the dielectric layer 136. The dummy gate 120b can be removed by self-alignment. The method of removing the dummy gate 120b is, for example, a dry etching method.
移除由開口138所暴露出的阻擋層112與介電層106b。由開口138所暴露出的阻擋層112與介電層106b的移除方法例如是乾式蝕刻法。The barrier layer 112 and the dielectric layer 106b exposed by the opening 138 are removed. The method of removing the barrier layer 112 and the dielectric layer 106b exposed by the opening 138 is, for example, a dry etching method.
請參照圖1G,於開口138中形成金屬閘極結構140。金屬閘極結構140包括依序設置於基底100上的閘介電層142、高介電常數介電層144、功函數金屬層146與金屬閘極148。閘介電層142的材料例如是氧化矽。高介電常數介電層144的材料例如是氧化鉿(HfO x)。功函數金屬層146可為P型功函數金屬層或N型功函數金屬層,依據所要形成的電晶體元件為P型或N型而定。P型功函數金屬層的材料例如是TiN。N型功函數金屬層的材料例如是TiAlN或氧化鑭(La 2O 3)。金屬閘極148的材料例如是鎢、TiAl/TiN/W的複合層或摻雜多晶矽/TiN/W的複合層。 Referring to FIG. 1G, a metal gate structure 140 is formed in the opening 138. The metal gate structure 140 includes a gate dielectric layer 142, a high-k dielectric layer 144, a work function metal layer 146, and a metal gate 148 sequentially disposed on the substrate 100. The material of the gate dielectric layer 142 is, for example, hafnium oxide. The material of the high-k dielectric layer 144 is, for example, hafnium oxide (HfO x ). The work function metal layer 146 may be a P-type work function metal layer or an N-type work function metal layer, depending on whether the transistor element to be formed is P-type or N-type. The material of the P-type work function metal layer is, for example, TiN. The material of the N-type work function metal layer is, for example, TiAlN or lanthanum oxide (La 2 O 3 ). The material of the metal gate 148 is, for example, a composite layer of tungsten, TiAl/TiN/W or a composite layer doped with polysilicon/TiN/W.
金屬閘極結構140的形成方法例如是先依序於開口138中形成閘介電材料層、高介電常數介電材料層、功函數金屬材料層與金屬閘極材料層(未繪示),再藉由平坦化製程(如,化學機械研磨製程)移除開口138以外的閘介電材料層、高介電常數介電材料層、功函數金屬材料層與金屬閘極材料層。閘介電材料層的形成方法例如是熱氧化法。高介電常數介電材料層的形成方法例如是原子層沉積法(ALD)。功函數金屬材料層的形成方法例如是原子層沉積法。金屬閘極材料層的形成方法例如是物理氣相沉積法或化學氣相沉積法。The metal gate structure 140 is formed by, for example, forming a gate dielectric material layer, a high-k dielectric material layer, a work function metal material layer, and a metal gate material layer (not shown) in the opening 138. The gate dielectric material layer, the high-k dielectric material layer, the work function metal material layer, and the metal gate material layer other than the opening 138 are removed by a planarization process (eg, a chemical mechanical polishing process). The method of forming the gate dielectric material layer is, for example, a thermal oxidation method. The method of forming the high-k dielectric material layer is, for example, atomic layer deposition (ALD). The method of forming the work function metal material layer is, for example, an atomic layer deposition method. The method of forming the metal gate material layer is, for example, a physical vapor deposition method or a chemical vapor deposition method.
由上述可知,金屬閘極結構140是藉由使用虛擬閘極120b的閘極後製製程(gate last process)所形成。此外,雖然金屬閘極結構140是藉由上述實施例的閘極後製製程所形成,但用以形成金屬閘極結構140的製程並不限於上述實施例所舉例的方法。As can be seen from the above, the metal gate structure 140 is formed by a gate last process using the dummy gate 120b. In addition, although the metal gate structure 140 is formed by the gate post-fabrication process of the above embodiment, the process for forming the metal gate structure 140 is not limited to the method exemplified in the above embodiments.
請參照圖1H,於記憶胞區R1與周邊電路區R2中形成介電層150與介電層152,且於記憶胞區R1的介電層150與介電層152中形成電容結構154,於周邊電路區R2的介電層150與介電層152中形成內連線結構156a~156d。電容結構154耦接至電容接觸窗120a。此外,電容結構154更可耦接至護環結構120c。介電層150的材料例如是氮化矽。介電層152的材料例如是氧化矽。在圖1H中,電容結構154僅為示意性的繪示,本發明並不以此為限。所屬技術領域具有通常知識者可依據實際需求對電容結構154進行設計與調整。Referring to FIG. 1H, a dielectric layer 150 and a dielectric layer 152 are formed in the memory cell region R1 and the peripheral circuit region R2, and a capacitor structure 154 is formed in the dielectric layer 150 and the dielectric layer 152 of the memory cell region R1. The interconnect layers 156a-156d are formed in the dielectric layer 150 of the peripheral circuit region R2 and the dielectric layer 152. The capacitor structure 154 is coupled to the capacitor contact window 120a. In addition, the capacitor structure 154 can be coupled to the grommet structure 120c. The material of the dielectric layer 150 is, for example, tantalum nitride. The material of the dielectric layer 152 is, for example, ruthenium oxide. In FIG. 1H, the capacitor structure 154 is only schematic, and the invention is not limited thereto. Those skilled in the art can design and adjust the capacitor structure 154 according to actual needs.
內連線結構156a穿過介電層136與頂蓋層104b而連接至埋入式導體層104a。內連線結構156b、156c穿過介電層136而分別連接至所對應的摻雜區134。內連線結構156d連接至圖1H中最左側的金屬閘極結構140。內連線結構156a~156d分別包括彼此連接的接觸窗160與導線162。接觸窗160包括阻障層160a與導體層160b,其中導體層160b設置於阻障層160a上。在圖1H的剖面圖中,僅繪示在此剖面圖中的內連線結構156a~156d,然而於此技術領域具有通常知識者應可理解本實施例更可包括其他內連線結構。The interconnect structure 156a is connected to the buried conductor layer 104a through the dielectric layer 136 and the cap layer 104b. The interconnect structures 156b, 156c pass through the dielectric layer 136 to be respectively connected to the corresponding doped regions 134. The interconnect structure 156d is connected to the leftmost metal gate structure 140 of FIG. 1H. The interconnect structures 156a-156d respectively include contact windows 160 and wires 162 that are connected to each other. The contact window 160 includes a barrier layer 160a and a conductor layer 160b, wherein the conductor layer 160b is disposed on the barrier layer 160a. In the cross-sectional view of FIG. 1H, only the interconnect structures 156a-156d in this cross-sectional view are shown. However, those skilled in the art should understand that the present embodiment may further include other interconnect structures.
藉由上述實施例的方法可於所述記憶胞區R1中形成動態隨機存取記憶體200,且可於周邊電路區R2中形成具有金屬閘極結構140的電晶體結構300。動態隨機存取記憶體200包括耦接至電容結構154的電容接觸窗120a。金屬閘極結構140是藉由使用虛擬閘極120b的製程所形成。此外,雖然動態隨機存取記憶體200與電晶體結構300是藉由上述實施例的方法所形成,但本發明並不以此為限。The dynamic random access memory 200 can be formed in the memory cell region R1 by the method of the above embodiment, and the transistor structure 300 having the metal gate structure 140 can be formed in the peripheral circuit region R2. The DRAM 200 includes a capacitive contact window 120a coupled to a capacitive structure 154. The metal gate structure 140 is formed by a process using a dummy gate 120b. In addition, although the dynamic random access memory 200 and the transistor structure 300 are formed by the method of the above embodiment, the invention is not limited thereto.
基於上述實施例可知,由於電容接觸窗120a與虛擬閘極120b是由同一層導體層所形成,因此可有效地將動態隨機存取記憶體200的製程與具有金屬閘極結構140的電晶體結構300的製程進行整合,且可有效地降低製程複雜度。Based on the above embodiments, since the capacitive contact window 120a and the dummy gate 120b are formed by the same layer of conductor layers, the process of the dynamic random access memory 200 and the transistor structure having the metal gate structure 140 can be effectively performed. The 300 process is integrated and can effectively reduce process complexity.
以下,藉由圖1H來說明本實施例的動態隨機存取記憶體結構。Hereinafter, the dynamic random access memory structure of this embodiment will be described with reference to Fig. 1H.
請參照圖1H與圖2,動態隨機存取記憶體結構包括基底100、動態隨機存取記憶體200與護環結構120c。基底100包括記憶胞區R1。動態隨機存取記憶體200位於記憶胞區R1中,其中動態隨機存取記憶體200包括耦接至電容結構154的電容接觸窗120a。護環結構120c圍繞記憶胞區R1的邊界,因此可有效地防止記憶胞區R1中的構件(如,介電層114)在形成周邊電路區R2的電晶體結構300的過程中受到損害。電容接觸窗120a與護環結構120c是源自於同一層導體層,因此可有效地降低製程複雜度。Referring to FIG. 1H and FIG. 2, the dynamic random access memory structure includes a substrate 100, a dynamic random access memory 200, and a guard ring structure 120c. The substrate 100 includes a memory cell region R1. The DRAM 200 is located in the memory cell region R1, wherein the DRAM memory 200 includes a capacitive contact window 120a coupled to the capacitor structure 154. The guard ring structure 120c surrounds the boundary of the memory cell region R1, and thus can effectively prevent members (e.g., dielectric layer 114) in the memory cell region R1 from being damaged during the formation of the transistor structure 300 of the peripheral circuit region R2. The capacitive contact window 120a and the guard ring structure 120c are derived from the same layer of conductor layers, thereby effectively reducing process complexity.
在此實施例中,動態隨機存取記憶體200可包括埋入式導線104、介電層結構116a、導線結構108、電容接觸窗120a、電容結構154與阻止層122。埋入式導線104設置於基底100中。埋入式導線104可包括埋入式導體層104a,且更可包括頂蓋層104b與介電層104c。埋入式導體層104a設置於基底100中。頂蓋層104b設置於埋入式導體層104a上。介電層104c設置於埋入式導體層104a與基底100之間。介電層結構116a設置於基底100上。介電層結構116a包括依序設置於基底100上的介電層106a、阻擋層112與介電層114。導線結構108設置於基底100上,且位於介電層結構116a中。導線結構108可包括導體層108a、導體層108b與阻障層108c。導體層108a設置於基底100上,且可位於介電層106a中。導體層108b設置於導體層108a上。阻障層108c設置於導體層108a與導體層108b之間。電容接觸窗120a設置於介電層結構116a中,且連接至基底100。電容結構154設置於電容接觸窗120a上。阻止層122設置於護環結構120c上且覆蓋記憶胞區R1。護環結構120c與阻止層122可用以保護記憶胞區R1中的介電層114,以避免介電層114在形成周邊電路區R2的電晶體結構300的過程中受到損害。In this embodiment, the DRAM 200 can include a buried wire 104, a dielectric layer structure 116a, a wire structure 108, a capacitive contact window 120a, a capacitor structure 154, and a blocking layer 122. The buried wire 104 is disposed in the substrate 100. The buried conductor 104 may include a buried conductor layer 104a, and may further include a cap layer 104b and a dielectric layer 104c. The buried conductor layer 104a is disposed in the substrate 100. The cap layer 104b is disposed on the buried conductor layer 104a. The dielectric layer 104c is disposed between the buried conductor layer 104a and the substrate 100. The dielectric layer structure 116a is disposed on the substrate 100. The dielectric layer structure 116a includes a dielectric layer 106a, a barrier layer 112, and a dielectric layer 114 that are sequentially disposed on the substrate 100. The wire structure 108 is disposed on the substrate 100 and is located in the dielectric layer structure 116a. The wire structure 108 can include a conductor layer 108a, a conductor layer 108b, and a barrier layer 108c. The conductor layer 108a is disposed on the substrate 100 and may be located in the dielectric layer 106a. The conductor layer 108b is disposed on the conductor layer 108a. The barrier layer 108c is disposed between the conductor layer 108a and the conductor layer 108b. The capacitive contact window 120a is disposed in the dielectric layer structure 116a and is connected to the substrate 100. The capacitor structure 154 is disposed on the capacitor contact window 120a. The blocking layer 122 is disposed on the guard ring structure 120c and covers the memory cell region R1. The guard ring structure 120c and the blocking layer 122 can be used to protect the dielectric layer 114 in the memory cell region R1 to prevent the dielectric layer 114 from being damaged during the formation of the transistor structure 300 of the peripheral circuit region R2.
此外,基底100更包括周邊電路區R2。動態隨機存取記憶體結構更包括位於周邊電路區R2中的電晶體結構300。電晶體結構300可為P型電晶體結構或N型電晶體結構。在此實施例中,電晶體結構300是以P型電晶體結構為例來進行說明。Further, the substrate 100 further includes a peripheral circuit region R2. The DRAM structure further includes a transistor structure 300 located in the peripheral circuit region R2. The transistor structure 300 can be a P-type transistor structure or an N-type transistor structure. In this embodiment, the transistor structure 300 is described by taking a P-type transistor structure as an example.
電晶體結構300包括金屬閘極結構140與兩個摻雜區134。金屬閘極結構140設置於基底100上。金屬閘極結構140包括依序設置於基底100上的閘介電層142、高介電常數介電層144、功函數金屬層146與金屬閘極148。摻雜區134設置於金屬閘極結構140兩側的基底100中。另外,電晶體結構300更可包括間隙壁128、輕摻雜區130與間隙壁132中的至少一者。間隙壁128與間隙壁132依序設置於金屬閘極結構140的側壁上。輕摻雜區130設置於基底100中且位於金屬閘極結構140與摻雜區134之間。The transistor structure 300 includes a metal gate structure 140 and two doped regions 134. The metal gate structure 140 is disposed on the substrate 100. The metal gate structure 140 includes a gate dielectric layer 142, a high-k dielectric layer 144, a work function metal layer 146, and a metal gate 148 sequentially disposed on the substrate 100. The doped regions 134 are disposed in the substrate 100 on both sides of the metal gate structure 140. Additionally, the transistor structure 300 can further include at least one of the spacer 128, the lightly doped region 130, and the spacer 132. The spacers 128 and the spacers 132 are sequentially disposed on the sidewalls of the metal gate structure 140. The lightly doped region 130 is disposed in the substrate 100 and between the metal gate structure 140 and the doped region 134.
此外,在動態隨機存取記憶體結構中,動態隨機存取記憶體200與電晶體結構300的各構件的材料、設置方式、形成方法與功效已於前文中進行詳盡地說明,故於此不再重複說明。In addition, in the dynamic random access memory structure, the materials, setting manners, forming methods and effects of the components of the dynamic random access memory 200 and the transistor structure 300 have been described in detail in the foregoing, so Repeat the explanation.
基於上述實施例可知,由於上述動態隨機存取記憶體結構具有圍繞記憶胞區R1邊界的護環結構120c,因此可有效地防止記憶胞區R1中的構件在形成周邊電路區R2的電晶體結構140的過程中受到損害。另外,由於電容接觸窗120a與護環結構120c是源自於同一層導體層,因此可有效地降低製程複雜度。According to the above embodiment, since the dynamic random access memory structure has the guard ring structure 120c surrounding the boundary of the memory cell region R1, the structure of the transistor in the memory cell region R1 in forming the peripheral circuit region R2 can be effectively prevented. The process of 140 was damaged. In addition, since the capacitive contact window 120a and the guard ring structure 120c are derived from the same layer of conductor layers, the process complexity can be effectively reduced.
圖3為本發明另一實施例的動態隨機存取記憶體結構的剖面圖。3 is a cross-sectional view showing the structure of a dynamic random access memory according to another embodiment of the present invention.
請同時參照圖1H與圖3,圖3與圖1H中的動態隨機存取記憶體結構的差異如下。在圖3的動態隨機存取記憶體結構中,基底100的周邊電路區R2可包括第一導電型電晶體區R21與第二導電型電晶體區R22。第一導電型電晶體區R21與第二導電型電晶體區R22分別為P型電晶體區與N型電晶體區中的一者與另一者。此外,動態隨機存取記憶體結構包括具有不同導電型的電晶體結構300與電晶體結構300a。電晶體結構300與電晶體結構300a分別位於第一導電型電晶體區R21與第二導電型電晶體區R22中。電晶體結構300與電晶體結構300a的差異在於電晶體結構300a更包括功函數金屬層146a。功函數金屬層146a設置於高介電常數介電層144與功函數金屬層146之間。此外,圖3與圖1H中其他相似的構件使用相同的符號表示並省略其說明。Please refer to FIG. 1H and FIG. 3 simultaneously, and the difference of the dynamic random access memory structure in FIG. 3 and FIG. 1H is as follows. In the dynamic random access memory structure of FIG. 3, the peripheral circuit region R2 of the substrate 100 may include a first conductive type transistor region R21 and a second conductive type transistor region R22. The first conductive type transistor region R21 and the second conductive type transistor region R22 are one and the other of a P-type transistor region and an N-type transistor region, respectively. In addition, the dynamic random access memory structure includes a transistor structure 300 and a transistor structure 300a having different conductivity types. The transistor structure 300 and the transistor structure 300a are respectively located in the first conductive type transistor region R21 and the second conductive type transistor region R22. The difference between the transistor structure 300 and the transistor structure 300a is that the transistor structure 300a further includes a work function metal layer 146a. The work function metal layer 146a is disposed between the high-k dielectric layer 144 and the work function metal layer 146. In addition, the other components in FIG. 3 and FIG. 1H are denoted by the same reference numerals and the description thereof will be omitted.
在此實施例中,第一導電型電晶體區R21與第二導電型電晶體區R22分別是以P型電晶體區與N型電晶體區為例來進行說明,但本發明並不以此為限。在此情況下,電晶體結構300與電晶體結構300a分別為P型電晶體結構與N型電晶體結構,且功函數金屬層146與功函數金屬層146a分別為P型功函數金屬層與N型功函數金屬層。In this embodiment, the first conductive type transistor region R21 and the second conductive type transistor region R22 are respectively exemplified by a P-type transistor region and an N-type transistor region, but the present invention does not Limited. In this case, the transistor structure 300 and the transistor structure 300a are respectively a P-type transistor structure and an N-type transistor structure, and the work function metal layer 146 and the work function metal layer 146a are respectively a P-type work function metal layer and N. Type work function metal layer.
綜上所述,上述實施例所提出的動態隨機存取記憶體結構的製造方法可有效地將動態隨機存取記憶體的製程與具有金屬閘極結構的電晶體結構的製程進行整合,且可有效地降低製程複雜度。此外,上述實施例所提出的動態隨機存取記憶體結構可有效地防止記憶胞區中的構件在形成周邊電路區的電晶體結構的過程中受到損害,且可有效地降低製程複雜度。In summary, the manufacturing method of the dynamic random access memory structure proposed in the above embodiments can effectively integrate the process of the dynamic random access memory with the process of the transistor structure having the metal gate structure, and can be integrated. Effectively reduce process complexity. In addition, the dynamic random access memory structure proposed in the above embodiments can effectively prevent components in the memory cell region from being damaged in the process of forming the transistor structure of the peripheral circuit region, and can effectively reduce the process complexity.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧基底 100‧‧‧Base
102‧‧‧隔離結構 102‧‧‧Isolation structure
104‧‧‧埋入式導線 104‧‧‧Buried wire
104a‧‧‧埋入式導體層 104a‧‧‧Buried conductor layer
104b‧‧‧頂蓋層 104b‧‧‧Top cover
104c、106a、106b、114、136、150、152‧‧‧介電層 104c, 106a, 106b, 114, 136, 150, 152‧‧ dielectric layers
108‧‧‧導線結構 108‧‧‧Wire structure
108a、108b、160b‧‧‧導體層 108a, 108b, 160b‧‧‧ conductor layer
108c、160a‧‧‧阻障層 108c, 160a‧‧‧ barrier layer
110‧‧‧頂蓋層 110‧‧‧Top cover
112‧‧‧阻擋層 112‧‧‧Block
116a、116b‧‧‧介電層結構 116a, 116b‧‧‧ dielectric layer structure
118a、118b、118c、126、138‧‧‧開口 118a, 118b, 118c, 126, 138‧‧
120a‧‧‧電容接觸窗 120a‧‧‧ Capacitive contact window
120b‧‧‧虛擬閘極 120b‧‧‧virtual gate
120c‧‧‧護環結構 120c‧‧‧ guard ring structure
122‧‧‧阻止層 122‧‧‧blocking layer
128、132‧‧‧間隙壁 128, 132‧‧‧ spacers
130‧‧‧輕摻雜區 130‧‧‧Lightly doped area
134‧‧‧摻雜區 134‧‧‧Doped area
140‧‧‧金屬閘極結構 140‧‧‧Metal gate structure
142‧‧‧閘介電層 142‧‧‧gate dielectric layer
144‧‧‧高介電常數介電層 144‧‧‧High dielectric constant dielectric layer
146、146a‧‧‧功函數金屬層 146, 146a‧‧‧ work function metal layer
148‧‧‧金屬閘極 148‧‧‧Metal gate
154‧‧‧電容結構 154‧‧‧Capacitor structure
156a~156d‧‧‧內連線結構 156a~156d‧‧‧Interconnection structure
160‧‧‧接觸窗 160‧‧‧Contact window
162‧‧‧導線 162‧‧‧ wire
R1‧‧‧記憶胞區 R1‧‧‧ memory area
R2‧‧‧周邊電路區 R2‧‧‧ peripheral circuit area
R21‧‧‧第一導電型電晶體區 R21‧‧‧First Conductive Oxygen Crystal Zone
R22‧‧‧第二導電型電晶體區 R22‧‧‧Second conductive transistor area
圖1A至圖1H為本發明一實施例的動態隨機存取記憶體結構的製造流程剖面圖。 圖2為圖1C的上視圖。 圖3為本發明另一實施例的動態隨機存取記憶體結構的剖面圖。1A through 1H are cross-sectional views showing a manufacturing process of a dynamic random access memory structure according to an embodiment of the present invention. Figure 2 is a top view of Figure 1C. 3 is a cross-sectional view showing the structure of a dynamic random access memory according to another embodiment of the present invention.
100‧‧‧基底 100‧‧‧Base
102‧‧‧隔離結構 102‧‧‧Isolation structure
104‧‧‧埋入式導線 104‧‧‧Buried wire
104a‧‧‧埋入式導體層 104a‧‧‧Buried conductor layer
104b‧‧‧頂蓋層 104b‧‧‧Top cover
104c、106a、106b、114‧‧‧介電層 104c, 106a, 106b, 114‧‧‧ dielectric layer
108‧‧‧導線結構 108‧‧‧Wire structure
108a、108b‧‧‧導體層 108a, 108b‧‧‧ conductor layer
108c‧‧‧阻障層 108c‧‧‧Barrier layer
110‧‧‧頂蓋層 110‧‧‧Top cover
112‧‧‧阻擋層 112‧‧‧Block
116a、116b‧‧‧介電層結構 116a, 116b‧‧‧ dielectric layer structure
118a、118b、118c‧‧‧開口 118a, 118b, 118c‧‧‧ openings
120a‧‧‧電容接觸窗 120a‧‧‧ Capacitive contact window
120b‧‧‧虛擬閘極 120b‧‧‧virtual gate
120c‧‧‧護環結構 120c‧‧‧ guard ring structure
R1‧‧‧記憶胞區 R1‧‧‧ memory area
R2‧‧‧周邊電路區 R2‧‧‧ peripheral circuit area
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105135306A TWI590419B (en) | 2016-11-01 | 2016-11-01 | Dynamic random access memory structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105135306A TWI590419B (en) | 2016-11-01 | 2016-11-01 | Dynamic random access memory structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI590419B true TWI590419B (en) | 2017-07-01 |
TW201818532A TW201818532A (en) | 2018-05-16 |
Family
ID=60048559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105135306A TWI590419B (en) | 2016-11-01 | 2016-11-01 | Dynamic random access memory structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI590419B (en) |
-
2016
- 2016-11-01 TW TW105135306A patent/TWI590419B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201818532A (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108010883B (en) | Dynamic random access memory structure and manufacturing method thereof | |
KR101674398B1 (en) | Semiconductor devices and methods of manufacturing the same | |
CN101626022B (en) | Semiconductor device and method of manufacturing the same | |
KR102381342B1 (en) | Method of Forming a Semiconductor Device Having a Gate | |
KR102279732B1 (en) | Semiconductor memory device and method of forming the same | |
KR102707542B1 (en) | Semiconductor memory device and method of forming the same | |
TW201820450A (en) | Semiconductor device and manufacturing method thereof | |
KR20120057818A (en) | Method of manufacturing semiconductor devices | |
US8669152B2 (en) | Methods of manufacturing semiconductor devices | |
US20070221976A1 (en) | Trench capacitor and fabrication method thereof | |
US20140264568A1 (en) | Semiconductor device and methods of manufacturing the same | |
JP5410398B2 (en) | Semiconductor device | |
US20150372106A1 (en) | Semiconductor device | |
US20090224324A1 (en) | Semiconductor device and manufacturing method thereof | |
TWI792300B (en) | Memory device and method of forming the same | |
TWI590419B (en) | Dynamic random access memory structure and manufacturing method thereof | |
CN114551357A (en) | Stacked nanosheet ring grid CMOS device and preparation method thereof | |
JP2009164534A (en) | Semiconductor device and manufacturing method therefor | |
JP2006060173A (en) | Semiconductor device and its manufacturing method | |
TW201714277A (en) | Semiconductor structure and method of forming the same | |
JP2013254860A (en) | Method for manufacturing semiconductor device | |
JP5286318B2 (en) | Semiconductor device | |
KR20120012699A (en) | Method of forming a gate structure and method of manufacturing a semiconductor device using the same | |
JP2005203455A (en) | Semiconductor device and its manufacturing method | |
CN100490057C (en) | Ditching type capacitor and its producing method |