KR20050024667A - Method for fabricating butting contact in semiconductor device - Google Patents
Method for fabricating butting contact in semiconductor device Download PDFInfo
- Publication number
- KR20050024667A KR20050024667A KR1020030060746A KR20030060746A KR20050024667A KR 20050024667 A KR20050024667 A KR 20050024667A KR 1020030060746 A KR1020030060746 A KR 1020030060746A KR 20030060746 A KR20030060746 A KR 20030060746A KR 20050024667 A KR20050024667 A KR 20050024667A
- Authority
- KR
- South Korea
- Prior art keywords
- film
- layer
- gate
- epitaxial growth
- pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 239000010410 layer Substances 0.000 claims abstract description 76
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000011229 interlayer Substances 0.000 claims abstract description 21
- 125000006850 spacer group Chemical group 0.000 claims abstract description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- -1 silicon oxide nitride Chemical class 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 238000005530 etching Methods 0.000 abstract description 32
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76805—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H01L21/823437—
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 반도체소자의 버팅컨택 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a butt contact of a semiconductor device.
최근 반도체소자의 집적도를 증가시키기 위하여 많은 노력이 이루어지고 있지만, 몇가지 한계요인들로 인하여 제약이 따르고 있는 것도 사실이다. 이아 같은 한계요인들 중 하나는 반도체소자의 액티브, 소스, 드레인, 게이트 등에 신호를 인가하기 위한 경로를 만들기 위한 컨택구조이다. 반도체소자의 컨택구조는 정렬마진 또는 소자분리마진 등을 확보하면서 이루어져야 하기 때문이다. 이와 같은 한계요인을 제거하기 위한 하나의 방법으로서, 최근에는 SRAM과 같은 반도체메모리소자나 CPU와 같은 반도체로직소자의 경우에 게이트와 액티브를 연결시키기 위한 버팅컨택(butting contact)이 주로 사용되고 있다.Recently, many efforts have been made to increase the degree of integration of semiconductor devices, but it is also true that there are some limitations. One of these limitations is a contact structure for creating a path for applying a signal to an active, source, drain, or gate of a semiconductor device. This is because the contact structure of the semiconductor device should be made while ensuring alignment margin or device isolation margin. As one method for removing such a limiting factor, a butting contact for connecting a gate and an active is mainly used in the case of a semiconductor memory device such as an SRAM or a semiconductor logic device such as a CPU.
도 1a 내지 도 1f는 종래의 반도체소자의 버팅컨택 형성방법을 설명하기 위하여 나타내 보인 단면도들이다.1A to 1F are cross-sectional views illustrating a conventional butt contact forming method of a semiconductor device.
먼저 도 1a에 도시된 바와 같이, 트랜치구조의 소자분리막(104)에 의해 액티브영역이 한정되는 반도체기판(102) 위에 게이트절연막(106)을 형성하고, 이 게이트절연막(106) 위에 게이트스택(108)을 형성한다. 게이트스택(108)은 게이트절연막(106) 위에서 게이트도전막패턴(108a), 메탈실리사이드막(108b) 및 반사방지막(ARL)(108c)이 순차적으로 적층된 구조이다. 다음에 게이트스택(108)에 의해 노출되는 반도체기판(102)의 상부영역에 얕은 불순물영역(110)을 형성한다.First, as shown in FIG. 1A, a gate insulating film 106 is formed on a semiconductor substrate 102 in which an active region is defined by a device isolation film 104 having a trench structure, and a gate stack 108 is formed on the gate insulating film 106. ). The gate stack 108 is a structure in which the gate conductive film pattern 108a, the metal silicide film 108b, and the antireflection film ARL 108c are sequentially stacked on the gate insulating film 106. Next, a shallow impurity region 110 is formed in the upper region of the semiconductor substrate 102 exposed by the gate stack 108.
다음에 도 1b에 도시된 바와 같이, 반도체기판(102)의 노출표면을 덮고 있던 게이트절연막(106)의 일부를 제거하고 전면에 버퍼층으로서의 중간온도산화(MTO)막(112)을 형성한다. 다음에 통상의 게이트스페이서 형성공정을 수행하여 게이트스택(108)의 양측면에 게이트스페이서(114)을 형성한다. 다음에 게이트스페이서(114)를 이온주입마스크로 한 이온주입공정을 수행하여 반도체기판(102)의 상부영역에 얕은 불순물영역(110)에 의해 둘러싸이는 깊은 불순물영역(116)을 형성한다. 얕은 불순물영역(110) 및 깊은 불순물영역(116)은 함께 LDD(Lightly Doped Drain) 구조의 불순물영역을 형성한다.Next, as shown in FIG. 1B, a portion of the gate insulating film 106 covering the exposed surface of the semiconductor substrate 102 is removed, and an intermediate temperature oxidation (MTO) film 112 as a buffer layer is formed on the entire surface. Next, the gate spacer 114 is formed on both sides of the gate stack 108 by performing a conventional gate spacer forming process. Next, an ion implantation process using the gate spacer 114 as an ion implantation mask is performed to form a deep impurity region 116 surrounded by a shallow impurity region 110 in the upper region of the semiconductor substrate 102. The shallow impurity region 110 and the deep impurity region 116 together form an impurity region having a lightly doped drain (LDD) structure.
다음에 도 1c에 도시된 바와 같이, 인산을 식각액으로 한 식각공정을 수행하여 게이트스페이서(114)의 두께를 감소시킨다. 게이트스페이서(114)의 두께가 감소됨에 따라, 인접한 게이트스페이서(114) 사이의 간격(W2)이 식각공정 이전의 간격(도 1b의 W1)보다 더 커지며, 따라서 후속공정에서 보다 큰 식각마진을 확보할 수 있다. 다음에 도 1d에 도시된 바와 같이, 도 1c의 결과물 전면에 식각정지막으로서의 실리콘질화막(118)을 형성한다. 이때 게이트스택(108)의 모서리(도면에서 A로 표시한 부분)에서 실리콘질화막(118)은 얇은 두께로 적층되는 시닝(thinning) 현상이 발생한다.Next, as illustrated in FIG. 1C, an etching process using phosphoric acid as an etching solution is performed to reduce the thickness of the gate spacer 114. As the thickness of the gate spacer 114 decreases, the gap W 2 between adjacent gate spacers 114 becomes larger than the gap before the etching process (W 1 in FIG. Can be secured. Next, as shown in FIG. 1D, a silicon nitride film 118 as an etch stop film is formed on the entire surface of the resultant product of FIG. 1C. At this time, a thinning phenomenon occurs in which the silicon nitride film 118 is stacked to a thin thickness at the edge of the gate stack 108 (a portion indicated by A in the drawing).
다음에 도 1e 및 도 1f에 도시된 바와 같이, 층간절연막(120)을 형성하고, 그 위에 포토레지스크막패턴(122)을 형성한다. 그리고 이 포토레지스트막패턴(122)에 의해 노출된 층간절연막(120)을 제거하여 버팅컨택홀(124)을 형성한다. 이 버팅컨택홀(124)은 게이트와 액티브를 연결시키기 위한 것이며, 따라서 게이트와 액티브를 함께 노출시켜야 한다. 그러나 게이트의 상부표면과 액티브의 상부표면 사이에는 단차가 존재하게 되며, 이 단차로 인하여 게이트와 액티브가 함께 노출되지 않는 문제가 발생한다.Next, as shown in FIGS. 1E and 1F, an interlayer insulating film 120 is formed, and a photoresist film pattern 122 is formed thereon. Then, the butting contact hole 124 is formed by removing the interlayer insulating film 120 exposed by the photoresist film pattern 122. The butting contact hole 124 is for connecting the gate and the active, and therefore must expose the gate and the active together. However, there is a step between the top surface of the gate and the top surface of the active, which causes a problem that the gate and the active is not exposed together.
예컨대 도 1e에 나타낸 바와 같이, 층간절연막(120)에 대한 식각공정시 식각종료위치를 게이트스택(108)의 상부표면으로 정할 경우에는, 도 1e의 B로 표시한 것과 같이 액티브가 노출되지 않는 현상이 발생한다. 또한 도 1f에 나타낸 바와 같이, 층간절연막(120)에 대한 식각공정시 식각종료위치를 액티브의 상부표면, 즉 반도체기판(102)의 상부표면으로 정할 경우에는, 도 1f의 C로 표시한 것과 같이 게이트스택(108)에 대한 과도식각이 이루어지고, 이로 인해 게이트스택(108)의 모서리 부분에서 얇게 만들어진 실리콘질화막(118)이 모두 제거된 상태에서 계속 식각공정이 진행하게 된다. 그 결과 게이트스택(108)과 게이트스페이서(114) 사이의 중간온도산화막(112)이 완전히 식각되는 문제가 발생한다.For example, as shown in FIG. 1E, when the etching end position is determined as the upper surface of the gate stack 108 during the etching process with respect to the interlayer insulating layer 120, the active is not exposed as indicated by B of FIG. 1E. This happens. In addition, as shown in FIG. 1F, when the etching end position is determined as the upper surface of the active surface, that is, the upper surface of the semiconductor substrate 102, during the etching process of the interlayer insulating film 120, as indicated by C of FIG. 1F. Transient etching is performed on the gate stack 108, and the etching process continues while all of the thin silicon nitride film 118 is removed from the edge portion of the gate stack 108. As a result, the intermediate temperature oxide film 112 between the gate stack 108 and the gate spacer 114 is completely etched.
도 2a 및 도 2b는 종래의 반도체소자의 버팅컨택 형성방법의 다른 예를 설명하기 위하여 나타내 보인 단면도들이다.2A and 2B are cross-sectional views illustrating another example of a method of forming a butt contact of a conventional semiconductor device.
먼저 도 2a에 도시된 바와 같이, 도 1a 내지 도 1d를 참조하여 설명한 바와 동일한 공정을 수행한 후에, 도 1d의 결과물상에 층간절연막(202)을 형성한다. 그리고 제1 마스크막패턴(미도시)을 이용하여 층간절연막(202)의 일부를 제거함으로써, 반도체기판(102)의 액티브를 노출시키는 제1 버팅컨택홀(204)을 형성한다. 그리고 제1 버팅컨택홀(204)이 완전히 채워지도록 제1 버팅컨택도전막(206)을 형성한다. 다음에 통상의 평탄화공정을 수행한다.First, as shown in FIG. 2A, after performing the same process as described with reference to FIGS. 1A to 1D, an interlayer insulating film 202 is formed on the resultant product of FIG. 1D. A portion of the interlayer insulating layer 202 is removed using a first mask layer pattern (not shown) to form a first butting contact hole 204 that exposes the active portion of the semiconductor substrate 102. In addition, the first butting contact hole 204 is formed to completely fill the first butting contact hole 204. Next, a normal planarization process is performed.
다음에 도 2b에 도시된 바와 같이, 제2 마스크막패턴(미도시)을 이용하여 층간절연막(202)의 일부를 제거함으로써, 게이트스택(108)의 상부표면을 노출시키는 제2 버팅컨택홀(210)을 형성한다. 제2 버팅컨택홀(210)은 제1 버팅컨택도전막(206)도 또한 노출시킨다. 다음에 제2 버팅컨택홀(210)이 완전히 채워지도록 제2 버팅컨택도전막(212)을 형성한다. 그리고 통사의 평탄화공정을 수행하여 버팅컨택을 완성시킨다.Next, as shown in FIG. 2B, the second butting contact hole exposing the upper surface of the gate stack 108 by removing a part of the interlayer insulating layer 202 using a second mask layer pattern (not shown) ( 210). The second butting contact hole 210 also exposes the first butting contact conductive film 206. Next, a second butting contact conductive film 212 is formed to completely fill the second butting contact hole 210. The flattening process is performed to complete the butting contact.
이와 같은 방법은, 도 1e 및 도 1f에 도시된 바와 같은 현상이 발생하지 않지만, 액티브 노출을 위한 식각공정과 게이트스택 노출을 위한 식각공정을 분리하여 수행하므로 두 개의 마스크막패턴 형성, 두 단계의 식각공정, 두 단계의 평탄화공정 등이 요구되는 등 공정단계의 수가 증가한다는 문제가 있다.Such a method does not occur as shown in FIGS. 1E and 1F, but since the etching process for the active exposure and the etching process for the gate stack exposure are performed separately, two mask layer patterns are formed. There is a problem that the number of process steps is increased, such as an etching process, a two-step planarization process, and the like.
본 발명이 이루고자 하는 기술적 과제는, 한번의 버팅컨택홀 형성공정을 통해 게이트와 액티브가 동시에 노출되도록 할 수 있는 반도체소자의 버팅컨택 형성방법을 제공하는 것이다.An object of the present invention is to provide a method of forming a butt contact of a semiconductor device capable of simultaneously exposing a gate and an active through a single butt contact hole forming process.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 반도체소자의 버팅컨택 형성방법은, 액티브영역을 갖는 반도체기판 위에 게이트절연막을 개재하여 게이트도전막패턴을 형성하는 단계; 상기 게이트도전막패턴 및 상기 액티브영역을 모두 덮는 버퍼막을 형성하는 단계; 상기 게이트도전막패턴의 측면에 게이트스페이서를 형성하는 단계; 상기 게이트도전막패턴의 상부면에 선택적에피택셜성장막을 형성하는 단계; 상기 선택적에피택셜성장막, 게이트스페이서 및 버퍼막을 덮는 식각정지막을 형성하는 단계; 상기 식각정지막 및 액티브영역을 덮는 층간절연막을 형성하는 단계; 상기 층간절연막 및 식각정지막의 일부를 제거하여 상기 선택적에피택셜성장막의 일부표면 및 상기 액티브영역의 일부표면을 모두 노출시키는 버팅컨택홀을 형성하는 단계; 및 상기 버팅컨택홀을 도전성물질막으로 채우는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above technical problem, a butting contact forming method of a semiconductor device according to an embodiment of the present invention, forming a gate conductive film pattern on the semiconductor substrate having an active region via a gate insulating film; Forming a buffer layer covering both the gate conductive layer pattern and the active region; Forming a gate spacer on a side of the gate conductive layer pattern; Forming a selective epitaxial growth film on an upper surface of the gate conductive film pattern; Forming an etch stop layer covering the selective epitaxial growth layer, the gate spacer, and the buffer layer; Forming an interlayer insulating layer covering the etch stop layer and the active region; Removing a portion of the interlayer insulating layer and the etch stop layer to form a butting contact hole exposing both a part surface of the selective epitaxial growth layer and a part surface of the active region; And filling the butting contact hole with a conductive material film.
상기 버퍼막은 중간온도산화막을 사용하여 형성하고 상기 식각정지막은 실리콘나이트라이드막 또는 실리콘옥사이드나이트라이드막을 사용하여 형성하는 것이 바람직하다.The buffer layer may be formed using an intermediate temperature oxide layer, and the etch stop layer may be formed using a silicon nitride layer or a silicon oxide nitride layer.
상기 게이트도전막패턴은 도핑된 폴리실리콘막패턴을 사용하여 형성하고, 상기 선택적에피택셜성장막은 단결정실리콘막인 것이 바람직하다.The gate conductive layer pattern may be formed using a doped polysilicon layer pattern, and the selective epitaxial growth layer may be a single crystal silicon layer.
상기 선택적에피택셜성장막을 형성한 후에 상기 선택적에피택셜성장막 위에 금속샐리사이드막을 형성하는 단계를 더 포함하는 것이 바람직하다.It is preferable to further include forming a metal salicide film on the selective epitaxial growth film after forming the selective epitaxial growth film.
이하 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나 본 발명의 실시예들은 여러가지 다른 형태들로 변형될 수 있으며, 따라서 본 발명의 범위가 아래에서 상술되는 실시예들로 한정되는 것으로 해석되어져서는 안된다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms and, therefore, the scope of the present invention should not be construed as limited to the embodiments described below.
도 3a 내지 도 3h는 본 발명에 따른 반도체소자의 버팅컨택 형성방법을 설명하기 위하여 나타내 보인 단면도들이다.3A to 3H are cross-sectional views illustrating a method of forming a butting contact of a semiconductor device according to the present invention.
먼저 도 3a를 참조하면, 실리콘과 같은 반도체기판(302) 내에 트랜치구조의 소자분리막(304)을 형성하여 액티브영역을 한정시킨다. 경우에 따라서 소자분리막(304)으로서 로코스(LOCOS)구조의 소자분리막을 사용할 수도 있다. 다음에 반도체기판(302) 표면에 산화막과 같은 게이트절연막(306)을 얇은 두께로 형성한다. 그리고 게이트절연막(306) 위에 게이트도전막패턴(308) 및 반사방지막패턴(310)을 형성한다. 게이트도전막패턴(308)은 폴리실리콘막패턴이고, 반사방지막패턴(310)은 실리콘옥사이드나이트라이드(SION)막패턴이다. 게이트도전막패턴(308) 및 반사방지막패턴(310)은 액티브영역의 일부영역을 노출시킨다. 다음에 LDD구조의 소스/드레인 형성을 위한 통상의 이온주입공정을 수행하여 반도체기판(302)의 상부영역에 얕은 제1 불순물영역(312)을 형성한다.Referring first to FIG. 3A, a trench isolation device isolation layer 304 is formed in a semiconductor substrate 302 such as silicon to define an active region. In some cases, a device isolation film having a LOCOS structure may be used as the device isolation film 304. Next, a gate insulating film 306 such as an oxide film is formed on the surface of the semiconductor substrate 302 in a thin thickness. A gate conductive film pattern 308 and an antireflection film pattern 310 are formed on the gate insulating film 306. The gate conductive film pattern 308 is a polysilicon film pattern, and the anti-reflection film pattern 310 is a silicon oxide nitride (SION) film pattern. The gate conductive film pattern 308 and the anti-reflection film pattern 310 expose a portion of the active area. Next, a conventional ion implantation process for forming a source / drain of the LDD structure is performed to form a shallow first impurity region 312 in the upper region of the semiconductor substrate 302.
다음에 도 3b를 참조하면, 반도체기판(302) 표면에서 노출되어 있던 게이트절연막(306)을 제거하여 반도체기판(302)의 제1 불순물영역(312)을 노출시킨다. 그리고 전면에 버퍼막(314)을 형성한다. 상기 버퍼막(314)으로는 MTO막을 사용한다. 이 버퍼막(314)은 게이트도전막패턴(308)과 반사방지막패턴(310)을 덮으면서 동시에 반도체기판(302)의 노출표면을 덮는다. 다음에 통상의 게이트스페이서 형성공정을 수행하여 게이트스페이서(316)을 형성한다. 즉 전면에 게이트스페이서용물질막, 예컨대 질화막을 형성하고, 이어서 에치백 등의 공정을 수행하여 버퍼막(314)의 상부에 있는 게이트스페이서용물질막은 모두 제거되도록 하고 측면에만 남도록 하여 게이트스페이서(316)를 형성한다. 다음에 LDD구조의 소스/드레인 형성을 위한 통상의 이온주입공정을 수행하여 반도체기판(302)의 상부영역에서 제1 불순물영역(312)에 의해 둘러싸이는 깊은 제2 불순물영역(318)을 형성한다. 제2 불순물영역(318)에서의 불순물농도는 제1 불순물영역(312)에서의 불순물농도보다 높다.Next, referring to FIG. 3B, the gate insulating film 306 exposed on the surface of the semiconductor substrate 302 is removed to expose the first impurity region 312 of the semiconductor substrate 302. A buffer film 314 is formed over the entire surface. An MTO film is used as the buffer film 314. The buffer film 314 covers the gate conductive film pattern 308 and the anti-reflection film pattern 310, and simultaneously covers the exposed surface of the semiconductor substrate 302. Next, the gate spacer 316 is formed by performing a normal gate spacer forming process. That is, a gate spacer material film, for example, a nitride film, is formed on the entire surface, and then a process such as etchback is performed to remove all the gate spacer material film on the upper portion of the buffer film 314 and to leave only the side of the gate spacer 316. ). Next, a conventional ion implantation process for source / drain formation of the LDD structure is performed to form a deep second impurity region 318 surrounded by the first impurity region 312 in the upper region of the semiconductor substrate 302. . The impurity concentration in the second impurity region 318 is higher than the impurity concentration in the first impurity region 312.
다음에 도 3c를 참조하면, 식각공정을 수행하여 게이트도전막패턴(308) 위의 반사방지막패턴(도 3b의 310)을 제거하여 게이트도전막패턴(308)의 상부표면이 노출되도록 한다. 상기 식각공정으로는 습식식각공정을 사용하고, 식각용액으로는 반도체기판(302)의 노출표면을 덮는 버퍼막(314)과 반사방지막패턴(310) 사이의 식각선택비가 높은 용액을 사용한다. 그렇지 않으면, 반도체기판(302) 위의 버퍼막(314)이 상기 식각공정에 의해 모두 제거되고, 그 결과 노출되는 반도체기판(302)이 손상될 수도 있다. 예를 들면, 반사방지막패턴(310)이 실리콘옥사이드나이트라이드막패턴이고 버퍼막(314)이 MTO막인 경우 인산(H3PO4)용액을 식각용액으로 사용할 수 있다. 인산용액의 경우 실리콘옥사이드나이트라이드막과 MTO막의 식각비는 대략 200:4이며, 따라서 게이트도전막패턴(308)의 상부표면이 노출되도록 반사방지막패턴(310)이 모두 제거되는 동안 버퍼막(314)는 반도체기판(302) 위에서 모두 제거되지 않고 남아서 반도체기판(302)을 보호해준다.Next, referring to FIG. 3C, an etching process is performed to remove the anti-reflection film pattern 310 of FIG. 3B on the gate conductive film pattern 308 to expose the upper surface of the gate conductive film pattern 308. A wet etching process is used as the etching process, and a solution having a high etching selectivity between the buffer layer 314 and the anti-reflection film pattern 310 covering the exposed surface of the semiconductor substrate 302 is used as the etching solution. Otherwise, all of the buffer film 314 on the semiconductor substrate 302 may be removed by the etching process, and as a result, the exposed semiconductor substrate 302 may be damaged. For example, when the antireflection film pattern 310 is a silicon oxide nitride film pattern and the buffer film 314 is an MTO film, a phosphoric acid (H 3 PO 4 ) solution may be used as an etching solution. In the case of the phosphoric acid solution, the etching ratio of the silicon oxide nitride film and the MTO film is approximately 200: 4. ) Remain on the semiconductor substrate 302 without being removed to protect the semiconductor substrate 302.
다음에 도 3d를 참조하면, 선택적에피택셜성장공정을 수행하여 노출된 게이트도전막패턴(308)의 상부에 선택적에피택셜성장막(320)을 형성한다. 게이트도전막패턴(308)이 폴리실리콘막패턴이므로, 선택적에피택셜성장막(320)은 단결정실리콘막이 된다. 이 단결정실리콘막은 후속공정에서 형성될 식각정지막, 예컨대 실리콘나이트라이드막과는 충분한 식각선택비를 갖는다.Next, referring to FIG. 3D, the selective epitaxial growth process is performed to form the selective epitaxial growth layer 320 on the exposed gate conductive layer pattern 308. Since the gate conductive film pattern 308 is a polysilicon film pattern, the selective epitaxial growth film 320 becomes a single crystal silicon film. This single crystal silicon film has a sufficient etching selectivity with an etch stop film, such as a silicon nitride film, to be formed in a subsequent step.
다음에 도 3e를 참조하면, 선택적에피택셜성장막(320)의 상부에 금속샐리사이드막(322)을 형성한다. 이를 위하여, 먼저 전면에 금속막, 예컨대 코발트(Co)막을 형성하고, 열을 가한다. 그러면 선택적에피택셜성장막(320)과 코발트막의 경계에서 반응이 일어나서 코발트샐리사이드막(322)이 만들어진다. 코발트샐리사이드막(322)이 만들어진 후에는 반응이 일어나지 않은 코발트막을 모두 제거한다. 다음에 전면에 식각정지막(324)을 형성한다. 이 식각정지막(324)으로는 선택적에피택셜성장막(320)과는 충분한 식각선택비를 갖는 물질막을 사용하여 형성한다. 예컨대 선택적에피택셜성장막(320)이 단결정실리콘막인 경우 식각정지막(324)으로는 실리콘나이트라이드막을 사용한다. 식각정지막(324)은 게이트스페이서(316), 선택적에피택셜성장막(320) 및 버퍼막(314)을 모두 덮는다.Next, referring to FIG. 3E, a metal salicide layer 322 is formed on the selective epitaxial growth layer 320. To this end, first, a metal film, such as a cobalt (Co) film, is formed on the entire surface and heat is applied. Then, a reaction occurs at the boundary between the selective epitaxial growth film 320 and the cobalt film to form a cobalt salicide film 322. After the cobalt salicide film 322 is made, all of the cobalt film that is not reacted is removed. Next, an etch stop film 324 is formed on the entire surface. The etch stop film 324 is formed using a material film having a sufficient etching selectivity with the selective epitaxial growth film 320. For example, when the selective epitaxial growth film 320 is a single crystal silicon film, a silicon nitride film is used as the etch stop film 324. The etch stop layer 324 covers all of the gate spacer 316, the selective epitaxial growth layer 320, and the buffer layer 314.
다음에 도 3f를 참조하면, 식각정지막(324) 위에 층간절연막(324)을 형성한다. 그리고 층간절연막(324) 위에 마스크막패턴, 예컨대 포토레지스트막패턴(328)을 형성한다. 포토레지스트막패턴(328)은 층간절연막(324)의 일부표면을 노출시키는 개구부를 갖는다.Next, referring to FIG. 3F, an interlayer insulating film 324 is formed on the etch stop film 324. A mask film pattern, for example, a photoresist film pattern 328, is formed on the interlayer insulating film 324. The photoresist film pattern 328 has an opening that exposes a portion of the surface of the interlayer insulating film 324.
다음에 도 3g를 참조하면, 상기 포토레지스트막패턴(328)을 식각마스크로 한 식각공정을 수행하여 노출된 층간절연막(324)을 제거한다. 이 식각공정은 금속샐리사이드막(322)의 상부면과 반도체기판(302)의 일부표면이 노출될 때까지 수행된다. 비록 게이트도전막패턴(308)이 배치되는 부분에서 식각되어야 할 층간절연막(326)의 두께와 반도체기판(302)의 표면 부분에서 식각되어야 할 층간절연막(326)의 두께가 다르며, 따라서 반도체기판(302) 표면 위의 식각정지막(324)보다 게이트도전막패턴(308) 위의 식각정지막(324)이 더 빨리 노출되더라도, 선택적에피택셜성장막(320)이 식각정지막(324)에 대한 충분한 식각선택비를 가지므로, 선택적에피택셜성장막(320) 하부에 배치된 버퍼막(314)은 상기 식각공정동안에 영향을 받지 않는다. 상기 식각공정이 끝나면 금속샐리사이드막(322) 또는 선택적에피택셜성장막(320)의 일부표면을 노출시키고, 동시에 반도체기판(302)의 액티브영역의 일부표면을 모두 노출시키는 버팅컨택홀(330)이 만들어진다.Next, referring to FIG. 3G, an etching process using the photoresist film pattern 328 as an etching mask is performed to remove the exposed interlayer insulating film 324. This etching process is performed until the top surface of the metal salicide film 322 and a part of the surface of the semiconductor substrate 302 are exposed. Although the thickness of the interlayer insulating film 326 to be etched at the portion where the gate conductive pattern 308 is disposed is different from the thickness of the interlayer insulating film 326 to be etched at the surface portion of the semiconductor substrate 302, the semiconductor substrate ( Even though the etch stop layer 324 on the gate conductive layer pattern 308 is exposed faster than the etch stop layer 324 on the surface, the selective epitaxial growth layer 320 may be formed on the etch stop layer 324. Since it has a sufficient etching selectivity, the buffer film 314 disposed under the selective epitaxial growth film 320 is not affected during the etching process. After the etching process, a butting contact hole 330 exposing a part of the surface of the metal salicide layer 322 or the selective epitaxial growth layer 320 and exposing all of the surface of the active region of the semiconductor substrate 302. This is made.
다음에 도 3h를 참조하면, 상기 버팅컨택홀(330) 내부를 완전히 채우도록 버팅컨택도전막(332)을 형성한다. 이 버팅컨택도전막(332)은 층간절연막(326) 상부에도 형성되므로, 평탄화공정, 예컨대 화학적기계적평탄화(CMP; Chemical Michanical Polishing)공정을 수행하여 층간절연막(326) 상부의 버팅컨택도전막(332)이 모두 제거되도록 한다.Next, referring to FIG. 3H, the butting contact conductive layer 332 is formed to completely fill the inside of the butting contact hole 330. Since the butting contact conductive film 332 is also formed on the interlayer insulating film 326, the butting contact conductive film 332 is formed on the interlayer insulating film 326 by performing a planarization process, for example, a chemical mechanical polishing (CMP) process. ) Are all removed.
이상의 설명에서와 같이, 본 발명에 따른 반도체소자의 버팅컨택 형성방법에 따르면, 게이트도전막패턴의 상부에 식각정지막과 충분한 식각선택비를 갖는 선택적에피택셜성장막을 형성함으로써 식각공정이 진행되는 동안에 버퍼층으로서의 중간온도산화막에 대한 식각이 억제되도록 할 수 있다는 장점을 제공한다. As described above, according to the method of forming a butting contact of a semiconductor device according to the present invention, an etching stop film and a selective epitaxial growth film having sufficient etching selectivity are formed on the gate conductive film pattern during the etching process. It provides an advantage that the etching of the intermediate temperature oxide film as a buffer layer can be suppressed.
도 1a 내지 도 1f는 종래의 반도체소자의 버팅컨택 형성방법을 설명하기 위하여 나타내 보인 단면도들이다.1A to 1F are cross-sectional views illustrating a conventional butt contact forming method of a semiconductor device.
도 2a 및 도 2b는 종래의 반도체소자의 버팅컨택 형성방법의 다른 예를 설명하기 위하여 나타내 보인 단면도들이다.2A and 2B are cross-sectional views illustrating another example of a method of forming a butt contact of a conventional semiconductor device.
도 3a 내지 도 3h는 본 발명에 따른 반도체소자의 버팅컨택 형성방법을 설명하기 위하여 나타내 보인 단면도들이다.3A to 3H are cross-sectional views illustrating a method of forming a butting contact of a semiconductor device according to the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030060746A KR20050024667A (en) | 2003-09-01 | 2003-09-01 | Method for fabricating butting contact in semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030060746A KR20050024667A (en) | 2003-09-01 | 2003-09-01 | Method for fabricating butting contact in semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050024667A true KR20050024667A (en) | 2005-03-11 |
Family
ID=37231757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030060746A KR20050024667A (en) | 2003-09-01 | 2003-09-01 | Method for fabricating butting contact in semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050024667A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180136571A (en) * | 2009-12-30 | 2018-12-24 | 인텔 코포레이션 | Self-aligned contacts |
KR20200043585A (en) | 2018-10-17 | 2020-04-28 | 삼성전자주식회사 | Method and device for minimizing errors of optical proximity correction in semiconductor pattern |
-
2003
- 2003-09-01 KR KR1020030060746A patent/KR20050024667A/en not_active Application Discontinuation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180136571A (en) * | 2009-12-30 | 2018-12-24 | 인텔 코포레이션 | Self-aligned contacts |
US10629483B2 (en) | 2009-12-30 | 2020-04-21 | Intel Corporation | Self-aligned contacts |
US10930557B2 (en) | 2009-12-30 | 2021-02-23 | Intel Corporation | Self-aligned contacts |
US11600524B2 (en) | 2009-12-30 | 2023-03-07 | Intel Corporation | Self-aligned contacts |
US11887891B2 (en) | 2009-12-30 | 2024-01-30 | Intel Corporation | Self-aligned contacts |
KR20200043585A (en) | 2018-10-17 | 2020-04-28 | 삼성전자주식회사 | Method and device for minimizing errors of optical proximity correction in semiconductor pattern |
US10852645B2 (en) | 2018-10-17 | 2020-12-01 | Samsung Electronics Co., Ltd. | Method of minimizing errors of optical proximity correction in semiconductor pattern and device for performing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100317532B1 (en) | Semiconductor device and method for fabricating the same | |
KR100467020B1 (en) | Semiconductor Device With Self-Aligned Junction Contact Hole And Method Of Fabricating The Same | |
KR100393205B1 (en) | Memory merged logic semiconductor device of salicided dual gate structure including embedded memory of self-aligned contact structure and Method of manufacturing the same | |
KR100298581B1 (en) | Semiconductor device and method for fabricating the same | |
KR20030000074A (en) | Semiconductor device having shared contact and fabrication method thereof | |
KR100286100B1 (en) | Semiconductor device and manufacturing method | |
KR100465874B1 (en) | Semiconductor device manufacturing method | |
US6380088B1 (en) | Method to form a recessed source drain on a trench side wall with a replacement gate technique | |
JP2003197907A (en) | Transistor structure utilizing epitaxial layer and its fabricating method | |
US20020013016A1 (en) | Method for fabricating semiconductor device | |
KR20050024667A (en) | Method for fabricating butting contact in semiconductor device | |
KR100367501B1 (en) | Method for forming self-align contact of semiconductor device | |
KR20040016496A (en) | Method for forming spacer of semiconductor device and manufacturing semiconductor device using the same | |
KR100394524B1 (en) | Method For Manufacturing Semiconductor Devices | |
US20080142884A1 (en) | Semiconductor device | |
KR100486120B1 (en) | Method for forming of mos transistor | |
US6326257B1 (en) | Method of fabricating static random access memory with spacers | |
KR100586553B1 (en) | Gate of semiconductor device and method thereof | |
KR100713927B1 (en) | Method of manufacturing semiconductor device | |
JP3523244B1 (en) | Method for manufacturing semiconductor device | |
US7442980B2 (en) | Anti-punch-through semiconductor device | |
US20070161190A1 (en) | Split-gate-type nonvolatile memory device and method of fabricating the same | |
KR20030094742A (en) | Method for manufacturing semiconductor device including silicide process | |
JP4033728B2 (en) | Contact hole formation method | |
KR100359766B1 (en) | Method for manufacturing fo semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |