KR100313546B1 - Transistor forming method - Google Patents
Transistor forming method Download PDFInfo
- Publication number
- KR100313546B1 KR100313546B1 KR1020000007606A KR20000007606A KR100313546B1 KR 100313546 B1 KR100313546 B1 KR 100313546B1 KR 1020000007606 A KR1020000007606 A KR 1020000007606A KR 20000007606 A KR20000007606 A KR 20000007606A KR 100313546 B1 KR100313546 B1 KR 100313546B1
- Authority
- KR
- South Korea
- Prior art keywords
- forming
- gate
- insulating film
- semiconductor substrate
- film
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 150000002500 ions Chemical class 0.000 claims abstract description 21
- 239000011229 interlayer Substances 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 15
- 238000005468 ion implantation Methods 0.000 abstract description 7
- 238000010405 reoxidation reaction Methods 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 abstract 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 13
- 229920005591 polysilicon Polymers 0.000 description 13
- 239000000969 carrier Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C1/00—Domestic plumbing installations for fresh water or waste water; Sinks
- E03C1/02—Plumbing installations for fresh water
- E03C1/04—Water-basin installations specially adapted to wash-basins or baths
- E03C1/0412—Constructional or functional features of the faucet handle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C2201/00—Details, devices or methods not otherwise provided for
- E03C2201/30—Diverter valves in faucets or taps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K21/00—Fluid-delivery valves, e.g. self-closing valves
- F16K21/02—Fluid-delivery valves, e.g. self-closing valves providing a continuous small flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/60—Handles
- F16K31/602—Pivoting levers, e.g. single-sided
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Hydrology & Water Resources (AREA)
- Manufacturing & Machinery (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
본 발명은 트랜지스터 형성방법에 관한 것으로, 종래 트랜지스터 형성방법은 문턱전압조정 및 채널형성을 위한 이온주입영역이 소스/드레인영역과 중첩되는 부분이 발생하여 접합 커패시턴스가 커지고, 핫캐리어에 대한 신뢰성이 보장되지 않으며, 핫캐리어에 대한 신뢰성을 향상시키기 위한 게이트 재산화가 불가능한 문제점이 있었다. 따라서, 본 발명은 트랜치가 형성된 반도체기판 상부에 게이트산화막, 더미게이트용 물질막을 형성하고, 게이트가 형성될 영역에 맞추어 상기 더미게이트용 물질막 및 게이트산화막을 식각하여 더미게이트를 형성한 후 상기 드러난 반도체기판 상의 활성영역에 산화막을 형성하는 제 1공정과; 상기 형성한 구조 상부전면에 제 1절연막을 형성한후 에치백하여 더미게이트의 측면에 제 1절연막측벽을 형성하고, 이를 마스크로 상기 반도체기판 상에 이온을 주입하여 저농도 소스/드레인영역을 형성한후, 상기 웨이퍼 상부전면에 제 2절연막을 형성하고 이를 에치백하여 상기 제 1절연막측벽의 측면에 제 2절연막측벽을 형성한 다음, 이를 마스크로 상기 반도체기판 상에 이온을 주입하여 고농도 소스/드레인영역을 형성하는 제 2공정과; 상기 형성한 구조 상부전면에 층간절연막을 형성하고 상기 더미게이트용 물질막의 상부 일부가 제거되도록 평탄화한 후 더미게이트용 물질막을 제거하는 제 3공정과; 상기 공정으로 드러난 게이트산화막을 통해 반도체기판 상에 이온을 주입하여 문턱전압을 조절하고, 채널을 형성한후 상기 구조 상부전면에 금속막을 형성하고 상기 층간절연막이 드러나도록 평탄화하는 제 4공정으로 이루어지는 트랜지스터 형성방법을 통해 종래 리플레이스먼트 게이트 프로세스를 적용하여 소스/드레인을 먼저 형성함으로 인한 소스/드레인의 저 저항 획득과, 채널 및 게이트 형성 후 고온공정의 불필요함으로 인한 소자특성의 개선이라는 장점을 모두 취하면서, 게이트산화막의 재산화공정 및 더미게이트의 2중 측벽을 이용한 소스/드레인의 형성공정을 추가함으로써 소스/드레인영역의 접합 커패시턴스를 낮추고, 핫캐리어를 방지할 수 있도록 하여 소자의 특성을 더욱 향상시키면서 신뢰성을 높일 수 있는 효과가 있다.The present invention relates to a method of forming a transistor, in the conventional method of forming a transistor, a portion where an ion implantation region for threshold voltage regulation and channel formation overlaps with a source / drain region is generated, thereby increasing junction capacitance and ensuring reliability of a hot carrier. There is a problem in that it is impossible to re gate the gate to improve the reliability of the hot carrier. Accordingly, in the present invention, a gate oxide film and a dummy gate material film are formed on a trench-formed semiconductor substrate, and the dummy gate material film and the gate oxide film are etched according to a region where the gate is to be formed to form a dummy gate. A first step of forming an oxide film in an active region on the semiconductor substrate; After forming the first insulating film on the upper surface of the formed structure, it is etched back to form the first insulating film side wall on the side of the dummy gate, and ion is implanted on the semiconductor substrate using the mask to form a low concentration source / drain region. After that, a second insulating film is formed on the entire upper surface of the wafer and etched back to form a second insulating film side wall on the side of the first insulating film side wall, and then ions are implanted onto the semiconductor substrate using a mask to form a high concentration source / drain. A second step of forming an area; A third step of forming an interlayer insulating film on the upper surface of the formed structure, and planarizing the upper portion of the dummy gate material film to remove the dummy gate material film; Transistor comprising a fourth step of controlling the threshold voltage by implanting ions on the semiconductor substrate through the gate oxide film revealed in the process, after forming a channel to form a metal film on the upper surface of the structure and to planarize so that the interlayer insulating film is exposed The formation method takes advantage of the conventional replacement gate process to obtain the source / drain low resistance by forming the source / drain first, and the improvement of device characteristics due to the unnecessary high temperature process after the channel and gate formation. In addition, by adding the reoxidation process of the gate oxide film and the source / drain formation process using the double sidewall of the dummy gate, the junction capacitance of the source / drain region can be lowered and the hot carrier can be prevented, thereby further improving the device characteristics. While improving the reliability is effective.
Description
본 발명은 트랜지스터 형성방법에 관한 것으로, 특히 더미게이트를 이용하여 소스/드레인영역을 먼저 형성한후 채널, 게이트산화막 및 게이트를 형성하는 리플레이스먼트 게이트 프로세스(Replacement Gate Process)를 이용하면서 소자의 최대 전계값을 낮추고, 활성영역에 두꺼운 게이트산화막을 형성함으로써 핫캐리어에 대한 신뢰성을 높이기에 적당하도록 한 트랜지스터 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a transistor, and in particular, a source / drain region is first formed using a dummy gate and then a replacement gate process for forming a channel, a gate oxide film, and a gate is used. The present invention relates to a method for forming a transistor in which the electric field value is lowered and a thick gate oxide film is formed in the active region so as to be suitable for increasing the reliability of the hot carrier.
현재 반도체 칩에서 모스트랜지스터의 게이트용 물질로 폴리실리콘이 주로 사용되고 있지만 소자의 고집적화, 고속화가 요구됨에 따라 금속게이트의 사용이 증가하고있다.(IEDM98 p.777)Currently, polysilicon is mainly used as a gate material for MOS transistors in semiconductor chips, but the use of metal gates is increasing due to the high integration and high speed of devices (IEDM98 p.777).
그리고, 트랜지스터의 특성을 개선하고, 신뢰성을 높이기 위해서 더미게이트를 사용하여 소스/드레인 영역을 형성한후 채널이온을 주입하고, 게이트산화막, 금속게이트를 형성하는 리플레이스먼트 게이트 프로세스가 제안되었다.(ED-42(1) p.94, EDL-17(4) 0.157, IEDM97 p.821, IEDM98 p.785)In order to improve the characteristics of the transistor and increase the reliability, a replacement gate process has been proposed in which a source / drain region is formed using a dummy gate, followed by implanting channel ions, and forming a gate oxide film and a metal gate. ED-42 (1) p.94, EDL-17 (4) 0.157, IEDM97 p.821, IEDM98 p.785)
종래 트랜지스터 형성방법의 일실시예를 도 1a 내지 도 1d의 수순단면도를 참고하여 설명하면 다음과 같다.An embodiment of the conventional transistor forming method is described below with reference to the procedure cross-sectional view of FIGS. 1A to 1D.
트랜치(2)가 형성된 반도체기판(1) 상부에 희생산화막(3), 폴리실리콘(4)을 형성하고, 게이트가 형성될 영역에 맞추어 상기 폴리실리콘(4) 및 희생산화막(3)을 식각하여 더미게이트를 형성한후 상기 형성한 더미게이트를 하드마스크로 상기 반도체기판(1)의 활성영역에 이온을 주입하여 소스/드레인영역(5)을 형성하는 제 1공정과; 상기 형성한 구조 상부전면에 층간절연막(6)을 형성하고, 이를 상기 더미게이트의 상부가 드러나도록 평탄화하는 제 2공정과; 상기 더미게이트를 형성하고 있는 폴리실리콘(4) 및 희생산화막(3)을 제거하고, 필요한 경우 상기 드러난 반도체기판(1)상에 이온을 주입하여 문턱전압을 조절하면서 채널을 형성한후 상기 반도체기판(1)상에 게이트산화막(7)을 형성하는 제 3공정과; 상기 형성한 구조 상부전면에 금속막(8)을 형성하고, 이를 상기 층간절연막(6)이 드러나도록 평탄화하여 금속게이트를 형성하는 제 4공정으로 이루어진다.The sacrificial oxide film 3 and the polysilicon 4 are formed on the semiconductor substrate 1 on which the trench 2 is formed, and the polysilicon 4 and the sacrificial oxide film 3 are etched in accordance with the region where the gate is to be formed. Forming a source / drain region (5) by forming a dummy gate and implanting ions into the active region of the semiconductor substrate (1) using the formed dummy gate as a hard mask; A second step of forming an interlayer insulating film (6) on the upper surface of the formed structure, and planarizing it so that an upper portion of the dummy gate is exposed; After removing the polysilicon 4 and the sacrificial oxide layer 3 forming the dummy gate, and implanting ions on the exposed semiconductor substrate 1 as necessary, the channel is formed while adjusting the threshold voltage, and then the semiconductor substrate. A third step of forming a gate oxide film 7 on (1); In a fourth process, a metal film 8 is formed on the upper surface of the structure, and the metal film 8 is flattened to expose the interlayer insulating film 6 to form a metal gate.
먼저, 도 1a에 도시한 바와 같이 트랜치(2)가 형성된 반도체기판(1) 상부에 희생산화막(3), 폴리실리콘(4)을 형성하고, 게이트가 형성될 영역에 맞추어 상기 폴리실리콘(4) 및 희생산화막(3)을 식각하여 더미게이트를 형성한다.First, as shown in FIG. 1A, a sacrificial oxide film 3 and a polysilicon 4 are formed on an upper portion of the semiconductor substrate 1 on which the trench 2 is formed, and the polysilicon 4 is aligned with a region where a gate is to be formed. And the sacrificial oxide layer 3 is etched to form a dummy gate.
그리고, 상기 형성한 더미게이트를 하드마스크로 상기 반도체기판(1)의 활성영역에 이온을 주입하여 소스/드레인영역(5)을 형성한다.In addition, the formed dummy gate is implanted with ions into the active region of the semiconductor substrate 1 using a hard mask to form a source / drain region 5.
이때, 상기와 같이 소스/드레인영역(5)을 먼저 형성함으로써 이온 주입 후 후속공정을 진행하면서 충분한 열처리가 가능하여 소스/드레인영역(5)저항을 줄일 수 있다.At this time, by forming the source / drain regions 5 as described above, sufficient heat treatment is possible while proceeding with subsequent processes after ion implantation, thereby reducing the resistance of the source / drain regions 5.
그 다음, 도 1b에 도시한 바와 같이 상기 형성한 구조 상부전면에 층간절연막(6)을 형성하고, 이를 상기 더미게이트의 상부가 드러나도록 평탄화한다.Next, as shown in FIG. 1B, an interlayer insulating film 6 is formed on the upper surface of the formed structure, and planarized so that the upper portion of the dummy gate is exposed.
그 다음, 도 1c에 도시한 바와 같이 상기 더미게이트를 형성하고 있는 폴리실리콘(4) 및 희생산화막(3)을 제거하고, 필요한 경우 상기 드러난 반도체기판(1)상에 이온을 주입하여 문턱전압을 조절하면서 채널을 형성한후 상기 반도체기판(1)상에 게이트산화막(7)을 형성한다.Next, as shown in FIG. 1C, the polysilicon 4 and the sacrificial oxide film 3 forming the dummy gate are removed, and if necessary, the threshold voltage is obtained by implanting ions onto the exposed semiconductor substrate 1. After the channel is formed with adjustment, a gate oxide film 7 is formed on the semiconductor substrate 1.
이때, 상기와 같이 채널이온을 주입하고, 게이트산화막(7)을 형성한후 고온공정이 필요하지 않게 됨으로써 트랜지스터의 특성을 개선할 수 있지만, 상기 형성된 소스/드레인영역(5)과 채널 주입영역이 겹치는 부분이 발생하므로 접합 커패시턴스가 커지고, 핫캐리어에 대한 신뢰성을 일부 상실하게된다.In this case, the characteristics of the transistor can be improved by injecting the channel ions and forming the gate oxide layer 7 and thus eliminating the need for a high temperature process. However, the formed source / drain regions 5 and the channel implantation regions Overlap occurs, resulting in increased junction capacitance and some loss of reliability for hot carriers.
그 다음, 도 1d에 도시한 바와 같이 상기 형성한 구조 상부전면에 금속막(8)을 형성하고, 이를 상기 층간절연막(6)이 드러나도록 평탄화하여 금속게이트를 형성한다.Next, as shown in FIG. 1D, a metal film 8 is formed on the entire upper surface of the formed structure, and planarized so that the interlayer insulating film 6 is exposed to form a metal gate.
상기와 같이 금속게이트를 형성할경우 게이트를 패터닝하지 않아도 되므로 식각공정에의한 게이트산화막(7)의 플라즈마손상을 방지하여 게이트산화막(7)의 신뢰성이 향상된다.In the case of forming the metal gate as described above, since the gate is not required to be patterned, plasma damage of the gate oxide film 7 is prevented by the etching process, thereby improving reliability of the gate oxide film 7.
상기한 바와 같은 종래 트랜지스터 형성방법은 문턱전압조정 및 채널형성을 위한 이온주입영역이 소스/드레인영역과 중첩되는 부분이 발생하여 접합 커패시턴스가 커지고, 핫캐리어에 대한 신뢰성이 보장되지 않으며, 핫캐리어에 대한 신뢰성을 향상시키기 위한 게이트 재산화가 불가능한 문제점이 있었다.In the conventional transistor formation method as described above, a portion where the ion implantation region for threshold voltage regulation and channel formation overlaps with the source / drain region occurs, resulting in a large junction capacitance, and reliability of the hot carrier is not guaranteed. There was a problem that the gate property is impossible to improve the reliability.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위하여 창안한 것으로, 본 발명의 목적은 종래 리플레이스먼트 게이트 프로세스가 가지는 장점을 모두 포함하면서도 소스/드레인영역의 접합 커패시턴스를 낮추고, 핫캐리어를 방지할 수있도록하여 소자의 특성을 향상시키면서 신뢰성을 높이도록 한 트랜지스터 형성방법을 제공하는데 있다.The present invention has been devised to solve the above-mentioned conventional problems, and an object of the present invention is to reduce the junction capacitance of the source / drain region while preventing all the hot carriers while including all the advantages of the conventional replacement gate process. The present invention provides a method of forming a transistor that can improve reliability while improving device characteristics.
도 1은 종래 트랜지스터 형성방법을 보인 수순단면도.1 is a cross-sectional view showing a conventional transistor forming method.
도 2는 본 발명 일실시예의 수순단면도.Figure 2 is a cross-sectional view of the procedure of an embodiment of the present invention.
*** 도면의 주요부분에 대한 부호의 설명 ****** Explanation of symbols for main parts of drawing ***
21 : 반도체기판 22 : 트랜치21: semiconductor substrate 22: trench
23 : 희생산화막 24 : 폴리실리콘23: sacrificial oxide film 24: polysilicon
25 : 산화막 26 : 제 1절연막측벽25 oxide film 26 first insulating film side wall
27 : 저농도 소스/드레인영역 28 : 제 2절연막측벽27 low concentration source / drain region 28 second insulating film side wall
29 : 고농도 소스/드레인영역 30 : 층간절연막29 high concentration source / drain region 30 interlayer insulating film
31 : 채널 32 : 금속막31 channel 32 metal film
상기한 바와 같은 본 발명의 목적을 달성하기 위한 트랜지스터 형성방법은 트랜치가 형성된 반도체기판 상부에 게이트산화막, 더미게이트용 물질막을 형성하고, 게이트가 형성될 영역에 맞추어 상기 더미게이트용 물질막 및 게이트산화막을 식각하여 더미게이트를 형성한후 상기 드러난 반도체기판 상의 활성영역에 산화막을 형성하는 제 1공정과; 상기 형성한 구조 상부전면에 제 1절연막을 형성한후 에치백하여 더미게이트의 측면에 제 1절연막측벽을 형성하고, 이를 마스크로 상기 반도체기판 상에 이온을 주입하여 저농도 소스/드레인영역을 형성한후, 상기 웨이퍼 상부전면에 제 2절연막을 형성하고 이를 에치백하여 상기 제 1절연막측벽의 측면에 제 2절연막측벽을 형성한 다음, 이를 마스크로 상기 반도체기판 상에 이온을 주입하여 고농도 소스/드레인영역을 형성하는 제 2공정과; 상기 형성한 구조 상부전면에 층간절연막을 형성하고 상기 더미게이트용 물질막의 상부 일부가 제거되도록 평탄화한 후 더미게이트용 물질막을 제거하는 제 3공정과; 상기 공정으로 드러난 게이트산화막을 통해 반도체기판 상에 이온을 주입하여 문턱전압을 조절하고, 채널을 형성한후 상기 구조 상부전면에 금속막을 형성하고 상기 층간절연막이 드러나도록 평탄화하는 제 4공정으로 이루어지는 것을 특징으로 한다.In the transistor forming method for achieving the object of the present invention as described above, a gate oxide film and a dummy gate material film are formed on a semiconductor substrate on which a trench is formed, and the dummy gate material film and the gate oxide film are matched to a region where a gate is to be formed. Etching to form a dummy gate and forming an oxide film in the active region on the exposed semiconductor substrate; After forming the first insulating film on the upper surface of the formed structure, it is etched back to form the first insulating film side wall on the side of the dummy gate, and ion is implanted on the semiconductor substrate using the mask to form a low concentration source / drain region. After that, a second insulating film is formed on the entire upper surface of the wafer and etched back to form a second insulating film side wall on the side of the first insulating film side wall, and then ions are implanted onto the semiconductor substrate using a mask to form a high concentration source / drain. A second step of forming an area; A third step of forming an interlayer insulating film on the upper surface of the formed structure, and planarizing the upper portion of the dummy gate material film to remove the dummy gate material film; A fourth step of adjusting a threshold voltage by injecting ions onto the semiconductor substrate through the gate oxide film revealed in the above step, forming a channel, and then forming a metal film on the upper surface of the structure and flattening the interlayer insulating film to be exposed. It features.
상기한 바와 같은 본 발명에 의한 트랜지스터 형성방법을 도 2a 내지 도 2d에 도시한 수순단면도를 일 실시예로하여 상세히 설명하면 다음과 같다.The method of forming a transistor according to the present invention as described above will be described in detail with reference to a procedure cross-sectional view shown in FIGS. 2A to 2D as an embodiment.
먼저, 도 2a에 도시한 바와 같이 트랜치(22)가 형성된 반도체기판(21) 상부에 게이트산화막(23), 폴리실리콘(24)을 형성하고, 게이트가 형성될 영역에 맞추어 상기 폴리실리콘(24) 및 게이트산화막(23)을 식각하여 더미게이트를 형성한후 상기 드러난 반도체기판(21) 상의 활성영역에 산화막(25)을 게이트산화막(23)보다 두껍게 형성한다.First, as shown in FIG. 2A, the gate oxide layer 23 and the polysilicon 24 are formed on the semiconductor substrate 21 on which the trench 22 is formed, and the polysilicon 24 corresponds to the region where the gate is to be formed. After the gate oxide layer 23 is etched to form a dummy gate, the oxide layer 25 is formed thicker than the gate oxide layer 23 in the active region on the exposed semiconductor substrate 21.
상기와 같이 활성영역을 산화하여 산화막(25)을 형성함으로써 상기 더미게이트 하부에 위치한 게이트산화막(23)의 외곽부분이 산화되어 두꺼워지도록 한다.By oxidizing the active region to form the oxide film 25 as described above, the outer portion of the gate oxide film 23 positioned below the dummy gate is oxidized and thickened.
그 다음, 도 2b에 도시한 바와 같이 상기 형성한 구조 상부전면에 제 1절연막을 형성한후 에치백하여 더미게이트의 측면에 제 1절연막측벽(26)을 형성하고, 이를 마스크로 상기 반도체기판(21)상에 이온을 주입하여 저농도 소스/드레인영역(27)을 형성한다.Next, as shown in FIG. 2B, a first insulating film is formed on the upper surface of the formed structure and then etched back to form a first insulating film side wall 26 on the side of the dummy gate. Ions are implanted onto 21 to form a low concentration source / drain region 27.
상기와 같이 게이트의 측면에 제 1절연막측벽(26)을 형성한후 이온을 주입하여 저농도 소스/드레인영역(27)을 형성하기 때문에 후속공정에서 상기 저농도 소스/드레인영역(27)을 이루는 이온들이 확산하더라도 게이트 하부의 채널형성영역을 침범하지 않으며, 상기 그 외각이 두꺼운 게이트산화막(23)에 의해서 소스/드레인영역에서 게이트로 전류가 흐르는 핫캐리어 특성도 개선된다.As described above, since the first insulating film side wall 26 is formed on the side of the gate and ions are implanted to form the low concentration source / drain region 27, the ions forming the low concentration source / drain region 27 are formed in a subsequent process. The diffusion does not invade the channel formation region under the gate, and the hot carrier characteristic of the current flowing from the source / drain region to the gate is also improved by the thick gate oxide film 23.
그리고, 상기 웨이퍼 상부전면에 제 2절연막을 형성하고 이를 에치백하여 상기 제 1절연막측벽(26)의 측면에 제 2절연막측벽(28)을 형성한후 이를 마스크로 상기 반도체기판(21)상에 이온을 주입하여 고농도 소스/드레인영역(29)을 형성한다.A second insulating film is formed on the upper surface of the wafer and etched back to form a second insulating film side wall 28 on the side of the first insulating film side wall 26, and then, as a mask, on the semiconductor substrate 21. Ions are implanted to form a high concentration source / drain region 29.
이때, 상기 저농도 소스/드레인영역(27), 고농도 소스/드레인영역(29)을 형성하기 위한 이온주입공정에서 상기 산화막(25)은 반도체기판(21)을 보호하기 위한 버퍼막의 역할을 하게된다.In this case, in the ion implantation process for forming the low concentration source / drain region 27 and the high concentration source / drain region 29, the oxide layer 25 serves as a buffer layer to protect the semiconductor substrate 21.
그 다음, 도 2c에 도시한 바와 같이 상기 형성한 구조 상부전면에 층간절연막(30)을 형성하고 상기 폴리실리콘(24)의 상부 일부가 제거되도록 평탄화한 후 폴리실리콘(24)을 제거한다.Next, as shown in FIG. 2C, the interlayer insulating film 30 is formed on the upper surface of the formed structure, and the polysilicon 24 is removed after planarization so that a part of the upper portion of the polysilicon 24 is removed.
그 다음, 도 2d에 도시한 바와 같이 상기 공정으로 드러난 게이트산화막(23)을 통해 반도체기판(21)상에 이온을 주입하여 문턱전압(Vth)을 조절하고, 채널(31)을 형성한후 상기 구조 상부전면에 금속막(32)을 형성하고 상기 층간절연막(30)이 드러나도록 평탄화한다.Next, as shown in FIG. 2D, ions are implanted on the semiconductor substrate 21 through the gate oxide film 23 exposed in the process to adjust the threshold voltage Vth, and then the channel 31 is formed. A metal film 32 is formed on the upper surface of the structure and planarized so that the interlayer insulating film 30 is exposed.
이때, 상기 공정에서 게이트산화막(23)이 폴리실리콘(24)의 제거공정과, 채널(31) 및 문턱전압을 조절하기 위한 이온주입시 손상을 입을 수도 있으므로 필요하다면 채널(31)형성과정이 끝난 후에 이를 제거하고 다시 형성할 수 있다.In this case, the gate oxide layer 23 may be damaged during the removal of the polysilicon 24 and the ion implantation for controlling the channel 31 and the threshold voltage. It can later be removed and formed again.
상기 채널(31)형성을 위한 이온주입공정에서 상기 게이트산화막(23)의 외각이 두꺼우므로 그 부분에서는 이온주입이 마스킹 되므로 기 형성된 소스/드레인영역(27,29)에는 이온이 주입되지 않으므로 소스/드레인영역(27,29)의 접합 커패시턴스는 낮은 상태로 유지할 수 있게된다.In the ion implantation process for forming the channel 31, the outer surface of the gate oxide layer 23 is thick, and thus, ion implantation is masked in the portion thereof, so that no ion is implanted in the previously formed source / drain regions 27 and 29. The junction capacitance of the drain regions 27 and 29 can be kept low.
상기한 바와 같은 본 발명 트랜지스터 형성방법은 종래 리플레이스먼트 게이트 프로세스를 적용하여 소스/드레인을 먼저 형성함으로 인한 소스/드레인의 저 저항 획득과, 채널 및 게이트 형성 후 고온공정의 불필요함으로 인한 소자특성의 개선이라는 장점을 모두 취하면서, 게이트산화막의 재산화공정 및 더미게이트의 2중 측벽을 이용한 소스/드레인의 형성공정을 추가함으로써 소스/드레인영역의 접합 커패시턴스를 낮추고, 핫캐리어를 방지할 수 있도록하여 소자의 특성을 더욱 향상시키면서 신뢰성을 높일 수 있는 효과가 있다.The transistor forming method of the present invention as described above obtains low resistance of the source / drain by first forming the source / drain by applying the conventional replacement gate process, and the device characteristics due to the unnecessary high temperature process after the channel and gate formation. Taking all the advantages of the improvement, the gate oxide film reoxidation process and the source / drain formation process using the double sidewall of the dummy gate are added to lower the junction capacitance of the source / drain region and to prevent hot carriers. There is an effect that can increase the reliability while further improving the characteristics of the device.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000007606A KR100313546B1 (en) | 2000-02-17 | 2000-02-17 | Transistor forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000007606A KR100313546B1 (en) | 2000-02-17 | 2000-02-17 | Transistor forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010083626A KR20010083626A (en) | 2001-09-01 |
KR100313546B1 true KR100313546B1 (en) | 2001-11-07 |
Family
ID=19647420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000007606A KR100313546B1 (en) | 2000-02-17 | 2000-02-17 | Transistor forming method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100313546B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361565B2 (en) | 2004-01-19 | 2008-04-22 | Samsung Electronics Co., Ltd. | Method of forming a metal gate in a semiconductor device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448166B1 (en) * | 2001-12-27 | 2004-09-13 | 동부전자 주식회사 | gate oxide manufacturing method of MOS device |
KR100809601B1 (en) | 2006-07-25 | 2008-03-04 | 삼성전자주식회사 | Method of Fabricating Semiconductor Device |
CN103730341B (en) * | 2012-10-10 | 2018-02-13 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
CN103730345B (en) * | 2012-10-16 | 2018-02-13 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
CN104051245B (en) * | 2013-03-11 | 2019-06-28 | 中芯国际集成电路制造(上海)有限公司 | A kind of preparation method of semiconductor devices |
-
2000
- 2000-02-17 KR KR1020000007606A patent/KR100313546B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361565B2 (en) | 2004-01-19 | 2008-04-22 | Samsung Electronics Co., Ltd. | Method of forming a metal gate in a semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR20010083626A (en) | 2001-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10150195A (en) | Mosfet and its manufacture | |
KR100464534B1 (en) | A transistor of a semiconductor device and A method for forming the same | |
KR100313546B1 (en) | Transistor forming method | |
US5527725A (en) | Method for fabricating a metal oxide semiconductor field effect transistor | |
KR100302621B1 (en) | Fabricating method of semiconductor device | |
KR100328827B1 (en) | Fabricating method of semiconductor device | |
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
KR100320436B1 (en) | Method for manufacturing mosfet | |
JPH07106557A (en) | Semiconductor device and manufacture of the same | |
KR19990071116A (en) | Manufacturing Method of Semiconductor Device | |
KR100235625B1 (en) | Method of manufacturing semiconductor device | |
KR100214520B1 (en) | Manufaturing method of transistor | |
JPH04112579A (en) | Mos type semiconductor device | |
KR20020009701A (en) | Fabricating method of transistor | |
KR100268865B1 (en) | Method for fabricating semiconductor device | |
KR100447230B1 (en) | Method for forming salicide of semiconductor device | |
KR20030002701A (en) | Method of manufacturing a transistor in a semiconductor device | |
KR100325444B1 (en) | Method for fabricating metal oxide semiconductor transistor of low doping drain structure | |
KR19980029591A (en) | Manufacturing Method of Dual Gate SeaMOS Transistor | |
KR100606952B1 (en) | Method for Forming Transistor Of Semi-conductor Device | |
KR100308783B1 (en) | Semiconductor device manufacturing method | |
KR0152936B1 (en) | Method of fabricating semiconductor device | |
JPH04246862A (en) | Semiconductor integrated circuit and manufacture thereof | |
KR100400277B1 (en) | A method for forming a field oxide of a semiconductor device | |
KR0125299B1 (en) | Transistor manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100920 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |