JPS5960818A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPS5960818A
JPS5960818A JP16860682A JP16860682A JPS5960818A JP S5960818 A JPS5960818 A JP S5960818A JP 16860682 A JP16860682 A JP 16860682A JP 16860682 A JP16860682 A JP 16860682A JP S5960818 A JPS5960818 A JP S5960818A
Authority
JP
Japan
Prior art keywords
electrode material
electrode
ionic
association
heteropolyacid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16860682A
Other languages
Japanese (ja)
Other versions
JPH0133002B2 (en
Inventor
勇 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16860682A priority Critical patent/JPS5960818A/en
Publication of JPS5960818A publication Critical patent/JPS5960818A/en
Publication of JPH0133002B2 publication Critical patent/JPH0133002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ヘテロポリ酸とは、2種類の単純な酸素酸からできる縮
合酸の総称で7りシ、多くの化合物が知られている。こ
れらへテロポリ酸の分子蕾は2.000〜4,000で
あり、無機高分子電解質という事ができる。リン・モリ
ブデン酸轢 H@ [PM(11204B )は代表的なヘテロポリ
酸という事ができ、この場合、Pをヘテロ元素、Mo’
fポリ元素と言っている。ヘテロポリ酸の特徴は、(i
)  一般に4〜6個の電子を受は入れる可逆的な多電
子還元素である。
DETAILED DESCRIPTION OF THE INVENTION Heteropolyacid is a general term for condensed acids made from two types of simple oxygen acids, and many compounds are known. The molecular length of these heteropolyacids is 2,000 to 4,000, and they can be called inorganic polymer electrolytes. Phosphorous molybdate H
It is called an f-poly element. The characteristics of heteropolyacids are (i
) Generally, it is a reversible multielectron reducing element that accepts and accepts 4 to 6 electrons.

(ii)  へテロ元素を変える事により、その酸化還
元電位を巾広く変化させる事ができる。
(ii) By changing the hetero element, its redox potential can be varied over a wide range.

(iii)  へテロポリ酸自身は水溶性であるが、多
くの塩基性有機化合物(アルカロイド、アミン。
(iii) Although heteropolyacids themselves are water-soluble, many basic organic compounds (alkaloids, amines, etc.)

アマイド、及びポリエーテル類等)と不溶性の沈澱とな
るイオン会合体を形成する。
amide, polyethers, etc.) to form an ionic association that becomes an insoluble precipitate.

という様なことが知られており、特に010の性質が分
析化学や生化学の分野で用いられている。
It is known that the properties of 010 are particularly used in the fields of analytical chemistry and biochemistry.

本発明者tf、(iiOの性質の発現で祷られる不溶性
のイオン会合体を電気化学的に考察し、ヘテロポリ酸−
有機化合物のイオン会合体社そのイオン会合体のへテロ
ポリ酸部に還元あるいは酸化反応中心(電子メディエー
タ−)としての役割をもち、対カチオン部に反応場(ポ
スト)としての役目を合せもった、電気化学的に新規々
素材であるという事を見出した。
The present inventor, tf, electrochemically considered the insoluble ionic association expected to express the properties of (iiO), and
Ionic association of organic compounds The heteropolyacid part of the ionic association has a role as a reduction or oxidation reaction center (electron mediator), and the counter cation part has a role as a reaction site (post). We discovered that it is a new electrochemical material.

更に、イオン会合体り前述(11)の性銭によりその酸
化還元電位を制御する事が可能であり、導電性素材とか
かるイオン会合体を共存さ七る事によシ、電気化学的に
非常にNuな応用が可能である新規な電極材料を提供す
る事ができる事を見出した。特に、ポリ元素とへゾロ元
素の組合せをかえる事により、メディエータ側の酸化還
元電位をその構造(Kaggjn構A)を俊える事なく
大巾に変え得る点とホスト側に多極の反応選択性の場を
提供する多様な有機化合物が選べること更に、これらイ
オン会合体を21婆電性素材上に存在せしむる事により
ル「規な電極材料が作成可能である@を見出し本発明に
到達したものである。
Furthermore, it is possible to control the oxidation-reduction potential of the ionic aggregate according to the characteristics described in (11) above, and by coexisting the conductive material with such an ionic aggregate, it is possible to achieve extremely high electrochemical properties. We have discovered that it is possible to provide a new electrode material that can be used in many applications. In particular, by changing the combination of poly elements and hezo elements, the redox potential on the mediator side can be changed dramatically without changing its structure (Kaggjn structure A), and the host side has multipolar reaction selectivity. In addition, by making these ionic associations exist on a conductive material, we discovered that it is possible to create a standard electrode material and have arrived at the present invention. This is what I did.

すなわち本発明は、 1、 ヘテロポリν(!4核縮合酸)と塩基性基を有す
る有機化合物及び/又は有機金属化合物とのイオン会合
体を電極表面に有する事を特徴とする電極材料であシ、
また、 2、 該ヘテロポリ酸のポリ元素がMo、W及び/又は
Vから選ばれた金属元素であり、ヘテロ元素がP、Si
  及び/又はAsから選ばれた元素である上記第1項
記載の!極材料である。
That is, the present invention provides: 1. An electrode material characterized by having on the electrode surface an ionic association of a heteropolyv (!4-nuclear condensed acid) and an organic compound and/or an organometallic compound having a basic group. ,
2. The poly element of the heteropolyacid is a metal element selected from Mo, W and/or V, and the hetero element is P, Si.
and/or As described in item 1 above, which is an element selected from As! It is an extreme material.

本発明でいうヘテロポリ酸(異核縮合酸)は化学の分野
一般にいうヘテロポリ酸をすべて含む。例えばリン・モ
リブデン酸H3(PMOII〜〕が代表例である。しか
しH4(PVWiI040 〕とか[3[PM016%
Cbe)の様な混合へテロポリ酸も含むし、またHg 
(PMJ。04o〕の様ガ配位数の異った化合物も含む
The heteropolyacid (heteronuclear condensed acid) as used in the present invention includes all heteropolyacids commonly referred to in the field of chemistry. For example, phosphomolybdic acid H3 (PMOII~) is a typical example.However, H4 (PVWiI040) and [3[PM016%
It also includes mixed heteropolyacids such as Hg
It also includes compounds with different coordination numbers such as (PMJ.04o).

ヘテロポリ酸のポリ元素としてはMo、W及びV等が好
ましく用いられ、ヘテロ元素としては約35種の元素が
知られている(化学と工業。
Mo, W, V, etc. are preferably used as the polyelements of the heteropolyacid, and about 35 types of elements are known as the heteroelements (Chemistry and Industry).

Mol 11 、A4  p22−27 )がP、 8
1及び/又はA8等が好ましい。
Mol 11, A4 p22-27) is P, 8
1 and/or A8 etc. are preferable.

本発明で用いられるヘテロポリ酸は1種類で用いられる
だけではなく、 (a)  へテロ元素が異なったヘテロポリ酸(b) 
 ポリ元素が異なったヘテロポリ酸(、)  ヘテロ元
素及びポリ元素が異なったヘテロポリ酸 等の異なった構造を有するヘテロポリ酸の2種以上の混
合物として用いられても良い。又ヘテロポリ酸のポリ元
素の配位数は単一の化合物であっても良いし、種々の縮
合度を有するヘテロポリ酸の混合物を用いても本発明に
おいては何ら差しつかえない。
The heteropolyacids used in the present invention are not limited to just one type; (a) heteropolyacids containing different heteroelements (b)
Heteropolyacids with different polyelements (,) It may be used as a mixture of two or more types of heteropolyacids having different structures, such as heteropolyacids with different heteroelements and polyelements. Further, the coordination number of the polyelement of the heteropolyacid may be a single compound, or a mixture of heteropolyacids having various degrees of condensation may be used without any problem in the present invention.

本発明で言う有機化合物あるいけ有機金属化合物は塩基
性基を有する化合物であれば何であっても良いが、例え
ばフタロシアニン化合物。
The organic compound or organometallic compound referred to in the present invention may be any compound having a basic group, such as a phthalocyanine compound.

カチオン性ポルフィリン化合物、ポリエチレングリコー
ル及びクラウンエーテル等のポリエーテル化合物、極性
基を有するシクロデキストリン類、アミン、アミノ酸及
びタン白質a’A、ヒリジン化合物、ビピリジル化合物
等及びローダミンB等の塩基性色素等が好ましく用いら
れる。
Cationic porphyrin compounds, polyether compounds such as polyethylene glycol and crown ether, cyclodextrins with polar groups, amines, amino acids and protein a'A, hyridine compounds, bipyridyl compounds, etc., and basic dyes such as rhodamine B, etc. Preferably used.

本発明でいうヘテロポリ酸と該有機化合物及び/又は有
機4ル4化合物とのイオン会合体の作 5− 成力法は一般にヘテロポリ酸を含む弱酸性とした溶液に
かかる有機化合物及び/X線有機金属化合物を溶解した
溶液を混合すれば、はけ定量的に希望するイオン会合体
を得る事ができる。
Preparation of an ionic association between a heteropolyacid and the organic compound and/or an organic compound referred to in the present invention. By mixing solutions in which metal compounds are dissolved, the desired ionic association can be obtained in a quantitative manner.

かかるイオン会合体を電極基材上に固定し、新規な電極
材料とする方法としては、かかるイオン会合体を溶解す
る溶剤にイオン会合体を溶解せしめ、電極基材にディピ
ング法、スピンコーティング法、スプレー法、ドクター
ナイフ法等の塗布法で固定する方法が簡便に用いられる
As a method of fixing such an ion association on an electrode base material and using it as a new electrode material, the ion association is dissolved in a solvent that dissolves the ion association, and the ion association is applied to the electrode base material by a dipping method, a spin coating method, A fixing method such as a spray method or a doctor knife method is easily used.

電極基材としてはpt等の貴金属類、  Pb、 Zn
  等の卑金属類、グラッシーカーボン及びグラファイ
ト等のカーボン電極及び5n01等の酸化物電極が好ま
しく用いられる。使用する電極の形状。
As the electrode base material, noble metals such as PT, Pb, Zn
Carbon electrodes such as glassy carbon and graphite, and oxide electrodes such as 5n01 are preferably used. The shape of the electrode used.

大きさ等によって好ましいコーティング方法を適宜選択
すれば良い。
A preferred coating method may be appropriately selected depending on the size and the like.

かかるイオン会合体を溶解せしむる溶媒としてldN、
N’−ジメチルホルムアミド、ジメチルスルホキシド、
シクロヘキサノン及びアセトン等が知られており、イオ
ン会合体の種類に応じて 6− 適宜最適々溶剤を泗択する事ができる。かかるイオン会
合体を含む溶液を″M、極基材に塗布した後、風乾ある
いは減圧で溶剤を除去せしむれば、希望するイオン会4
1体を電4シ表面に有する電極材料を得る墨かでi+る
ldN as a solvent that dissolves such ionic aggregates,
N'-dimethylformamide, dimethyl sulfoxide,
Cyclohexanone, acetone, etc. are known, and the most suitable solvent can be selected depending on the type of ionic association. After applying a solution containing such an ion association to the electrode substrate, the desired ion association 4 can be obtained by removing the solvent by air drying or under reduced pressure.
Use black to obtain an electrode material having one body on the surface of the electrode.

又、かかるイオン会合体をグラファイト粉末等の導電性
粉末と市7合し、プレス成型した電極材料及び、かかる
イオン会合体とグラファイト粉末等の導電性粉末とを適
宜なポリマーをバインダーとして成型した電極材料も本
発明でいう電極材料と[2て用いる事ができる。又、グ
ラファイト粉末婢の導電+′+扮禾を宮む有機ポリマー
浴液にかかるイオン会合体を酵解あるいは混、合し、し
かるのち適当寿導雷、性基材上に塗布し、導電性基拐を
被接した電極材料も本発明でいう電極材料として用いる
事ができる。
In addition, electrode materials in which such ionic aggregates are combined with conductive powder such as graphite powder and press-molded, and electrodes in which such ionic aggregates and conductive powder such as graphite powder are molded using an appropriate polymer as a binder. The material can also be used as the electrode material in the present invention. In addition, the ionic aggregates of the graphite powder in the organic polymer bath liquid that provides conductivity are fermented or mixed, and then coated on a suitable conductive substrate to form a conductive material. An electrode material coated with a substrate can also be used as the electrode material in the present invention.

またかかるイオン会合体を直接有機高分子電解質等をバ
インダーとして塗工被護しても本発明の電極材料を得る
事ができる。
The electrode material of the present invention can also be obtained by directly coating such an ionic association with an organic polymer electrolyte or the like as a binder.

この様に本発明でいう電極材料はへテロポリ酸と有機化
合物及び/又は有機金属化合物のイオン会合体を電極表
面に存在させる事により、寸た多種の反応選択性の場を
提供する多様な有機化合物及び/又は有機金属化合物と
酸化還元の反応中心であるヘテロポリ酸が同時に電極上
に固定される事によね、多種多様な新規な電気化学反応
の場を提供する事ができる。
In this way, the electrode material in the present invention can be used as a material for a wide variety of organic compounds that provide a field for a wide variety of reaction selectivities by having an ionic association of a heteropolyacid and an organic compound and/or an organometallic compound present on the electrode surface. By simultaneously immobilizing a compound and/or an organometallic compound and a heteropolyacid, which is a redox reaction center, on an electrode, it is possible to provide a field for a wide variety of new electrochemical reactions.

通常、電極材料に新規な機能を持たせるべく選択的な反
応の場を提供する有機化合物等を電極表面に存在させる
場合(一般に化学修飾電極と呼ばれている)それら有機
化合物を電極表面に強吸着させたり、あるいは高分子マ
トリックス中にがかる弔°機化合物を結合させたもので
電極表面を被接する方法がとられるのが一般的である。
Usually, when organic compounds that provide a selective reaction site are present on the electrode surface in order to give the electrode material a new function (generally called a chemically modified electrode), these organic compounds are strongly attached to the electrode surface. Generally, a method is used in which the electrode surface is coated with a compound that is adsorbed or bonded to a polymer matrix.

しかるに本発明のへテロポリ酸と有機化合物及び/又は
有機金用化合物からなるイオン会合体は有機化合物及び
/又は有機金属化合物がマトリックスと会合し、かつマ
トリックスであるヘテロポリ酸自体が高分子電解質とし
て電子メディエータとしての役目を臂している事が大き
な特徴である。又、電子メディエータであるヘテロポリ
酸のへテロ元素を変える事によりへテロポリ酸のた9化
造元電位をコントロールする事ができ、自由に電極表面
で起る電気化学反応を制御できるという従来にないまっ
たく新規な電極材料であるという事が言える。
However, in the ionic association of the heteropolyacid and the organic compound and/or organometallic compound of the present invention, the organic compound and/or organometallic compound associates with the matrix, and the heteropolyacid itself as the matrix absorbs electrons as a polymer electrolyte. A major feature is that it plays the role of a mediator. In addition, by changing the hetero element of the heteropolyacid, which is the electron mediator, it is possible to control the formation potential of the heteropolyacid, which is unprecedented in that it is possible to freely control the electrochemical reaction that occurs on the electrode surface. It can be said that this is a completely new electrode material.

これらの特長を効果的に生かすきわめて多種な応用分ツ
1が考えられるが、その中で代表的な例として、 ■ 金属イオンを選択検知する電気化学セ/す■ 光に
応答し起電力を発生する光電極■ 電池用O1還元用電
極触媒 ■ 電解合成用選択性電極 ■ 電気化学的表示記録材料 等の新規な用途が考えられる。
There are a wide variety of applications that can effectively take advantage of these features, but representative examples include: ■ Electrochemical cells that selectively detect metal ions; ■ Generating electromotive force in response to light. New applications such as photoelectrodes, electrode catalysts for battery O1 reduction, selective electrodes for electrolytic synthesis, and electrochemical display and recording materials can be considered.

以下に本発明の詳細な説明を実施例に基づいて1明する
A detailed explanation of the present invention will be given below based on examples.

−〇 一 実施例1 リンモリブデン酸H3(PMo、20.2)を20 m
mol溶解したpH2の塩酸酸性水溶液に平均分子:+
!:2,000のポリエチレングリコール1チ水溶液を
添加し、リンモリブデン酸−ポリエチレンクリコールの
イオン会合体の沈澱を得た。得られた沈澱を減圧下室温
で@f!IILシたのちN、N’−ジメチルホルムアミ
ドに5多溶解せしめた。
-〇 Example 1 20 m of phosphomolybdic acid H3 (PMo, 20.2)
Average molecule: +
! :2,000 aqueous solution of polyethylene glycol was added to obtain a precipitate of an ionic association of phosphomolybdic acid and polyethylene glycol. The obtained precipitate was heated at room temperature under reduced pressure @f! After IIL, it was dissolved in N,N'-dimethylformamide.

イオン会合体のN、N’−ジメチルホルムアミド溶液を
グ2ツシーカーボン昏;框にディッピング法で塗布し、
しかるのち風乾してイオン会合体を電極表面にπする電
極材料を得た。
A solution of the ionic aggregate in N,N'-dimethylformamide is applied to a steel carbon frame using a dipping method.
Thereafter, it was air-dried to obtain an electrode material in which the ionic association was formed on the electrode surface.

得られた電極材料をIMの硝酸溶液中に浸漬し、サイク
リックポルタモグラムを測定した。
The obtained electrode material was immersed in an IM nitric acid solution, and a cyclic portamogram was measured.

イオン会合体の2電子酸化還元反応に相当する3つの酸
化還元′電流ビークが電位300mV。
Three redox current peaks corresponding to two-electron redox reactions of ionic aggregates have a potential of 300 mV.

20 onrV、OmV(IW位N’S 8CE) j
lc li測されイオン会合体の関与する電気化学反応
が電極表面で発現可能な電極材料が得られた。
20 onrV, OmV (IW rank N'S 8CE) j
An electrode material was obtained in which an electrochemical reaction involving ion associates can be expressed on the electrode surface by lcli measurement.

又、この電極材料は同一溶液中で5omvs−”10− の電位掃引速度で10,000回の〈シ返し電位掃引を
行ガつたが、酸化還元1:流ビークの減少はみられず極
めて安定であった。
In addition, this electrode material was subjected to 10,000 reverse potential sweeps at a potential sweep rate of 5 omvs-"10- in the same solution, but it was found to be extremely stable with no decrease in the redox 1 flow peak. Met.

実施例2 リンモリブデン酸H3(PMO,,04゜)を20 m
mo+含むpH1の硝酸酸性溶液にメチレンブルーの5
%溶液を添加し、リンモリブデン酸−メチレンプル−か
らなるイオン会合体を得た。イnられたイオン会合体1
0■をN、N’−ジメチルホルムアミド1−に浴解しパ
イレックスガラス上にスプレー法で作成したS n01
%極上に塗布して風乾し、イオン会合体を電極表面に有
する電極材料を得た。
Example 2 20 m of phosphomolybdic acid H3 (PMO, 04°)
5 of methylene blue in a pH 1 nitric acid solution containing mo+
% solution was added to obtain an ionic association consisting of phosphomolybdic acid-methylene puricate. Infused ion association 1
S n01 prepared by dissolving 0■ in N,N'-dimethylformamide 1- and spraying it onto Pyrex glass.
% electrode material and air-dried to obtain an electrode material having an ionic association on the electrode surface.

得られた電極材料をINH!804  溶液中でサイク
リックポルタモグラムを測定した。メチレンブルーの酸
化還元電位0.2 V  VB 8CEの電位付近に酸
化還元電流ピークが観測され、電&表面でメチレンブル
ーの酸化還元反応が可能である電極材料が得られた。
The obtained electrode material is INH! Cyclic portamograms were measured in the 804 solution. A redox current peak was observed near the redox potential of methylene blue of 0.2 V VB 8CE, and an electrode material capable of redox reaction of methylene blue on the electrode and surface was obtained.

実施例3 実施例2のリンモリブデン酸H,(PMOt!On )
をリンタングステンIIF H3CPW、20.の)と
する以外はすべて実施例2と同じ方法でリンタングステ
ン酸−メチレンプル−のイオン会合体を電極表面に有す
る電極材料を得た。得られた電極材料のサイクリックポ
ルタモグラムを実施例2と同様の方法で観測した結果、
メチレンブルーの酸化還元反応が可能であった。
Example 3 Phosphomolybdic acid H of Example 2, (PMOt!On)
Phosphortungsten IIF H3CPW, 20. An electrode material having an ionic association of phosphotungstic acid-methylene purulent on the electrode surface was obtained in the same manner as in Example 2 except for the following steps. As a result of observing the cyclic portammogram of the obtained electrode material in the same manner as in Example 2,
Redox reaction of methylene blue was possible.

実施例4 実施例1で用いたリンモリブデン酸Hs(PMo1□0
4o〕を30 mmol含むpH1の塩酸酸性溶液に4
.4′−ビピリジルを2%含む溶液を混合し、リンそリ
プデン酸−4,4I−ビピリジルのイオン会合体を得た
。得られたイオン会合体をN、N’−ジメチルホルムア
ミドに溶解し、グラフシ−カーボン上に塗布乾燥して電
極材料を得た。l mmol硝酸水溶液中での得られた
電極材料のサイクリックポルタモグラムを観測した結果
、−o、osv。
Example 4 Phosphomolybdic acid Hs (PMo1□0
4o] in a pH 1 hydrochloric acid acidic solution containing 30 mmol of
.. A solution containing 2% of 4'-bipyridyl was mixed to obtain an ionic association of 4,4I-bipyridyl phospholipidate. The obtained ionic association was dissolved in N,N'-dimethylformamide, coated on graphy carbon, and dried to obtain an electrode material. As a result of observing the cyclic portamogram of the obtained electrode material in l mmol nitric acid aqueous solution, -o, osv.

十〇、2V、 +〇、4V (電位VS 8CE)付近
に酸化還元ピーク電流が観測され、イオン会合体の中の
モリブドリン酸の可逆的酸化還元反応が観測された。
Redox peak currents were observed around 100, 2V, +0, 4V (potential VS 8CE), and a reversible redox reaction of molybdophosphoric acid in the ionic association was observed.

実施例5 ツ6施例1で得られた電極材料をIMHNへ溶液浸漬し
扛々のカチオン種、アルカリ金属イオン(Ll+、 K
”、 Rb”、 Cs+、 Na ) 、アルカリ土類
金属イオン(ME”、 Ca”、 Sr2+、 Ba”
)等と電極材料との反応をサイクリックポルタモグラム
によって観測した。
Example 5 6 The electrode material obtained in Example 1 was immersed in a solution of IMHN, and various cation species and alkali metal ions (Ll+, K
", Rb", Cs+, Na), alkaline earth metal ions (ME", Ca", Sr2+, Ba"
) and the electrode materials were observed using cyclic portamograms.

これらカチオン橡と′1a極材料は選択的に反応しカチ
オンセンサー電極の特性を示した。
These cation cells and the '1a electrode material reacted selectively and exhibited the characteristics of a cation sensor electrode.

その結果を表1に示す。The results are shown in Table 1.

表 1 電極材料とカチオン棟の応答 13− 実施例6 実施例3で得られた電極材料をパイレックスガラスセル
に入れたlNTl、8Q1溶液に浸漬し、500Wのキ
セノンランプ光を照射しながらサイクリックポルタモグ
ラムを測定し、電極材料の光応答を観測した。その結J
!I/i、4μA /(−以上の光電流が観察された。
Table 1 Response of electrode material and cation building 13- Example 6 The electrode material obtained in Example 3 was immersed in the lNTl, 8Q1 solution in a Pyrex glass cell, and subjected to cyclic portalysis while irradiated with 500 W xenon lamp light. Mograms were measured and the photoresponse of the electrode material was observed. Its conclusion J
! A photocurrent of I/i, 4 μA/(− or more) was observed.

実施例7 実施例1で用いたリンモリブデン酸)Is (PMo□
04゜〕を30 mmol含むp)TIの塩酸酸性水溶
液に1%17)ピリジル基を有するCo−ポルフィv 
VfA体を含む溶液を添加し、ピリジル基を有するCo
−ポルフィリン錯体−リンモリブデン酸のイオン会合体
の沈澱を得た。得られた沈澱を乾燥後シクロヘキサノン
に溶解し、グラッシーカーボンに塗布乾燥してピリジル
基を有するCo−ポルフィリン−リンモリブデン酸のイ
オン会合体を有する電極材料を得た。
Example 7 Phosphomolybdic acid) Is (PMo□ used in Example 1)
1% in an acidic aqueous solution of TI with hydrochloric acid containing 30 mmol of 17) Co-Porphyv having a pyridyl group.
A solution containing VfA is added, and Co having a pyridyl group is added.
- Porphyrin complex - A precipitate of an ionic association of phosphomolybdic acid was obtained. The obtained precipitate was dried, then dissolved in cyclohexanone, coated on glassy carbon and dried to obtain an electrode material having an ionic association of Co-porphyrin-phosphomolybdic acid having a pyridyl group.

得られた電極材料のサイクリックボルタモグ14− ラムを脱酸素したIN I(2So、溶液中、酸素を飽
和させたINH,So、中で測?し比較検討した結果、
白金′r!L極に相当する良好外酸素還元雪、(傘特性
を示した。
As a result of comparing and measuring the obtained electrode material cyclic voltammograph 14-ram in a deoxygenated IN I (2So) solution and in an oxygen-saturated INH, So solution,
Shirokan'r! Good outside oxygen reduction snow, corresponding to the L pole (showed umbrella characteristics).

実施例 ケイ2・モリブデン酸H4[:SlMo+tO4o)を
10mmo+含むpH2の塩酸酸性水溶液に平均分子量
1.000のポリエチレングリコールを10%含む溶液
を添加し、ケイ素・モリブデン酸−ポリエチレングリコ
ールイオン会合体から形成された沈澱を得た。
Example K2: A solution containing 10% of polyethylene glycol with an average molecular weight of 1.000 was added to an acidic aqueous solution of hydrochloric acid at pH 2 containing 10 mmo+ of molybdic acid H4[:SlMo+tO4o] to form a silicon-molybdic acid-polyethylene glycol ionic association. A precipitate was obtained.

得られた沈澱を減圧乾燥後、N、N’−ジメチルホルム
アミドに溶解した溶液にpt板をディップしたのち乾燥
し、ケイ素・モリブデン酸−ポリエチレングリコールの
イオン会合体が電極表面に存在する電極材料を得た。
After drying the obtained precipitate under reduced pressure, a PT plate was dipped in a solution dissolved in N,N'-dimethylformamide and dried to form an electrode material in which an ionic association of silicon-molybdic acid-polyethylene glycol is present on the electrode surface. Obtained.

得られた電極材料のサイクリックポルタモグラムをIN
H,804中で観1測した結果、イオン会合体の可逆的
酸化還元電流ピークが観測された。
The cyclic portammogram of the obtained electrode material is IN
As a result of observation in H,804, a reversible redox current peak of the ion association was observed.

15一 実施例9 す/モリブデンW!/ Hl[PMo1204o〕を2
0 mmol溶解したpT(2の塩酸酸性水溶液に平均
分子量4,000のポリエチレングリコール1チ水溶液
を添加し、リンモリブデン酸−ポリエチレングリコール
のイオン会合体の沈澱を得た。
15-Example 9 Su/Molybdenum W! / Hl [PMo1204o] 2
An aqueous solution of polyethylene glycol 1, having an average molecular weight of 4,000, was added to an acidic aqueous solution of 0 mmol of pT(2) dissolved in hydrochloric acid to obtain a precipitate of an ionic association of phosphomolybdic acid and polyethylene glycol.

得られた沈澱を減圧下歴温で乾燥したのちN、N’−ジ
メチルホルムアミドに3%溶解せしめた。
The obtained precipitate was dried under reduced pressure at an ambient temperature and then dissolved at 3% in N,N'-dimethylformamide.

イオン会合体のN、N’−ジメチルホルムアミド溶液を
ガラス上に形成された5nQ2 ’rt極上に塗布し1
乾して透明な電極材料を得た。
A solution of the ionic aggregate in N,N'-dimethylformamide was applied onto the 5nQ2'rt electrode formed on the glass.
A transparent electrode material was obtained by drying.

得られた電極材料をINH2804に浸漬しサイクリッ
クポルタモグラムを観測した。
The obtained electrode material was immersed in INH2804 and a cyclic portamogram was observed.

カソード掃引時電極夢面が淡青色に着色しアノ・−ド掃
引時に透明に戻る工・し゛クトロクロシズム現象が確認
された。
A phenomenon in which the electrode surface was colored pale blue when the cathode was swept and returned to transparent when the anode was swept was confirmed.

特許出願人 帝人株式会社Patent applicant Teijin Ltd.

Claims (1)

【特許請求の範囲】 1、 ヘテロポリ酸(異核縮合酸)と有機化合物及び/
又は有機金桟化合物とのイオン会合体を電極表面に有す
る事を特徴とする電極材料。 2、 該ヘテロポリ酸のポリ元素がMo、W及び/又は
Vから選ばれた金属元素であり、ヘテロ元素がp、 s
i、及び/又はAsから選ばれた元素である特許請求の
範囲第1項記載の電極材料。
[Claims] 1. Heteropolyacid (heteronuclear condensed acid) and organic compound and/or
Or an electrode material characterized by having an ionic association with an organic metal compound on the electrode surface. 2. The polyelement of the heteropolyacid is a metal element selected from Mo, W and/or V, and the heteroelement is p, s
The electrode material according to claim 1, which is an element selected from i and/or As.
JP16860682A 1982-09-29 1982-09-29 Electrode material Granted JPS5960818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16860682A JPS5960818A (en) 1982-09-29 1982-09-29 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16860682A JPS5960818A (en) 1982-09-29 1982-09-29 Electrode material

Publications (2)

Publication Number Publication Date
JPS5960818A true JPS5960818A (en) 1984-04-06
JPH0133002B2 JPH0133002B2 (en) 1989-07-11

Family

ID=15871170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16860682A Granted JPS5960818A (en) 1982-09-29 1982-09-29 Electrode material

Country Status (1)

Country Link
JP (1) JPS5960818A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2573779A1 (en) * 1984-11-28 1986-05-30 Centre Nat Rech Scient NOVEL ELECTRODES ACTIVATED USING HETEROPOLYACIDES, THEIR PREPARATION AND THEIR APPLICATION, ESPECIALLY AS CATHODES FOR THE ELECTROLYSIS OF WATER IN ACIDICITY
US4633372A (en) * 1985-08-26 1986-12-30 The Standard Oil Company Polyoxometalate-modified carbon electrodes and uses therefor in capacitors
US4655885A (en) * 1985-01-11 1987-04-07 National Research Development Corporation Surface-modified electrode and its use in a bioelectrochemical process
JP2009108374A (en) * 2007-10-30 2009-05-21 Saga Univ Method for producing noble metal particulate, photocatalyst used for the method and method for recovering noble metal from waste
WO2010147236A1 (en) 2009-06-17 2010-12-23 ソニー株式会社 Nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, electrolyte for nonaqueous electrolyte battery, and method for producing separator for nonaqueous electrolyte battery
US8697283B2 (en) 2010-03-02 2014-04-15 Sony Corporation Nonaqueous electrolyte battery using polyacid and/or polyacid compound
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
US8841025B2 (en) 2009-11-05 2014-09-23 Sony Corporation Positive electrode with heteropoly and phosphorous additives and nonaqueous electrolyte battery
US9343775B2 (en) 2010-03-02 2016-05-17 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte battery
US9401529B2 (en) 2010-03-02 2016-07-26 Sony Corporation Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2573779A1 (en) * 1984-11-28 1986-05-30 Centre Nat Rech Scient NOVEL ELECTRODES ACTIVATED USING HETEROPOLYACIDES, THEIR PREPARATION AND THEIR APPLICATION, ESPECIALLY AS CATHODES FOR THE ELECTROLYSIS OF WATER IN ACIDICITY
US4655885A (en) * 1985-01-11 1987-04-07 National Research Development Corporation Surface-modified electrode and its use in a bioelectrochemical process
US4633372A (en) * 1985-08-26 1986-12-30 The Standard Oil Company Polyoxometalate-modified carbon electrodes and uses therefor in capacitors
JP2009108374A (en) * 2007-10-30 2009-05-21 Saga Univ Method for producing noble metal particulate, photocatalyst used for the method and method for recovering noble metal from waste
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
WO2010147236A1 (en) 2009-06-17 2010-12-23 ソニー株式会社 Nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, electrolyte for nonaqueous electrolyte battery, and method for producing separator for nonaqueous electrolyte battery
US9825337B2 (en) 2009-06-17 2017-11-21 Sony Corporation Non-aqueous electrolyte battery including an amorphous material
US8841025B2 (en) 2009-11-05 2014-09-23 Sony Corporation Positive electrode with heteropoly and phosphorous additives and nonaqueous electrolyte battery
US8697283B2 (en) 2010-03-02 2014-04-15 Sony Corporation Nonaqueous electrolyte battery using polyacid and/or polyacid compound
US9343775B2 (en) 2010-03-02 2016-05-17 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte battery
US9401529B2 (en) 2010-03-02 2016-07-26 Sony Corporation Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound

Also Published As

Publication number Publication date
JPH0133002B2 (en) 1989-07-11

Similar Documents

Publication Publication Date Title
Alqarni et al. Composite material–based conducting polymers for electrochemical sensor applications: a mini review
Kumar et al. Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine
Brahim et al. Electroconductive hydrogels: Electrical and electrochemical properties of polypyrrole‐poly (HEMA) composites
Akshaya et al. Electrocatalytic oxidation of morin on electrodeposited Ir-PEDOT nanograins
Lin et al. Electrochemical determination of ascorbic acid using poly (xanthurenic acid) and multi-walled carbon nanotubes
JPS5960818A (en) Electrode material
Rouhani et al. Molecularly imprinted sol-gel electrochemical sensor for sildenafil based on a pencil graphite electrode modified by Preyssler heteropolyacid/gold nanoparticles/MWCNT nanocomposite
Şenocak et al. Crosslinker polycarbazole supported magnetite MOF@ CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine
CN103575781A (en) Electrochemical sensor and its preparation method
Komura et al. Coupled Electron‐Proton Transport in Electropolymerized Methylene Blue and the Influences of Its Protonation Level on the Rate of Electron Exchange with β‐Nicotinamide Adenine Dinucleotide
Hassanzadeh et al. Selective electrochemical sensing of dopamine and ascorbic acid using carbon paste electrode modified with cobalt Schiff Base complex and a surfactant
Feng et al. A redox poly (ionic liquid) hydrogel: Facile method of synthesis and electrochemical sensing
Zhang Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid
CN108333241A (en) Electrochemica biological sensor modified electrode and preparation method thereof, electrochemica biological sensor and its preparation method and application
JP2003168493A (en) Dye sensitizing solar cell
Bakytkarim et al. High-sensitivity electrochemical detection of chlorogenic acid based on Pt@ r-GO@ MWCNTs ternary nanocomposites modified electrodes
FI96141B (en) Ion-selective electrode and method for manufacturing an ion-selective electrode
Cernat et al. Detection of hydrogen peroxide involving bismuth nanowires via template-free electrochemical synthesis using deep eutectic solvents
Marken et al. Voltammetry of electroactive liquid redox systems: anion insertion and chemical reactions in microdroplets of para-tetrakis (6-methoxyhexyl) phenylenediamine, para-and meta-tetrahexylphenylenediamine
JP4366791B2 (en) Modified electrode used to measure the concentration of dopamine in test samples containing dopamine and ascorbic acid
JP4883796B2 (en) Electrochemical measurement method
Zare-Mehrjardi Electrochemical sensing of dopamine in the presence of ascorbic acid using carbon paste electrode modified with molybdenum Schiff base complex/1-butyl-3-methylimidazolium tetrafluoroborate
Davoudi et al. A novel electrochemical sensor based on Co3O4-CeO2-ZnO multi metal oxide nanocomposite for simultaneous detection of nanomolar Pb2+ and Hg2+ in different kind of spices
Wang et al. PMo12‐Doped Carbon Ceramic Composite Electrode Based on Sol‐Gel Chemistry and Its Electrocatalytic Reduction of Bromate
Ehzari et al. A sensitive electrochemical sensor based on multiwall carbon nanotube-ionic liquid/nickel oxide nanoparticles for simultaneous determination of the antipsychotic drugs clozapine and sertraline