JPH02203535A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02203535A
JPH02203535A JP2312289A JP2312289A JPH02203535A JP H02203535 A JPH02203535 A JP H02203535A JP 2312289 A JP2312289 A JP 2312289A JP 2312289 A JP2312289 A JP 2312289A JP H02203535 A JPH02203535 A JP H02203535A
Authority
JP
Japan
Prior art keywords
region
film
active region
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2312289A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakayama
弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2312289A priority Critical patent/JPH02203535A/en
Publication of JPH02203535A publication Critical patent/JPH02203535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To dispense with an etching on an epitaxial layer and to simplify and facilitate the manufacturing process of a semiconductor device by a method wherein after an open region, which is used as an active region, is formed by selective etching, the active region is formed at this open region by a selective epitaxial method. CONSTITUTION:An insulating film 23 and a semiconductor material film 24 are formed on the main surface of a semiconductor substrate 21 and a laminated film on a part, which is used as an active region 28 of a semiconductor element, is selectively removed to form an open region 28a. Then, a single crystal silicon film doped with phosphorus is grown on the main surface, which is exposed at this region 28a, of the substrate and with the region 28a filled with the silicon film, the N-type active region 28 with a sidewall to come into contact to the film 24 is formed. In such a way, after the open region is formed in advance at the part, which is used as the active region, the active region is formed by a selective epitaxial method. Accordingly, an etching is not performed on a single crystal substrate. Thereby, a semiconductor device can be easily manufactured without necessitating a complicated process.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、バイポーラ半導体装置の製造方法に関するも
ので、特にバイポーラ素子の活性領域の側壁に、これに
接する例えば多結晶シリコン膜等の半導体材料膜を設け
、この膜を前記バイポーラ素子の取出し電極及び活性領
域の不純物拡散源として用いる構造のバイポーラ素子を
含む半導体装置の製造方法に使用されるものである。
Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a bipolar semiconductor device, and particularly relates to a method for manufacturing a bipolar semiconductor device. The present invention is used in a method of manufacturing a semiconductor device including a bipolar element having a structure in which a semiconductor material film such as a film is provided and this film is used as an extraction electrode of the bipolar element and an impurity diffusion source for an active region.

(従来の技術) 近年バイポーラ集積回路において、高速化及び高集積化
のために、多結晶シリコン膜をバイポーラトランジスタ
のベース取出しtiに用いる方法が実施されている。 
その中で、5ICO3(Side wall Ba5e
  Contact 5tructure)と呼ばれる
構造のトランジスタが開発されている。 このトランジ
スタの外部ベース(高濃度ベース取出し領域とも呼ばれ
る)は、側壁に設けられた多結晶シリコン膜からの不純
物拡散により形成される。
(Prior Art) In recent years, in bipolar integrated circuits, a method has been implemented in which a polycrystalline silicon film is used for the base extraction ti of a bipolar transistor in order to increase speed and increase integration.
Among them, 5ICO3 (Side wall Ba5e
A transistor with a structure called "Contact 5 structure" has been developed. The external base (also called a high concentration base extraction region) of this transistor is formed by impurity diffusion from a polycrystalline silicon film provided on the sidewall.

以下5rcos構造のNPNトランジスタの従来の製造
方法について、第7図ないし第10図を参照して説明す
る。
A conventional method for manufacturing an NPN transistor having a 5rcos structure will be described below with reference to FIGS. 7 to 10.

第7図に示すように、先ずN″11埋込域2を形成した
P型シリコン基板1に、N型エピタキシャル層3を形成
した後、酸化11Q4、窒化M5、酸化116をこの順
に連続的に形成する。 次に不活性領域となる予定部分
のこれら積層膜及び、N型エピタキシャル層3を選択的
にエツチングして収り除く。
As shown in FIG. 7, first, an N-type epitaxial layer 3 is formed on a P-type silicon substrate 1 on which an N''11 buried region 2 is formed, and then oxide 11Q4, nitride M5, and oxide 116 are sequentially applied in this order. Next, these laminated films and the N-type epitaxial layer 3 in the portions that are to become inactive regions are selectively etched and removed.

次に第8図に示すように、酸化rIIA7を形成し、更
に窒化膜8を堆積する。 次に平坦部のこの窒化膜のみ
を除去し、残った窒化膜をマスクに、選択的に酸化を行
ない、厚い酸化[9を形成する。
Next, as shown in FIG. 8, an oxidized rIIA 7 is formed, and a nitride film 8 is further deposited. Next, only this nitride film in the flat portion is removed, and selective oxidation is performed using the remaining nitride film as a mask to form a thick oxide [9].

次に第9図に示すように、側壁の窒化1g18と酸化W
A7を除去した後、ノンドープの多結晶シリコンM10
を堆積する。
Next, as shown in FIG. 9, nitrided 1g18 and oxidized W
After removing A7, undoped polycrystalline silicon M10
Deposit.

次に第10図に示すように多結晶シリコン膜10を平坦
化し、外部ベース側壁に接する多結晶シリコンH10の
みを残す、 次にイオン注入により、ベース領域12、
エミッタ領域13及びコレクタ取出し領域14をそれぞ
れ形成すると共に、多結晶シリコン層10からの不純物
拡散によりP4外部ベース11を形成する。 次に酸化
膜15を形成した後、コンタクトホールを開口し、電極
16を形成する。
Next, as shown in FIG. 10, the polycrystalline silicon film 10 is planarized, leaving only the polycrystalline silicon layer 10 in contact with the external base sidewall.Next, by ion implantation, the base region 12,
An emitter region 13 and a collector extraction region 14 are respectively formed, and a P4 external base 11 is formed by impurity diffusion from the polycrystalline silicon layer 10. Next, after forming an oxide film 15, contact holes are opened and electrodes 16 are formed.

第10図に示すS ICO3構造のバイポーラトランジ
スタは、トランジスタ動作に必要な活性領域を、凸型に
形成された単結晶基板の突起部に形成し、多結晶シリコ
ン膜を活性ベース領域のIPI壁に設けたものである。
In the bipolar transistor with the S ICO3 structure shown in FIG. 10, the active region necessary for transistor operation is formed on the protrusion of a convex single-crystal substrate, and a polycrystalline silicon film is formed on the IPI wall of the active base region. It was established.

 この構造により、素子分離領域及びベース等の活性領
域を自己整合技術により形成することができ、高速化及
び高集積化されたバイポーラ半導体装置が得られる。
With this structure, active regions such as the element isolation region and the base can be formed by self-alignment technology, and a bipolar semiconductor device with higher speed and higher integration can be obtained.

しかしながら従来の製造方法では、製造工程が非常に複
雑であり、又エツチングの終点制御が非常に難しいとい
う欠点がある。 更にシリコンをエツチングするため結
晶欠陥が発生し易く、リークの原因となる。
However, conventional manufacturing methods have drawbacks in that the manufacturing process is very complicated and it is very difficult to control the end point of etching. Furthermore, since silicon is etched, crystal defects are likely to occur, causing leakage.

〈発明が解決しようとする課題) 半導体装置の高速化、高集積化の市場の強いニーズに対
応して、前述の5ICO3構造のバイポーラ半導体装置
が開発されたが、従来技術では、その製造工程が非常に
複雑である。 又素子の微細化に伴い、エツチングの終
点制御に対する要求も厳しく、従来技術では非常に難し
いという課題がある。 又エツチングに伴って結晶欠陥
が発生し易く、リークの原因となり、歩留り低下の課題
がある。
<Problems to be Solved by the Invention> In response to the strong needs in the market for higher speed and higher integration of semiconductor devices, the above-mentioned bipolar semiconductor device with the 5ICO3 structure was developed. It's very complicated. In addition, with the miniaturization of devices, there are also strict requirements for controlling the end point of etching, which is a problem that is extremely difficult to overcome with conventional techniques. Furthermore, crystal defects are likely to occur as a result of etching, causing leakage and reducing yield.

本発明の目的は、半導体素子の活性領域側壁に半導体材
料膜(半導体膜ともいう)を設けた構造の半導体装置を
製造する方法において、従来のような複雑な工程を必要
とせず、比較的容易に半導体装置を形成することができ
ると共に製造工程中の結晶欠陥の発生を抑え、半導体装
置のリークを抑制して歩留り向上ができる半導体装置の
製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a semiconductor device having a structure in which a semiconductor material film (also referred to as a semiconductor film) is provided on the side wall of an active region of a semiconductor element, which does not require complicated steps as in conventional methods and is relatively easy to manufacture. An object of the present invention is to provide a method for manufacturing a semiconductor device, which can form a semiconductor device in a timely manner, suppress generation of crystal defects during the manufacturing process, suppress leakage of the semiconductor device, and improve yield.

[発明の構成] (課題を解決するための手段) 本発明の半導体装置の製造方法は、(a )半導体基板
の主面上に絶縁M(例えば酸化膜)を形成し、更にこの
絶縁股上に半導体材料g(例えば多結晶シリコン膜)を
積層する工程と、(b)前記絶縁膜及び前記半導体材料
膜のうち、半導体素子の活性領域となる部分の積層膜の
みを選択的に除去し、基板主面に達する開口領域を形成
する工程と、(C)この開口領域に露出する基板主面に
、選択エピタキシャル法により単結晶層を成長させ前記
開口領域を埋め込むと共に、不純物拡散源及び取出し電
極として使用できる前記半導体材料膜に側壁が接するよ
うに、半導体素子の活性領域を形成する工程とを 具備
することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problem) The method for manufacturing a semiconductor device of the present invention includes (a) forming an insulating M (for example, an oxide film) on the main surface of a semiconductor substrate, and further forming an insulating layer on the insulating layer. a step of laminating a semiconductor material g (for example, a polycrystalline silicon film), and (b) selectively removing only a portion of the laminated film of the insulating film and the semiconductor material film that will become an active region of the semiconductor element, and forming a substrate. (C) growing a single crystal layer on the main surface of the substrate exposed in the opening region by selective epitaxial method to fill the opening region and use it as an impurity diffusion source and an extraction electrode; The method is characterized by comprising a step of forming an active region of a semiconductor element so that a side wall is in contact with the semiconductor material film that can be used.

(作用) 従来の製造方法では基板主面にエピタキシャル層を形成
した後、この層をエツチングして活性領域を形成したの
に対し、本発明の製造方法では、活性領域となる開口領
域を選択エツチングにより形成した後、この領域に選択
エピタキシャル法により活性領域を形成するので、活性
領域の界面にはエツチングが施されない、 これにより
工程は従来に比し簡単で容易となる。 又エピタキシャ
ル層のエツチングを行なわないので、結晶欠陥の発生が
なく、これに起因するリークも無くなる。
(Function) In the conventional manufacturing method, an epitaxial layer is formed on the main surface of the substrate and then this layer is etched to form an active region, whereas in the manufacturing method of the present invention, the opening region that will become the active region is selectively etched. Since the active region is formed in this region by the selective epitaxial method after the active region is formed, the interface of the active region is not etched, which makes the process simpler and easier than in the past. Furthermore, since the epitaxial layer is not etched, no crystal defects are generated and leaks caused by these defects are also eliminated.

上記製造方法で形成された半導体装置では、半導体素子
は前記絶縁膜により素子分離される。
In the semiconductor device formed by the above manufacturing method, the semiconductor elements are isolated by the insulating film.

又半導体材料膜はこれに接する活性領域への不純物拡散
源及び活性領域の側壁に連接する取出し電極として使用
できる。
Further, the semiconductor material film can be used as an impurity diffusion source to the active region adjacent thereto and as an extraction electrode connected to the sidewall of the active region.

(実施例) 以下に本発明の実施例として、バイポーラ集積回路の構
成素子であるNPN)ランジスタの製造方法について第
1図ないし第6図を参照して説明する。
(Example) As an example of the present invention, a method for manufacturing an NPN transistor, which is a component of a bipolar integrated circuit, will be described below with reference to FIGS. 1 to 6.

第1図に示すように、P型シリコン基板21の主面にア
ンチモン又はひ素を選択的にドープした表面濃度10”
 〜10102oato/ ci3のN”型埋込み領域
22を形成した後、シリコン基板21の埋込み領域を含
む主面の全面に絶縁WA23、例えば熱酸化M23を1
μm程度形成する。 続いて酸化膜23上に半導体材料
M24、例えば25001程度の多結晶シリコンM24
をCVD法により積層する。 続いて多結晶シリコン膜
24の中へイオン注入法により、ボロン(B)を1 x
 10’  atons/C1l’程度打ち込む。
As shown in FIG. 1, the main surface of a P-type silicon substrate 21 is selectively doped with antimony or arsenic at a surface concentration of 10".
After forming the N''-type buried region 22 of ~10102 oato/ci3, an insulating WA 23, for example, thermally oxidized M23, is applied to the entire main surface of the silicon substrate 21 including the buried region.
It forms about μm. Subsequently, a semiconductor material M24, for example, polycrystalline silicon M24 of about 25001 is deposited on the oxide film 23.
are laminated by CVD method. Next, 1× boron (B) is implanted into the polycrystalline silicon film 24 by ion implantation.
Insert approximately 10'atons/C1l'.

次に第2図に示すように、多結晶シリコン膜24をベー
ス形成領域とベース取出し電極となる領域を残しエツチ
ングする。 続いて基板の表面全面にわたって酸化膜2
5を形成する。
Next, as shown in FIG. 2, the polycrystalline silicon film 24 is etched leaving a base formation region and a region to be a base extraction electrode. Next, an oxide film 2 is applied over the entire surface of the substrate.
form 5.

次に第3図に示すように、埋込み領域22からのコレク
タ取出し領域26となる部分の酸化膜25.23を異方
性エツチングにより取り除き、N“埋込み領域22に達
する穴を設ける。 続いてこの穴に選択エピタキシャル
法により高濃度、例えば10” atols/ cm’
程度のリンをドープした単結晶シリコンを埋め込む。
Next, as shown in FIG. 3, the portion of the oxide film 25, 23 that will become the collector extraction region 26 from the buried region 22 is removed by anisotropic etching, and a hole reaching the N'' buried region 22 is formed. High concentration, e.g. 10” atols/cm’, is applied to the holes by selective epitaxial method.
Embed single crystal silicon doped with a certain amount of phosphorus.

次に第4図に示すように、単結晶シリコンを埋め込んだ
コレクタ取出し領域26上に酸化WA27を形成する。
Next, as shown in FIG. 4, oxidized WA 27 is formed on the collector extraction region 26 in which the single crystal silicon is buried.

 続いて半導体素子(トランジスタ)の活性領域28と
なる部分の酸化膜23、多結晶シリコンII!24及び
酸化膜25から成る積層膜を異方性エツチングにより選
択的に除去し、基板主面のN1埋込み領域22に達する
開口領域28aを形成する。 続いてこの開口領域に露
出する基板主面に、選択エピタキシャル法により例えば
10’  atoms/ c113程度のリンをドープ
した単結晶シリコンを成長させ、開口領域28aを埋め
込むと共に、側壁が多結晶シリコンM424に接するN
型活性領域28を形成する。
Next, the oxide film 23 of the portion that will become the active region 28 of the semiconductor element (transistor), polycrystalline silicon II! The laminated film consisting of 24 and oxide film 25 is selectively removed by anisotropic etching to form an opening region 28a reaching the N1 buried region 22 on the main surface of the substrate. Subsequently, on the main surface of the substrate exposed in this opening region, single crystal silicon doped with phosphorus, for example, about 10' atoms/c113, is grown by selective epitaxial method to fill the opening region 28a, and the sidewalls are made of polycrystalline silicon M424. N that touches
A mold active region 28 is formed.

次に第5図に示すように、活性領域28上に熱酸化WA
29を形成する。 このとき同時に多結晶シリコンII
!24から活性領域28ヘボロンが拡散し、P+外部ベ
ース領域(P+ベース取出し領域とも呼ぶ)30が形成
される。 続いてボロンのイオン注入により活性領域2
8に内部ベース領域(真性ベース領域とも呼ぶ)31を
形成する。 続いてエミッタ領域となる部分の酸化膜2
9をエツチング除去して、ひ素のイオン注入によりエミ
ッタ領域32を形成する。 エミッタ領域32の形成に
は、イオン注入によらないで、多結晶シリコンからのひ
素の拡散を用いてもよい。
Next, as shown in FIG. 5, thermally oxidized WA is applied on the active region 28.
Form 29. At this time, polycrystalline silicon II
! 24 diffuses into the active region 28 to form a P+ extrinsic base region (also referred to as a P+ base extraction region) 30. Next, active region 2 is formed by boron ion implantation.
8, an internal base region (also called an intrinsic base region) 31 is formed. Next, oxide film 2 in the part that will become the emitter region
9 is removed by etching, and an emitter region 32 is formed by arsenic ion implantation. To form the emitter region 32, diffusion of arsenic from polycrystalline silicon may be used instead of ion implantation.

次に第6図に示すように、酸化膜33を全面に形成し、
続いてコンタクトポールを開口し、公知の方法により電
極34を形成する。
Next, as shown in FIG. 6, an oxide film 33 is formed on the entire surface.
Subsequently, a contact pole is opened and an electrode 34 is formed by a known method.

上記製造方法において、トランジスタの活性領域は、選
択エピタキシャル法により開口領域を埋め込んで形成さ
れる。 従ってエピタキシャル層を選択エツチングして
活性領域を形成する従来の製造方法と異なり、本発明の
製造方法では、エツチングの終点制御が非常に難しいと
いう課題は解決され、エツチングに伴う結晶欠陥の発生
も無くなる。 又製造工程も従来に比し簡単で容易とな
る。
In the above manufacturing method, the active region of the transistor is formed by filling the opening region by selective epitaxial method. Therefore, unlike the conventional manufacturing method in which active regions are formed by selectively etching the epitaxial layer, the manufacturing method of the present invention solves the problem of extremely difficult etching end point control and eliminates the occurrence of crystal defects associated with etching. . Also, the manufacturing process is simpler and easier than before.

上記製造方法により形成されたNPNトランジスタ素子
は、従来の5ICO3と呼ばれる構造と等しい構造を有
し、高速化及び高集積化が可能である。 即ち酸化膜2
3により素子分離された活性領域内に、トランジスタ動
作に必要な真性領域を形成すると共に多結晶シリコンJ
III24はベース取出し電極及び不純物拡散源として
の機能を持つ。
The NPN transistor element formed by the above manufacturing method has a structure equivalent to the conventional structure called 5ICO3, and can be made faster and more highly integrated. That is, oxide film 2
3, an intrinsic region necessary for transistor operation is formed in the active region isolated by the polycrystalline silicon J.
III 24 functions as a base extraction electrode and an impurity diffusion source.

以上縦形のNPNトランジスタの製造方法について述べ
たが、上述のNPN)ランジスタにおけるベース及びエ
ミッタ領域形成工程を除くことにより、P1外部ベース
領域30をエミッタ領域及びコレクタ領域とし、コレク
タ領域をベース領域とするラテラルPNP)ランジスタ
を形成することもできる。
The method for manufacturing a vertical NPN transistor has been described above, but by eliminating the step of forming the base and emitter regions in the NPN transistor described above, the P1 external base region 30 is used as the emitter region and the collector region, and the collector region is used as the base region. It is also possible to form a lateral PNP) transistor.

又多結晶シリコン膜の代わりに、多結晶シリコン膜とシ
リサイド膜との積層膜を用いることも可能である。
Furthermore, instead of the polycrystalline silicon film, it is also possible to use a laminated film of a polycrystalline silicon film and a silicide film.

[発明の効果] 以上述べたように、半導体素子の活性領域側壁に半導体
材料膜を設けた構造の半導体装置を製造する本発明の方
法では、予め活性領域となる部分に開口領域を形成した
後、選択エピタキシャル法により活性領域を形成し、従
来の方法における単結晶基板のエツチングを行なわない
、 このため従来のような複雑な工程を必要とぜず、比
較的容易に半導体装置を形成することができ、製造工程
中の結晶欠陥の発生を抑え、半導体装置のリークを大幅
に低減でき、歩留りを向上させることができた。
[Effects of the Invention] As described above, in the method of the present invention for manufacturing a semiconductor device having a structure in which a semiconductor material film is provided on the side wall of an active region of a semiconductor element, after forming an opening region in a portion that will become an active region in advance, , the active region is formed by a selective epitaxial method, and the single crystal substrate is not etched in the conventional method. Therefore, it is possible to form a semiconductor device relatively easily without the need for complicated processes as in the conventional method. It was possible to suppress the occurrence of crystal defects during the manufacturing process, significantly reduce leakage in semiconductor devices, and improve yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は、本発明の製造方法をバイポーラ
半導体装置のNPN)ランジスタ素子に適用したときの
製造工程を、工程順に示した模式的断面図、第7図ない
し第1O図は、従来の半導体装置の製造工程を順に示し
た模式的断面図である。 1.21・・・半導体基板、 23・・・絶縁M(酸化
膜)、 24・・・半導体材料M(多結晶シリコンM)
25.27,29.33・・・酸化膜、 28・・・活
性領域、 28a・・・開口領域、 30・・・P“外
部ベース領域、 31・・・P内部ベース領域、32・
・・エミッタ領域。 第1図 第4図 第2図 第5図 第3図 第6図 第 図 第 図
1 to 6 are schematic cross-sectional views showing the manufacturing steps in order of process when the manufacturing method of the present invention is applied to an NPN transistor element of a bipolar semiconductor device, and FIGS. 7 to 1O are 1A and 1B are schematic cross-sectional views sequentially showing the manufacturing process of a conventional semiconductor device. 1.21...Semiconductor substrate, 23...Insulation M (oxide film), 24...Semiconductor material M (polycrystalline silicon M)
25.27, 29.33... Oxide film, 28... Active region, 28a... Opening region, 30... P"external base region, 31... P internal base region, 32...
...Emitter area. Figure 1 Figure 4 Figure 2 Figure 5 Figure 3 Figure 6 Figure

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板の主面上に絶縁膜を形成し、更にこの絶
縁膜上に半導体材料膜を積層する工程と、前記絶縁膜及
び前記半導体材料膜を選択的に除去し前記半導体基板主
面に達する開口領域を形成する工程と、この開口領域に
露出する前記半導体基板主面に選択エピタキシャル層を
成長させ、前記開口領域を埋め込むと共に側壁が前記半
導体材料膜に接する半導体素子の活性領域を形成する工
程とを、具備することを特徴とする半導体装置の製造方
法。
1. Forming an insulating film on the main surface of the semiconductor substrate, further laminating a semiconductor material film on the insulating film, and selectively removing the insulating film and the semiconductor material film to reach the main surface of the semiconductor substrate. a step of forming an opening region; and a step of growing a selective epitaxial layer on the main surface of the semiconductor substrate exposed in the opening region, filling the opening region and forming an active region of a semiconductor element whose sidewalls are in contact with the semiconductor material film. A method for manufacturing a semiconductor device, comprising:
JP2312289A 1989-02-01 1989-02-01 Manufacture of semiconductor device Pending JPH02203535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312289A JPH02203535A (en) 1989-02-01 1989-02-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312289A JPH02203535A (en) 1989-02-01 1989-02-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02203535A true JPH02203535A (en) 1990-08-13

Family

ID=12101700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312289A Pending JPH02203535A (en) 1989-02-01 1989-02-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02203535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261673B2 (en) 2002-10-21 2007-08-28 Nissan Diesel Motor Co., Ltd. Apparatus for controlling automatic transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261673B2 (en) 2002-10-21 2007-08-28 Nissan Diesel Motor Co., Ltd. Apparatus for controlling automatic transmission

Similar Documents

Publication Publication Date Title
US4990991A (en) Bipolar transistor and method of manufacturing the same
JPS6347963A (en) Integrated circuit and manufacture of the same
JPH06168952A (en) Semiconductor device and its manufacture
JPS6252963A (en) Manufacture of bipolar transistor
JP3172031B2 (en) Method for manufacturing semiconductor device
JPH0340938B2 (en)
JPH0831478B2 (en) Bipolar transistor and manufacturing method thereof
JP3142336B2 (en) Semiconductor device and manufacturing method thereof
JPH05283520A (en) Manufacture of semiconductor device
JPH02203535A (en) Manufacture of semiconductor device
JP3002964B2 (en) Manufacturing method of bipolar semiconductor device
EP0042380B1 (en) Method for achieving ideal impurity base profile in a transistor
JP2763105B2 (en) Method for manufacturing semiconductor device
JPH021937A (en) Semiconductor bipolar tranistor having base and emitter structure in trench and its manufacture
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH05182978A (en) Manufacture of semiconductor device
JPH05335329A (en) Semiconductor device and its manufacture
JPH0456328A (en) Manufacture of semiconductor device
JPH10335343A (en) Method of manufacturing semiconductor device
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPH0240921A (en) Manufacture of bipolar transistor
JPS639150A (en) Manufacture of semiconductor device
JPH0722433A (en) Semiconductor device and its manufacture
JPH0661239A (en) Semiconductor device and its production
JPH04159720A (en) Manufacture of bipolar transistor