JPS639150A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS639150A
JPS639150A JP15158186A JP15158186A JPS639150A JP S639150 A JPS639150 A JP S639150A JP 15158186 A JP15158186 A JP 15158186A JP 15158186 A JP15158186 A JP 15158186A JP S639150 A JPS639150 A JP S639150A
Authority
JP
Japan
Prior art keywords
layer
type
silicon
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15158186A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hashimoto
一彦 橋本
Tadashi Matsunou
正 松能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15158186A priority Critical patent/JPS639150A/en
Publication of JPS639150A publication Critical patent/JPS639150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To manufacture a bipolar type semiconductor device in high integration while shortening the distance between an outer base layer and an outer collector layer by a method wherein a silicon substrate is selectively etching- removed until reacing a barrier collector layer forming insulating layers on the sidewalls of etching-removed part to be filled with silicon. CONSTITUTION:In order to manufacture a semiconductor device including a bipolar type transistor, a silicon substrate is selectively etched until reaching at least a barrier collector layer 23 forming insulating layers 33 on the sidewalls of etching-removed part to be filled with silicon 34. For example, an N type buried layer 23, a P type epitaxial layer 22, an N type well layer 24, oxide films 32, 25, a P type base layer 26, a polycrystalline silicon layer 27, an N type emitter layer 28 and an outer base layer 30 are formed on a P type silicon substrate 21. Next, the silicon substrate 21 is selectively etched until reaching the N type buried layer 23 to form the sidewall oxide films 33. Furthermore, the N type silicon layer 34 is grown by selective epitaxial process etc. and finally interlayer film.interconnection is performed to form a bipolar element.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体装置の製造方法に関するもので、特にバ
イポーラ型半導体装置の製造方法に使用さnるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and is particularly used for a method for manufacturing a bipolar type semiconductor device.

(従来の技術) 従来のNPN型バイポーラ・トランジスタの製造方法を
第2図により説明する。まずP型(100)基板1に高
濃度N型埋込み層3を形成し、約2Rnの厚さのP皿エ
ピタキシャル層2を形成し、通常の方法でN型ウェル層
4を形成する。(第2図(a))次に選択酸化法等を用
いて、非素子領域に酸化膜12を形成し、素子領域に酸
化膜5を形成し、イオン注入法で、選択的にP型ベース
層6を形成する。(第1図(b))更に、前記酸化膜5
の一部を開孔し、多結晶シリコン層7を全面に形成し、
砒素などのN型不純物をイオン注入法等により導入し、
熱処理を行いN凰エミッタ層8を形成する。(第1図(
c) )写真食刻法等によシ、前記多結晶シリコン層7
をフォトレジストリをマスクとし部分的に工、チングし
、前記フォトレジスト9、前記酸化膜12をマスクにし
て、イオン注入法等で高濃度P型外部ベース層10を形
成する。更に拡散、イオン注入法等によりN型高濃度外
部コレクタ層11を形成する。(第1図(e))更に、
通常の方法によシ、配線層を形成するものである。
(Prior Art) A conventional method for manufacturing an NPN type bipolar transistor will be explained with reference to FIG. First, a heavily doped N-type buried layer 3 is formed on a P-type (100) substrate 1, a P-plate epitaxial layer 2 with a thickness of about 2Rn is formed, and an N-type well layer 4 is formed by a conventional method. (FIG. 2(a)) Next, an oxide film 12 is formed in the non-element region using a selective oxidation method, an oxide film 5 is formed in the element region, and a P-type base is selectively formed using an ion implantation method. Form layer 6. (FIG. 1(b)) Furthermore, the oxide film 5
A part of the hole is opened and a polycrystalline silicon layer 7 is formed on the entire surface.
Introducing N-type impurities such as arsenic by ion implantation, etc.
A heat treatment is performed to form an N-emitter layer 8. (Figure 1 (
c) ) The polycrystalline silicon layer 7 is formed by photolithography or the like.
is partially etched using the photoresist as a mask, and using the photoresist 9 and the oxide film 12 as masks, a heavily doped P-type external base layer 10 is formed by ion implantation or the like. Furthermore, an N-type high concentration external collector layer 11 is formed by diffusion, ion implantation, or the like. (Figure 1(e)) Furthermore,
A wiring layer is formed using a conventional method.

(発明が解決しようとする問題点) しかしながら上記外部コレクタ11を取る為に、従来技
術では、poct5のようなN型不純物拡散又はN型不
純物イオン注入を行い、その後に拡散を行うなどの方法
を用いる。しかしながら、シリコン表面から埋込みコレ
クタ層3までの深さが約1μ工程度あるため、縦方向拡
散と同時に横方向拡散が生じるために、外部コレクタ層
1ノと外部ベース層10の距離を1μm以上にしなけれ
ばならなかった。こnは高集積化にとって極めて不利で
ある。
(Problem to be Solved by the Invention) However, in order to remove the external collector 11, in the conventional technology, methods such as performing N-type impurity diffusion or N-type impurity ion implantation such as POC5 and then performing diffusion are used. use However, since the depth from the silicon surface to the buried collector layer 3 is approximately 1 μm, horizontal diffusion occurs simultaneously with vertical diffusion, so the distance between the external collector layer 1 and the external base layer 10 should be 1 μm or more. I had to. This is extremely disadvantageous for high integration.

本発明は上記実情に鑑みてなさnたもので、特にパイポ
ー5m半導体集積回路において、外部ベース層と外部コ
レクタ層との間の距離を縮小することにより、集積度の
高いバイポーラ型半導体装置の製造方法を提供しようと
するものである。
The present invention has been made in view of the above-mentioned circumstances, and in particular, in a bipolar 5m semiconductor integrated circuit, by reducing the distance between the external base layer and the external collector layer, a highly integrated bipolar semiconductor device can be manufactured. It is intended to provide a method.

[発明の構成] (問題点を解決するための手段と作用)本発明は外部コ
レクタを形成するに際して、外部コレクタ領域のシリコ
ン基板を選択的に少くとも埋め込みコレクタ層に到達す
るまでエツチング除去する。次にCVT)Si02膜を
全面につけエッチバックを行なうという方法などで、前
記シリコン基板のエツチング除去部の側壁に絶縁膜(s
to2膜)を形成し、前記シリコン基板のエツチング除
去部に例えばN型シリコンを埋め込むか、シリコンを埋
め込んだあとで例えばN型化する。こnにより外部コレ
クタ層が外部ベース層と絶縁膜を介して接触することが
可能となるため、外部コレクタ層と外部ペース層間を、
縮小することができ、高集積化に大きな効果が生じるも
のである。
[Structure of the Invention] (Means and Effects for Solving Problems) When forming an external collector, the present invention selectively etches and removes the silicon substrate in the external collector region at least until it reaches the buried collector layer. Next, an insulating film (CVT) Si02 film is applied to the entire surface of the silicon substrate and etched back.
to2 film) is formed, and the etched removed portion of the silicon substrate is filled with, for example, N-type silicon, or after silicon is embedded, it is made into N-type, for example. This enables the external collector layer to contact the external base layer via the insulating film, so that the connection between the external collector layer and the external paste layer is
It can be downsized and has a great effect on higher integration.

(実施例) 以下図面を参照して本発明の一実施例を説明する。第1
図は同実施例の工程説明図であり、第1図(a)に示さ
nる卯〈従来技術と同様の方法で、P型(100)シリ
コン基板2ノ(第2図のシリコン基板1に対応)上に、
N型埋め込み層23(第2図の3に対応)、P型エピタ
キシャル層22(2に対応)、N型ウェル層24(4に
対応)、酸化膜32.25(12,5V?一対応)、P
型ベース層26(6に対応)、多結晶シリコン層27(
7に対応)、N型エミッタ、121j(IIに対応)、
外部ベース層3o(1oに対応)を形成する。次に第1
図(b)に示さnる如く写真蝕刻法等を用い、選択的に
シリコン基板を少くともN型埋め込み層23に達するま
で工、チングし、全面に熱酸化膜あるいは気相成長法な
どで酸化膜を形成した後、非等方エツチングにより工、
チングし、側壁酸化膜33を形成する。更に第1図(e
)に示さnる如く選択エピタキシャル法等を用い、N型
シリコ7層34を成長させる。最後に通常の工程により
層間膜・配線を行ない、バイポーラ素子を形成するもの
である。
(Example) An example of the present invention will be described below with reference to the drawings. 1st
The figure is an explanatory diagram of the process of the same example. Correspondence) above,
N-type buried layer 23 (corresponding to 3 in FIG. 2), P-type epitaxial layer 22 (corresponding to 2), N-type well layer 24 (corresponding to 4), oxide film 32.25 (corresponding to 12.5V?1) , P
Mold base layer 26 (corresponding to 6), polycrystalline silicon layer 27 (
7), N type emitter, 121j (compatible with II),
An external base layer 3o (corresponding to 1o) is formed. Next, the first
As shown in Figure (b), the silicon substrate is selectively etched using photolithography until it reaches at least the N-type buried layer 23, and the entire surface is oxidized using a thermal oxide film or vapor phase growth method. After forming the film, it is etched by anisotropic etching.
Then, a sidewall oxide film 33 is formed. Furthermore, Figure 1 (e
), an N-type silicon 7 layer 34 is grown using a selective epitaxial method or the like. Finally, interlayer films and wiring are formed using normal steps to form a bipolar element.

しかして第2図の従来技術では、外部コレクタ11に拡
散を用いていたために、外部コレクタと外部ベース層1
0の距離を、横方向拡散を考、鑞して充分に取る必要が
あったため、高集積化の妨げとなっていた。こnに対し
第1図の本発明では、外部コレクタ層34が外部ベース
層30と絶縁膜33を介して接触させることが可能とな
るため、外部ベース層30と外部コレクタ層34間を縮
小することができ、高集積化に大きな効果を生じるもの
である。
However, in the prior art shown in FIG. 2, since diffusion was used for the external collector 11, the external collector and the external base layer 1
Since it was necessary to provide a sufficient distance from zero in consideration of lateral diffusion, this was an impediment to high integration. On the other hand, in the present invention shown in FIG. 1, the external collector layer 34 can be brought into contact with the external base layer 30 via the insulating film 33, so that the distance between the external base layer 30 and the external collector layer 34 is reduced. This has a significant effect on high integration.

なお本発明は上記実施例に限らnず種々の応用が可能で
ある。例えば本実施例ではNPN W )ランジスタを
例にとったが、PNP型トランジスタでも、本実施例の
Nff1をP型にP型をN型にすnば作用効果は変わら
ない。また、前記側壁酸化膜33は電気的絶縁性をもち
、不純物のバリアになる例えばナイトライドのような物
質であnば作用効果は不変である。更にN型シリコン3
4は選択エピタキシャル技術を用いず、多結晶シリコン
を付着したのち、エツチングで形成することも可能であ
るし、シリコンだけでなく、前記N型埋め込み層23と
オーム性接触をする物質なら作用効果は変わらない。本
実施例の前記Nuシリコン層34は、シリコン形成後N
型不純物を与えても作用効果は変わらないものである。
Note that the present invention is not limited to the above-mentioned embodiments, and can be applied in various ways. For example, in this embodiment, an NPN W ) transistor is taken as an example, but even in the case of a PNP type transistor, the effect remains the same if Nff1 of this embodiment is changed to P type and P type is changed to N type. Further, if the sidewall oxide film 33 is made of a material such as nitride, which has electrical insulating properties and acts as a barrier to impurities, the effect remains unchanged. Furthermore, N-type silicon 3
4 can be formed by etching after depositing polycrystalline silicon without using the selective epitaxial technique, and if it is not only silicon but also a substance that makes ohmic contact with the N-type buried layer 23, the effect will be good. does not change. The Nu silicon layer 34 of this embodiment is made of N
Even if type impurities are added, the effect remains the same.

[発明の効果] 以上説明した如く本発明によnば、外部コレクタ層が外
部ベース層と絶縁膜を介して接触することが可能となる
ため、外部ベース層と外部コレクタ層間を縮小すること
ができ、高集積化に大きな効果を生じるものである。
[Effects of the Invention] As explained above, according to the present invention, the external collector layer can come into contact with the external base layer via the insulating film, so it is possible to reduce the distance between the external base layer and the external collector layer. This has a great effect on high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程説明図、第2図は従来
の半導体装置の製造方法の工程説明図である。 21・・・P型シリコン基板、22・・・PMエピタキ
シャル層、23・・・N13埋め込み層、24・・・N
型ウェル層、25.32・−・酸化膜、26・・・P型
ベース層、27・・・多結晶シリコン層、28・・・H
1iエミッタ層、30・・・外部ベース層、33・・・
側壁酸化膜、34・・・N型シリコン層。
FIG. 1 is a process explanatory diagram of an embodiment of the present invention, and FIG. 2 is a process explanatory diagram of a conventional method for manufacturing a semiconductor device. 21...P type silicon substrate, 22...PM epitaxial layer, 23...N13 buried layer, 24...N
type well layer, 25.32... oxide film, 26... P type base layer, 27... polycrystalline silicon layer, 28... H
1i emitter layer, 30...external base layer, 33...
Sidewall oxide film, 34...N-type silicon layer.

Claims (6)

【特許請求の範囲】[Claims] (1)少くとも1つのバイポーラ型トランジスタを含む
半導体装置を製造するに当り、少くとも埋め込みコレク
タ層に到達するまでシリコン基板を選択的にエッチング
し、そのエッチング除去部の側壁に絶縁膜を形成し、前
記エッチング除去部にシリコンを埋め込む工程を具備す
ることを特徴とする半導体装置の製造方法。
(1) When manufacturing a semiconductor device including at least one bipolar transistor, the silicon substrate is selectively etched until at least the buried collector layer is reached, and an insulating film is formed on the sidewall of the etched portion. . A method of manufacturing a semiconductor device, comprising the step of embedding silicon in the etched portion.
(2)前記絶縁膜がシリコン酸化物または窒化物である
ことを特徴とする特許請求の範囲第1項に記載の半導体
装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is made of silicon oxide or nitride.
(3)前記シリコンを埋め込む工程が選択エピタキシャ
ル法であることを特徴とする特許請求の範囲第1項に記
載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the step of embedding silicon is a selective epitaxial method.
(4)前記シリコンを埋め込む工程が、全面にシリコン
または多結晶シリコンを形成し、その後エッチバックに
より選択的に埋め込むことを特徴とする特許請求の範囲
第1項に記載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein in the step of embedding silicon, silicon or polycrystalline silicon is formed on the entire surface and then selectively embedded by etching back.
(5)前記選択的に埋め込むシリコンが既に不純物を含
むことを特徴とする特許請求の範囲第1項に記載の半導
体装置の製造方法。
(5) The method of manufacturing a semiconductor device according to claim 1, wherein the selectively buried silicon already contains impurities.
(6)前記シリコンを埋め込む工程の後、選択的に埋め
込まれたシリコンに選択的に不純物を与えることを特徴
とする特許請求の範囲第1項に記載の半導体装置の製造
方法。
(6) The method of manufacturing a semiconductor device according to claim 1, wherein after the silicon embedding step, impurities are selectively given to the selectively embedded silicon.
JP15158186A 1986-06-30 1986-06-30 Manufacture of semiconductor device Pending JPS639150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15158186A JPS639150A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15158186A JPS639150A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS639150A true JPS639150A (en) 1988-01-14

Family

ID=15521644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15158186A Pending JPS639150A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS639150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358884A (en) * 1992-09-11 1994-10-25 Micron Technology, Inc. Dual purpose collector contact and isolation scheme for advanced bicmos processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358884A (en) * 1992-09-11 1994-10-25 Micron Technology, Inc. Dual purpose collector contact and isolation scheme for advanced bicmos processes

Similar Documents

Publication Publication Date Title
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPH0241170B2 (en)
JPS639150A (en) Manufacture of semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JPH0136710B2 (en)
JP3219796B2 (en) Manufacturing method of bipolar semiconductor device
JPH0136709B2 (en)
JPH0335528A (en) Manufacture of semiconductor device
JP2836393B2 (en) Semiconductor device and manufacturing method thereof
JP2511993B2 (en) Method for manufacturing semiconductor device
JPS63211755A (en) Manufacture of semiconductor device
JPS628939B2 (en)
JP2626300B2 (en) Method for manufacturing semiconductor device
JP3707978B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH03131037A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPS5966168A (en) Manufacture of semiconductor device
JPS6315752B2 (en)
JPH02148847A (en) Manufacture of semiconductor device
JPH01225161A (en) Manufacture of semiconductor device
JPH03248423A (en) Manufacture of semiconductor device
JPH0581065B2 (en)
JPH02119258A (en) Manufacture of semiconductor device
JPH04294543A (en) Manufacture of semiconductor device
JPS59231833A (en) Semiconductor device and manufacture thereof