JP5978953B2 - Threaded joints for pipes - Google Patents
Threaded joints for pipes Download PDFInfo
- Publication number
- JP5978953B2 JP5978953B2 JP2012257476A JP2012257476A JP5978953B2 JP 5978953 B2 JP5978953 B2 JP 5978953B2 JP 2012257476 A JP2012257476 A JP 2012257476A JP 2012257476 A JP2012257476 A JP 2012257476A JP 5978953 B2 JP5978953 B2 JP 5978953B2
- Authority
- JP
- Japan
- Prior art keywords
- seal
- pin
- curved surface
- arc
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000007789 sealing Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000007906 compression Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000003129 oil well Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
Description
本発明は、管用ねじ継手に関し、詳しくは一般に油井やガス井の探査や生産に使用されるチュービングおよびケーシングを包含する油井管、すなわちOCTG(oil country tubular goods)、ライザー管、ならびにラインパイプなどの鋼管の接続に用いるのに好適な、シール性、耐圧縮性、耐ゴーリング性に優れた管用ねじ継手に関する。 The present invention relates to a threaded joint for pipes, and in particular, oil well pipes including tubing and casings generally used for exploration and production of oil wells and gas wells, that is, OCTG (oil country tubular goods), riser pipes, line pipes, etc. The present invention relates to a threaded joint for pipes excellent in sealing properties, compression resistance, and galling resistance, suitable for use in connecting steel pipes.
ねじ継手は、油井管など産油産業設備に使用される鋼管の接続に広く使用されている。オイルやガスの探索や生産に使用される鋼管の接続には、従来API(米国石油協会)規格に規定された標準的なねじ継手が典型的には使用されてきた。しかし、近年、原油や天然ガスの井戸は深井戸化が進み、垂直井から水平井や傾斜井等が増えていることから、掘削・生産環境は苛酷化している。また、海洋や極地など劣悪な環境での井戸の開発が増加していることなどから、耐圧縮性能、耐曲げ性能、外圧シール性能(耐外圧性能)など、ねじ継手への要求性能は多様化している。そのため、プレミアムジョイントと呼ばれる高性能の特殊ねじ継手を使用することが増加しており、その性能への要求もますます増加している。 Threaded joints are widely used to connect steel pipes used in oil industry equipment such as oil well pipes. Conventionally, a standard threaded joint specified in the API (American Petroleum Institute) standard has been typically used for connecting steel pipes used for oil and gas exploration and production. However, in recent years, the wells for crude oil and natural gas have been deepened, and the number of vertical wells, horizontal wells, inclined wells, etc. has increased, and the drilling and production environment has become severe. In addition, the demand for screw joints such as compression resistance, bending resistance, and external pressure seal performance (external pressure resistance) has diversified due to the increased development of wells in poor environments such as the ocean and polar regions. ing. For this reason, the use of high-performance special threaded joints called premium joints is increasing, and the demands on the performance are also increasing.
プレミアムジョイントは、通常、テーパねじ、シール部(詳しくはメタルタッチシール部)、ショルダ部(詳しくはトルクショルダ部)とをそれぞれ備える、管端部に形成した雄ねじ部材(以下、ピンと呼ぶ)と該ピン同士を連結する雌ねじ部材(以下、ボックスと呼ぶ)とを結合したカップリング形式の継手である。テーパねじは管継手を強固に固定するために重要であり、シール部はボックスとピンとがこの部分でメタル接触することでシール性を確保する役目を担い、ショルダ部は継手の締付け中にストッパの役目を担うショルダ面を有する。 A premium joint usually has a male screw member (hereinafter referred to as a pin) formed on a pipe end portion, each having a taper screw, a seal portion (specifically, a metal touch seal portion), and a shoulder portion (specifically, a torque shoulder portion). It is a coupling type joint in which a female screw member (hereinafter referred to as a box) for connecting pins to each other is coupled. The taper screw is important for firmly fixing the pipe joint, and the seal part plays a role of securing the sealing performance by metal contact between the box and the pin at this part, and the shoulder part is a stopper of the joint during tightening. It has a shoulder surface that plays a role.
図7は、油井管用プレミアムジョイントの従来例を示す模式的説明図であり、これらは、円管のねじ継手の縦断面図である。ねじ継手は、ピン3とこれに対応するボックス1とを備えており、ピン3は、その外面に雄ねじ部7と、ピン3の先端側に雄ねじ部7に隣接して設けられたねじの無い長さ部分であるノーズ部(ピンノーズとも云う)8を有する。ノーズ部8は、その外周面にシール部(詳しくは、メタルタッチシール部)11を、その端面にはショルダ部(詳しくは、トルクショルダ部)12を有する。相対するボックス1は、その内面に、それぞれピン3の雄ねじ部7、シール部11、およびショルダ部12と螺合するか、または接触することができる部分である、雌ねじ部5、シール部13、および、ショルダ部14を有している。 FIG. 7 is a schematic explanatory view showing a conventional example of a premium joint for an oil well pipe, and these are longitudinal sectional views of a threaded joint of a circular pipe. The threaded joint includes a pin 3 and a box 1 corresponding to the pin 3, and the pin 3 has a male screw portion 7 on the outer surface thereof, and has no screw provided adjacent to the male screw portion 7 on the tip end side of the pin 3. It has a nose portion (also called a pin nose) 8 that is a length portion. The nose portion 8 has a seal portion (specifically, a metal touch seal portion) 11 on its outer peripheral surface, and a shoulder portion (specifically, a torque shoulder portion) 12 on its end surface. The opposing box 1 has a female screw part 5, a seal part 13, and a part that can be screwed or brought into contact with the male screw part 7, the seal part 11, and the shoulder part 12 of the pin 3, respectively. And it has the shoulder part 14.
図7の従来例では、シール部11がピン3の先端部にあり、適正な締付トルクを与えることにより所望のシール性能を実現できるのであるが、締付トルクは潤滑条件、表面性状等に影響されるので、これらに大きくは依存しない設計として、シール接触圧力の半径方向成分を相対的に強くした半径方向シール方式(ラジアルシール型とも云う)がある。
前記ラジアルシール型のプレミアムジョイントでは、通常、シール部は、テーパ同士の接触で形成するシール部である(従来技術Aと云う)か、あるいは、テーパと、部材軸方向断面視で部材境界面内に在って部材内に弦を持つ円弧である凸円弧の部材軸周りの回転軌跡が成す曲面である凸曲面との接触で形成するシール部である(従来技術Bと云う)かの何れかである。
In the conventional example of FIG. 7, the seal portion 11 is at the tip of the pin 3 and a desired sealing performance can be realized by applying an appropriate tightening torque. However, the tightening torque depends on the lubrication conditions, surface properties, etc. As a design that does not greatly depend on these, there is a radial seal method (also referred to as a radial seal type) in which the radial component of the seal contact pressure is relatively strong.
In the radial seal type premium joint, the seal portion is usually a seal portion formed by contact between tapers (referred to as “prior art A”), or within the member boundary surface in a sectional view in the axial direction of the taper and the member. Any one of the seal portions formed by contact with a convex curved surface which is a curved surface formed by a rotation trajectory around a member axis of a convex arc which is an arc having a chord in the member (referred to as Prior Art B) It is.
従来技術Bには、例えば、今日の最大範囲の通常の作業条件に対して優秀なシール特性を有する長い管路の作成を許し、かつ数回の組立及び分解の後でも最適性能を保証し、又、運転負荷に対して高度の抵抗を有する継手とする目的で、シール部の継手軸方向断面形状を、ピン側は凸円弧、ボックス側は直線とし、ピン側シール部の凸円弧の半径(曲率半径)を管外径により異なる数値に限定すること(特許文献1参照)などが知られている。 Prior art B allows, for example, the creation of long pipelines with excellent sealing properties for today's largest range of normal working conditions and ensures optimum performance even after several assembly and disassembly, Also, for the purpose of making the joint with a high resistance to the operating load, the joint axial cross-sectional shape of the seal part is a convex arc on the pin side, a straight line on the box side, and the radius of the convex arc of the pin side seal part ( It is known that the radius of curvature is limited to a value that varies depending on the pipe outer diameter (see Patent Document 1).
然し、本発明者らの検討によると、前記従来技術A(テーパ同士の接触で形成するシール部)や従来技術B(テーパと凸曲面との接触で形成するシール部)では、以下に述べる難点があって、シール性及び耐ゴーリング性を十分向上させる事が困難であると云う課題があることが分った。
従来技術Aでは、テーパ同士でテーパ角(継手軸に対するテーパの鋭角側の傾斜角度)にミスマッチがあった場合に片当たりが発生する。又、従来技術Aでは、テーパ同士の接触域両端に極端に高い接触面圧が発生する為ゴーリングが起り易くなる。
However, according to the study by the present inventors, the conventional technique A (the seal part formed by contact between the tapers) and the conventional technique B (the seal part formed by contact between the taper and the convex curved surface) have the following difficulties. Therefore, it has been found that there is a problem that it is difficult to sufficiently improve the sealing performance and galling resistance.
In the conventional technique A, when there is a mismatch in the taper angle (inclination angle on the acute angle side of the taper with respect to the joint shaft) between the tapers, one-sided contact occurs. Further, in the prior art A, an extremely high contact surface pressure is generated at both ends of the contact area between the tapers, so that goling easily occurs.
従来技術Bでは、管軸方向(=継手軸方向)引張時のシール性低下(接触面圧低下)を抑制する為にはシールテーパ角を小さくする事が有効であるが、MU(=Make-Up;締付)時の摺動距離が長くなり、ゴーリングが起り易くなる。一方、従来技術Bでは、凸円弧の曲率半径を大きくすると接触長が長くなりシール性が向上すると共に、最大接触面圧が低くなり、ゴーリングのリスクが低減可能である。ところが、曲率半径を変更すると接触長と最大接触面圧が連動して変化する為、接触長が長く最大接触面圧も高い状態を実現する為には過大なシール干渉量を与えるしかなく、やはりゴーリングの問題が発生してしまう。 In the prior art B, it is effective to reduce the seal taper angle in order to suppress a decrease in sealing performance (contact surface pressure decrease) in the pipe axis direction (= joint axis direction), but MU (= Make- The sliding distance at the time of Up (tightening) becomes long, and goling easily occurs. On the other hand, in the conventional technique B, when the radius of curvature of the convex arc is increased, the contact length is increased and the sealing performance is improved, and the maximum contact surface pressure is decreased, and the risk of goling can be reduced. However, if the radius of curvature is changed, the contact length and maximum contact surface pressure change in conjunction with each other. Therefore, in order to achieve a state where the contact length is long and the maximum contact surface pressure is high, an excessive amount of seal interference must be given. Goaling problems will occur.
尚、本明細書において、シール干渉量とは、ねじ継手のピン側になるピン部材とボックス側になるボックス部材との両部材の部材軸方向断面図同士を、軸同士及びショルダ面同士が一致する様に、重ね合わせてなる継手組立図において、前記重ね合わせにより形成された両部材の干渉部の、部材軸(=継手軸)方向位置における部材直径寸法の差(ピンの外径とボックスの内径の差=直径あたりの重なり寸法)を意味する。前記干渉部は、両部材をねじ結合してなるねじ継手のシール部に対応する。又、前記シール干渉量が最大となる部材軸方向位置をシールポイントと称する。 In this specification, the amount of seal interference refers to the cross-sectional views in the member axial direction of both the pin member on the pin side of the screw joint and the box member on the box side, and the shafts and the shoulder surfaces coincide with each other. Thus, in the joint assembly drawing formed by overlapping, the difference in the member diameter dimension at the position in the member axis (= joint axis) direction of the interference part of both members formed by the overlapping (the outer diameter of the pin and the box Difference in inner diameter = overlapping dimension per diameter). The interference portion corresponds to a seal portion of a threaded joint formed by screwing both members. The member axial position where the seal interference amount is maximum is referred to as a seal point.
本発明者らは前記課題を解決する手段について鋭意検討した結果、ボックスをなす部材側のシール部にする部材内周面部分を、2つのテーパが凹曲面、即ち、部材軸方向断面視で部材境界面内に在って部材外に弦を持つ円弧である凹円弧の部材軸周りの回転軌跡がなす曲面、を介して接続されてなる複合曲面とし、ピンをなす部材側のシール部にする部材外周面部分を、凸曲面、即ち、部材軸方向断面視で部材境界面内に在って部材内に弦を持つ円弧である凸円弧の部材軸周りの回転軌跡がなす曲面、とする事が効果的であるとの知見を得、これに基づいて、以下の要旨構成になる本発明を成した。
(1) 雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピンと、
前記雄ねじ部とねじ結合されてねじ部をなす雌ねじ部と、前記ピンのノーズ部外周面に相対するシール面と、前記ピンのショルダ部に当接するショルダ部とを有するボックスと、を有し、
前記ねじ結合により前記ピンとボックスとが結合されてピンの前記ノーズ部外周面とボックスの前記シール面とがメタル‐メタル接触しその接触部がシール部をなす管用ねじ継手であって、
前記ピンをなす部材側のシール部にする部材外周面部分が、部材軸方向断面視で部材界面内に在って部材内に弦を持つ円弧である凸円弧の部材軸周りの回転軌跡である凸曲面であり、
前記ボックスをなす部材側のシール部にする部材内周面部分が、近ショルダ部側に位置する第1のテーパと遠ショルダ部側に位置する第2のテーパを、部材軸方向断面視で部材境界面内に在って部材外に弦を持つ円弧である凹円弧の部材軸周りの回転軌跡である凹曲面を介して接続してなる複合曲面であり、
前記複合曲面内の前記凹円弧の曲率半径Rbと前記凸曲面内の前記凸円弧の曲率半径Rpとは、Rb≧Rp×0.7、を満たすことを特徴とする管用ねじ継手。
(2) 前記第1、第2のテーパ夫々のテーパ角α1、α2は、α1-α2≧0.5度、を満たすことを特徴とする前記(1)に記載の管用ねじ継手。
(3) 前記凹曲面内に、シール干渉量が最大となる部材軸方向位置であるシールポイントが配位されたことを特徴とする前記(1)又は(2)に記載の管用ねじ継手。
As a result of intensive studies on means for solving the above problems, the present inventors have found that the inner peripheral surface portion of the member that forms the seal portion on the member side forming the box has two concavely curved surfaces, that is, members in a sectional view in the member axial direction. A compound curved surface connected via a curved surface formed by a rotation trajectory around the member axis of a concave arc, which is an arc having a chord outside the member within the boundary surface, and a seal portion on the member side forming a pin The member outer peripheral surface portion is a convex curved surface, that is, a curved surface formed by a rotation locus around the member axis of a convex arc which is an arc having a chord in the member in the member boundary surface in a sectional view in the member axial direction. Based on this finding, the present invention has the following gist configuration.
(1) a pin having a male screw portion, a nose portion extending from the male screw portion toward the tube end side, and a shoulder portion provided at the tip of the nose portion;
A female screw part that is screw-coupled with the male screw part to form a screw part, a seal surface that faces the outer peripheral surface of the nose part of the pin, and a box that has a shoulder part that contacts the shoulder part of the pin,
A screw joint for pipes in which the pin and the box are connected by the screw connection, the outer peripheral surface of the nose part of the pin and the seal surface of the box are in metal-metal contact, and the contact part forms a seal part,
The member outer peripheral surface portion to be the seal portion on the member side forming the pin is a rotation locus around the member axis of a convex arc which is an arc having a chord in the member in the member interface in a sectional view in the member axial direction. A convex curved surface,
The member inner peripheral surface portion to be the seal portion on the member side forming the box has a first taper located on the near shoulder portion side and a second taper located on the far shoulder portion side in the member axial direction sectional view. It is a compound curved surface formed by connecting through a concave curved surface that is a rotation locus around a member axis of a concave arc that is an arc having a string outside the member within the boundary surface,
A threaded joint for pipes, wherein a radius of curvature Rb of the concave arc in the complex curved surface and a radius of curvature Rp of the convex arc in the convex curved surface satisfy Rb ≧ Rp × 0.7.
(2) The threaded joint for pipes according to (1), wherein the taper angles α1 and α2 of the first and second tapers satisfy α1−α2 ≧ 0.5 degrees.
(3) The threaded joint for pipes according to (1) or (2), wherein a seal point, which is a position in the member axial direction that maximizes the amount of seal interference, is arranged in the concave curved surface.
本発明によれば、上記構成を採用した事で、従来よりもシール性及び耐ゴーリング性に優れる管用ねじ継手が得られる。 According to the present invention, by adopting the above-described configuration, a threaded joint for pipes that is more excellent in sealing performance and galling resistance than before can be obtained.
図1は、本発明の実施形態の一例を示す軸方向断面図である。この図はピン3とボックス1の軸方向断面図同士を、軸同士及びショルダ面22,24同士が一致する様に、重ね合わせてなる継手組立状態を示している。尚、ねじ結合時には同心軸化して継手軸になる、ピン軸(管軸との同心軸である)、ボックス軸の何れかである部材軸、略して軸は、図示を省略した。この図において、前記重ね合わせにより形成されたピン3外径側とボックス1内径側との干渉部20は、ピン3とボックス1とのねじ結合時にシール部21(図2参照)となる。 FIG. 1 is an axial sectional view showing an example of an embodiment of the present invention. This figure shows a joint assembly state in which the axial sectional views of the pin 3 and the box 1 are overlapped so that the shafts and the shoulder surfaces 22 and 24 coincide with each other. In addition, the member axis | shaft which is either a pin axis | shaft (it is a concentric axis | shaft with a pipe axis | shaft) and a box axis | shaft which becomes a concentric axis | shaft at the time of a screw connection and becomes a coupling axis | shaft is abbreviate | omitting illustration. In this figure, the interference portion 20 between the outer diameter side of the pin 3 and the inner diameter side of the box 1 formed by the superposition serves as a seal portion 21 (see FIG. 2) when the pin 3 and the box 1 are screwed together.
干渉部20において、ピン3側の外周面は、ピン3内に弦(図示省略)を持つ曲率半径Rpの円弧である凸円弧9の軸周りの回転軌跡である凸曲面10であり、一方、ボックス側の内周面は、近ショルダ部側(ショルダ部14に近い側)に位置する第1のテーパ15と遠ショルダ部側(ショルダ部14から遠い側)に位置する第2のテーパ16を、ボックス1外に弦(図示省略)を持つ曲率半径Rbの円弧である凹円弧17の部材軸周りの回転軌跡である凹曲面18を介して接続してなる複合曲面19である。 In the interference part 20, the outer peripheral surface on the pin 3 side is a convex curved surface 10 that is a rotation locus around the axis of the convex arc 9 that is an arc of curvature radius Rp having a chord (not shown) in the pin 3, The inner peripheral surface on the box side includes a first taper 15 located on the near shoulder portion side (side near the shoulder portion 14) and a second taper 16 located on the far shoulder portion side (the side far from the shoulder portion 14). , A composite curved surface 19 connected via a concave curved surface 18 which is a rotation locus around a member axis of a concave arc 17 which is a circular arc of curvature radius Rb having a string (not shown) outside the box 1.
凹円弧17、凸円弧9夫々の曲率半径Rb、Rpは、Rb≧Rp×0.7、を満たす。
図2は、干渉部20のシール形状(ピンノーズ8の外周面形状とボックス1側のピンノーズ対向部の内周面形状)に対応するシール部21の接触面形状を示す模式図であり、この図において、30は凹曲面18と凸曲面10とがメタル‐メタル接触してなるシール円弧部、31は第1のテーパ15と凸曲面10とがメタル‐メタル接触してなる第1のシールテーパ部、32は第2のテーパ16と凸曲面10とがメタル‐メタル接触してなる第2のシールテーパ部、33,34は凹円弧17と第1、第2夫々のテーパ15,16との繋ぎ目である。
The curvature radii Rb and Rp of the concave arc 17 and the convex arc 9 respectively satisfy Rb ≧ Rp × 0.7.
FIG. 2 is a schematic diagram showing the contact surface shape of the seal portion 21 corresponding to the seal shape of the interference portion 20 (the outer peripheral surface shape of the pin nose 8 and the inner peripheral surface shape of the pin nose facing portion on the box 1 side). , 30 is a seal arc portion in which the concave curved surface 18 and the convex curved surface 10 are in metal-metal contact, and 31 is a first seal taper portion in which the first taper 15 and the convex curved surface 10 are in metal-metal contact. , 32 is a second seal taper portion in which the second taper 16 and the convex curved surface 10 are in metal-metal contact, and 33 and 34 are connections between the concave arc 17 and the first and second tapers 15 and 16, respectively. Eyes.
第1のシールテーパ部31のシールテーパ角(継手軸に対するシールテーパ部の鋭角側の傾斜角度)は、α1と殆ど等しくなり、第2のシールテーパ部32のシールテーパ角は、α2と殆ど等しくなる。
シール部21にするピン1側の外周面部分を凸曲面10とし、ボックス3側では第1、第2のテーパ15,16を連結する曲線として凹円弧17を適用する事で、シール円弧部30の接触面圧が抑制され、耐ゴーリング性が向上する。
The seal taper angle of the first seal taper portion 31 (inclination angle on the acute side of the seal taper portion with respect to the joint shaft) is almost equal to α1, and the seal taper angle of the second seal taper portion 32 is almost equal to α2. Become.
The outer peripheral surface portion on the pin 1 side to be the seal portion 21 is a convex curved surface 10, and the concave arc 17 is applied as a curve connecting the first and second tapers 15 and 16 on the box 3 side, thereby the seal arc portion 30. The contact surface pressure is suppressed, and the galling resistance is improved.
凹円弧17の曲率半径Rbは凸円弧9の曲率半径Rpと比べて小さい方が接触長を確保しつつも接触面圧は抑制できて好ましいが、Rbが過小であると繋ぎ目33,34付近に非接触部分(隙間)が生じ、隙間に残存したコンパウンドがシール性を阻害する。斯かる不具合を回避する為に、Rb≧Rp×0.7、を満たす必要がある。但し、Rb>Rp×2、となると、接触面圧低減効果が小さくなり、過大な場合には単一テーパシールと実質的に同じとなってしまうから、Rb≦Rp×2、とする事が好ましい。即ち、好ましくは、Rbは、Rp×0.7以上Rp×2以下である。 The radius of curvature Rb of the concave arc 17 is preferably smaller than the radius of curvature Rp of the convex arc 9 because the contact surface pressure can be suppressed while ensuring the contact length, but if Rb is too small, the vicinity of the joints 33 and 34 A non-contact part (gap) is generated in the surface, and the compound remaining in the gap hinders the sealing performance. In order to avoid such a problem, it is necessary to satisfy Rb ≧ Rp × 0.7. However, if Rb> Rp × 2, the effect of reducing the contact surface pressure is reduced, and if it is excessive, it will be substantially the same as a single taper seal, so Rb ≦ Rp × 2 may be satisfied. preferable. That is, preferably, Rb is Rp × 0.7 or more and Rp × 2 or less.
又、管軸方向引張時の接触面圧低下を抑制する観点から、ボックス3の遠ショルダ部側のテーパである第2のテーパ16のテーパ角α2(第2のシールテーパ部32のシールテーパ角に殆ど等しい)を小さくする事、例えばα2≒3〜10度、とする事が好ましい。一方、近ショルダ部側のテーパである第1のテーパ15のテーパ角α1(第1のシールテーパ部31のシールテーパ角に殆ど等しい)は、管軸方向圧縮時にその力を受け易くする観点から、α2との角度差Δα=α1-α2≧0.5度、を満たす事が好ましい。但し、Δαが過大であると、第1、第2の何れか一方或いは両方のテーパの部位での接触が無くなり、繋ぎ目33,34での接触で発生させて得られる筈の大きな接触面圧が得られなくなる懸念がある。この不具合を回避する為に、Δαは、Δα≦4度とするのがより好ましい。即ち、より好ましくは、Δαは、0.5度以上4度以下である。 Further, from the viewpoint of suppressing a decrease in contact surface pressure during pulling in the tube axis direction, the taper angle α2 of the second taper 16 that is the taper on the far shoulder portion side of the box 3 (the seal taper angle of the second seal taper portion 32). For example, α2≈3 to 10 degrees. On the other hand, the taper angle α1 of the first taper 15 (which is almost equal to the seal taper angle of the first seal taper portion 31), which is a taper on the near shoulder portion side, is easily received by the force during compression in the tube axis direction. It is preferable to satisfy the angle difference Δα = α1−α2 ≧ 0.5 degrees with respect to α2. However, if Δα is excessive, contact at one or both of the first and second taper portions is lost, and a contact surface pressure with a large wrinkle obtained by contact at joints 33 and 34 is obtained. There is a concern that will not be obtained. In order to avoid this problem, Δα is more preferably Δα ≦ 4 degrees. That is, more preferably, Δα is not less than 0.5 degrees and not more than 4 degrees.
ところで、従来のシール形状では、シール干渉量が最大となる部材軸方向位置であるシールポイントにおいて最大接触面圧が発生し、複合荷重例えば引張-圧縮の繰り返し等の荷重を受けた際に塑性変形が発生してシール性が低下し易い。これに対し、本発明では、シールポイントを凹円弧17域内に配位する事により、接触面圧を低減する事ができ、以てシール性低下を抑制する事ができる。従って、本発明では、凹曲面18内にシールポイントが配位されたねじ継手である事が好ましい。 By the way, in the conventional seal shape, the maximum contact surface pressure is generated at the seal point, which is the position in the axial direction of the member where the seal interference amount is maximum, and plastic deformation occurs upon receiving a composite load such as repeated tension-compression load. Will occur and the sealing performance is likely to deteriorate. On the other hand, in the present invention, the contact point pressure can be reduced by coordinating the seal point in the area of the concave arc 17 so that a decrease in the sealing performance can be suppressed. Therefore, in the present invention, a threaded joint in which a seal point is coordinated in the concave curved surface 18 is preferable.
外径9-5/8”×肉厚0.545”の鋼管端部を加工してなるピンと、これに対応するボックスとからなる管用ねじ継手について、有限要素解析(FEA)を実施してMU(Make-Up;締付)時の接触面積圧(接触面圧を管軸方向の接触長に渡って積分した指標)を同一とした設計で、表1にシール形状及び評価パラメータを示すサンプルを製作し、ISO13679のシリーズAテストを実施した。この実施に当たっては表1に実験条件を示す各水準で実験した。尚、実験では、MU完了時の接触面積圧が6000psi-inchとなる様にシール干渉量とMUトルクを調整した。 Finite element analysis (FEA) is performed on a threaded joint for a pipe consisting of a pin formed by machining a steel pipe end with an outside diameter of 9-5 / 8 "x wall thickness of 0.545" and a box corresponding to the pin. (Make-Up; tightening) contact area pressure (index obtained by integrating the contact surface pressure over the contact length in the tube axis direction) with the same design, Table 1 shows a sample showing the seal shape and evaluation parameters Produced and conducted a series A test of ISO 13679. In carrying out this experiment, the experiment was conducted at various levels shown in Table 1. In the experiment, the seal interference amount and the MU torque were adjusted so that the contact area pressure upon completion of MU was 6000 psi-inch.
実験結果を表1に示す。表1より、比較例と比べて、本発明例では、より優れたシール性が発現し、又、本発明例においてシールポイントを凹曲面(凹円弧)内に配位した例では、より一層優れたシール性が発現した事が明らかである。 The experimental results are shown in Table 1. From Table 1, compared with the comparative example, in the present invention example, more excellent sealing performance is expressed, and in the present invention example, the seal point is arranged in the concave curved surface (concave arc), and further excellent. It is clear that a good sealing performance was developed.
図3は、Make-up時のFEA(有限要素解析)による接触面圧の接触長方向分布を示す線図である。図中の曲線は夫々表1の水準4(本発明例)、および水準11(比較例)に対する結果である。なお、接触長および接触面圧は水準11(比較例)の分布に基づき無次元化して表示している。この図より、本発明例ではMake-up時の分布は接触長が長く最大面圧は過大でないことが分る。 FIG. 3 is a diagram showing a contact length direction distribution of contact surface pressure by FEA (finite element analysis) at the time of Make-up. The curves in the figure are the results for level 4 (invention example) and level 11 (comparative example) in Table 1, respectively. The contact length and the contact surface pressure are displayed in a non-dimensional manner based on the distribution of level 11 (comparative example). From this figure, it can be seen that in the example of the present invention, the distribution during Make-up has a long contact length and the maximum surface pressure is not excessive.
図4は、本発明例(水準4)についてISO試験に規定された複合荷重負荷後の相当塑性ひずみ分布をFEA計算した結果を示す等ひずみ区域図である。この図より、シールポイントを凹曲面18(凹円弧17)内に配位した事で、ひずみの集中する部位が複数に分かれ、塑性変形が起り難くなる事が分る。
図5は、FEA(有限要素解析)によるゴーリング指数の接触長方向分布を示す線図である。図中の曲線は夫々表1の水準4(本発明例)、および水準11(比較例)に対する結果である。なお、接触長および接触面圧は水準11(比較例)の分布に基づき無次元化して表示している。此処で、ゴーリング指数とは、ねじ締付け時のゴーリングリスクを表す指標として、締付け開始から完了までのシール部の接触点各位置における「摩擦係数μ×摺動距離×接触面圧」の積分計算値として定義した値であり、ゴーリング指数が小さいほどゴーリングリスクは小さい。この図より、本発明例では比較例に比べ、摺動距離が増しても接触面圧が抑制されていることからゴーリング指数の低減が可能である事が分る。
FIG. 4 is an equal strain area diagram showing the result of FEA calculation of the equivalent plastic strain distribution after the combined load specified in the ISO test for the example of the present invention (level 4). From this figure, it can be seen that by arranging the seal point within the concave curved surface 18 (concave arc 17), the strain concentrated portion is divided into a plurality of portions, and plastic deformation hardly occurs.
FIG. 5 is a diagram showing a contact length direction distribution of a Goring index by FEA (finite element analysis). The curves in the figure are the results for level 4 (invention example) and level 11 (comparative example) in Table 1, respectively. The contact length and the contact surface pressure are displayed in a non-dimensional manner based on the distribution of level 11 (comparative example). Here, the Goring index is an integral calculation value of “friction coefficient μ × sliding distance × contact surface pressure” at each position of the contact point of the seal part from the start to the end of tightening as an index representing the risk of goling during screw tightening. The smaller the Goring index is, the smaller the Goring risk is. From this figure, it can be seen that in the present invention example, the contact surface pressure is suppressed even when the sliding distance is increased, and the Goling index can be reduced as compared with the comparative example.
図6は、ISO13679:2002のシール性評価試験におけるシリーズAテストの引張/圧縮および内圧/外圧による複合荷重負荷時のLP(Load Point)2、12、13に対して、FEAにより接触面積圧を計算した結果を示す棒グラフである。なお、棒グラフは本発明例(水準4)と比較例(水準11)についての接触面積圧を水準11の各ロードステップの値に基づき無次元化して表示している。耐内圧シールにて問題となるのは最大引張力および内圧が作用するLP(Load Point)2である。一方で耐外圧シールにて問題となるのは最大外圧のみが作用するLP12および高い外圧に加えて引張力も作用するLP13である。このグラフより、本発明例では比較例に比べ、接触面積圧が向上してシール性が向上することがわかる。 FIG. 6 shows the contact area pressure by FEA with respect to LP (Load Point) 2, 12 and 13 when combined load is applied by tension / compression and internal / external pressure of series A test in the seal evaluation test of ISO 13679: 2002. It is a bar graph which shows the result of calculation. Note that the bar graph displays the contact area pressure for the example of the present invention (level 4) and the comparative example (level 11) in a non-dimensional manner based on the value of each load step of level 11. The problem with the internal pressure resistant seal is LP (Load Point) 2 on which the maximum tensile force and internal pressure act. On the other hand, the problem with the external pressure-resistant seal is LP12 in which only the maximum external pressure acts and LP13 in which tensile force acts in addition to high external pressure. From this graph, it can be seen that the contact area pressure is improved in the example of the present invention and the sealing property is improved as compared with the comparative example.
1 ボックス
3 ピン
5 雌ねじ部
7 雄ねじ部
8 ノーズ部(ピンノーズ)
9 凸円弧
10 凸曲面
11,13 シール部(メタルタッチシール部)
12,14 ショルダ部(トルクショルダ部;12はピン側、14はボックス側)
15 第1のテーパ
16 第2のテーパ
17 凹円弧
18 凹曲面
19 複合曲面
20 干渉部
21 シール部
22,24 ショルダ面(22はピン側、24はボックス側)
30 シール円弧部
31 第1のシールテーパ部
32 第2のシールテーパ部
33,34 繋ぎ目(凹円弧とテーパとの繋ぎ目)
1 Box 3 Pin 5 Female thread 7 Male thread 8 Nose (pin nose)
9 Convex arc 10 Convex curved surface 11, 13 Seal part (metal touch seal part)
12, 14 Shoulder (torque shoulder; 12 is pin side, 14 is box side)
15 First taper 16 Second taper 17 Concave arc 18 Concave surface 19 Compound curved surface 20 Interference part 21 Sealing parts 22 and 24 Shoulder surface (22 is pin side, 24 is box side)
30 Seal arc portion 31 First seal taper portion 32 Second seal taper portions 33 and 34 Joint (joint between concave arc and taper)
Claims (3)
前記雄ねじ部とねじ結合されてねじ部をなす雌ねじ部と、前記ピンのノーズ部外周面に相対するシール面と、前記ピンのショルダ部に当接するショルダ部とを有するボックスと、を有し、
前記ねじ結合により前記ピンとボックスとが結合されてピンの前記ノーズ部外周面とボックスの前記シール面とがメタル‐メタル接触しその接触部がシール部をなす管用ねじ継手であって、
前記ピンをなす部材側のシール部にする部材外周面部分が、部材軸方向断面視で部材界面内に在って部材内に弦を持つ円弧である凸円弧の部材軸周りの回転軌跡である凸曲面であり、
前記ボックスをなす部材側のシール部にする部材内周面部分が、近ショルダ部側に位置する第1のテーパと遠ショルダ部側に位置する第2のテーパを、部材軸方向断面視で部材境界面内に在って部材外に弦を持つ円弧である凹円弧の部材軸周りの回転軌跡である凹曲面を介して接続してなる複合曲面であり、
前記複合曲面内の前記凹円弧の曲率半径Rbと前記凸曲面内の前記凸円弧の曲率半径Rpとは、Rb≧Rp×0.7、を満たすことを特徴とする管用ねじ継手。 A pin having a male screw part, a nose part extending from the male screw part to the tube end side, and a shoulder part provided at the tip of the nose part;
A female screw part that is screw-coupled with the male screw part to form a screw part, a seal surface that faces the outer peripheral surface of the nose part of the pin, and a box that has a shoulder part that contacts the shoulder part of the pin,
A screw joint for pipes in which the pin and the box are connected by the screw connection, the outer peripheral surface of the nose part of the pin and the seal surface of the box are in metal-metal contact, and the contact part forms a seal part,
The member outer peripheral surface portion to be the seal portion on the member side forming the pin is a rotation locus around the member axis of a convex arc which is an arc having a chord in the member in the member interface in a sectional view in the member axial direction. A convex curved surface,
The member inner peripheral surface portion to be the seal portion on the member side forming the box has a first taper located on the near shoulder portion side and a second taper located on the far shoulder portion side in the member axial direction sectional view. It is a compound curved surface formed by connecting through a concave curved surface that is a rotation locus around a member axis of a concave arc that is an arc having a string outside the member within the boundary surface,
A threaded joint for pipes, wherein a radius of curvature Rb of the concave arc in the complex curved surface and a radius of curvature Rp of the convex arc in the convex curved surface satisfy Rb ≧ Rp × 0.7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257476A JP5978953B2 (en) | 2012-11-26 | 2012-11-26 | Threaded joints for pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257476A JP5978953B2 (en) | 2012-11-26 | 2012-11-26 | Threaded joints for pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014105731A JP2014105731A (en) | 2014-06-09 |
JP5978953B2 true JP5978953B2 (en) | 2016-08-24 |
Family
ID=51027427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012257476A Active JP5978953B2 (en) | 2012-11-26 | 2012-11-26 | Threaded joints for pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5978953B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6311019B2 (en) * | 2014-06-20 | 2018-04-11 | 新日鐵住金株式会社 | Threaded joints for steel pipes |
AU2017316876B2 (en) * | 2016-08-24 | 2020-02-27 | Jfe Steel Corporation | Threaded joint for oil country tubular goods |
CN109915667B (en) * | 2019-04-15 | 2020-02-07 | 大连长之琳科技发展有限公司 | Internal-rotation rolling type sealing joint, light straight-through pipe joint and application thereof |
CN114026309B (en) * | 2019-08-09 | 2023-06-20 | 日本制铁株式会社 | Threaded joint for steel pipe |
CA3149749C (en) * | 2020-01-17 | 2024-03-26 | Satoshi Maruta | Threaded connection for pipe |
CN111898215B (en) * | 2020-07-07 | 2024-05-28 | 中国石油天然气集团有限公司 | Method for selecting special threaded oil sleeve sealing test sample |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4692988A (en) * | 1986-08-19 | 1987-09-15 | Nowsco Well Service (U.K.) Limited | Screw thread protection |
US5137310A (en) * | 1990-11-27 | 1992-08-11 | Vallourec Industries | Assembly arrangement using frustoconical screwthreads for tubes |
JP2877010B2 (en) * | 1994-11-04 | 1999-03-31 | 住友金属工業株式会社 | Threaded fittings for oil country tubular goods |
JP3726302B2 (en) * | 1995-03-15 | 2005-12-14 | 住友金属工業株式会社 | Threaded joint for oil well pipe |
JP4691904B2 (en) * | 2004-03-26 | 2011-06-01 | Jfeスチール株式会社 | Oil well steel pipe fittings |
CA2739711C (en) * | 2008-10-20 | 2013-08-20 | Sumitomo Metal Industries, Ltd. | Threaded joint for steel pipes with specific sealing surface |
JP5660308B2 (en) * | 2010-06-30 | 2015-01-28 | Jfeスチール株式会社 | Threaded joints for steel pipes |
JP5673090B2 (en) * | 2010-08-27 | 2015-02-18 | Jfeスチール株式会社 | Threaded joints for steel pipes |
-
2012
- 2012-11-26 JP JP2012257476A patent/JP5978953B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014105731A (en) | 2014-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5492885B2 (en) | Threaded joints for steel pipes | |
AU2014376828B2 (en) | Threaded joint for heavy-walled oil country tubular goods | |
WO2012002409A1 (en) | Pipe screw coupling | |
AU2012324340B2 (en) | Threaded coupling for pipe | |
JP5978953B2 (en) | Threaded joints for pipes | |
JP5660308B2 (en) | Threaded joints for steel pipes | |
JP7120179B2 (en) | Threaded joints for oil well pipes | |
JP2006526747A (en) | Threaded joints for steel pipes | |
MX2013010500A (en) | Screw joint for steel piping. | |
JP5706533B2 (en) | Improved seal between pipes | |
JP6888687B2 (en) | Threaded joint | |
JP6103137B2 (en) | Threaded joints for pipes | |
WO2015015799A1 (en) | Threaded joint for oil country tubular goods | |
JP5673089B2 (en) | Threaded joints for steel pipes | |
US20160130884A1 (en) | Threaded joint for oil country tubular goods (as amended) | |
JP6020087B2 (en) | Threaded joints for pipes | |
JP6051811B2 (en) | Threaded joints for pipes | |
JP5967113B2 (en) | Pipe threaded joints | |
JP5803953B2 (en) | Threaded joint for pipe connection | |
JP5673090B2 (en) | Threaded joints for steel pipes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140328 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5978953 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |