JP5673089B2 - Threaded joints for steel pipes - Google Patents

Threaded joints for steel pipes Download PDF

Info

Publication number
JP5673089B2
JP5673089B2 JP2010289794A JP2010289794A JP5673089B2 JP 5673089 B2 JP5673089 B2 JP 5673089B2 JP 2010289794 A JP2010289794 A JP 2010289794A JP 2010289794 A JP2010289794 A JP 2010289794A JP 5673089 B2 JP5673089 B2 JP 5673089B2
Authority
JP
Japan
Prior art keywords
nose
steel pipes
screw
curve
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010289794A
Other languages
Japanese (ja)
Other versions
JP2012067908A (en
Inventor
園部 治
治 園部
拓也 長濱
拓也 長濱
吉川 正樹
正樹 吉川
順 高野
順 高野
孝将 川井
孝将 川井
高橋 一成
一成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010289794A priority Critical patent/JP5673089B2/en
Publication of JP2012067908A publication Critical patent/JP2012067908A/en
Application granted granted Critical
Publication of JP5673089B2 publication Critical patent/JP5673089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Description

本発明は、鋼管用ねじ継手に関し、詳しくは一般に油井やガス井の探査や生産に使用されるチュービングおよびケーシングを包含する油井管、すなわちOCTG(oil country tubular goods)、ライザー管、ならびにラインパイプなどの鋼管の接続に用いるのに好適な、シール性と耐圧縮性に優れた鋼管用ねじ継手に関する。   TECHNICAL FIELD The present invention relates to a threaded joint for steel pipes, and in particular, oil well pipes including tubing and casings generally used for exploration and production of oil wells and gas wells, that is, OCTG (oil country tubular goods), riser pipes, line pipes, etc. The present invention relates to a threaded joint for steel pipes that is suitable for use in connecting steel pipes and has excellent sealing properties and compression resistance.

ねじ継手は、油井管など産油産業設備に使用される鋼管の接続に広く使用されている。オイルやガスの探索や生産に使用される鋼管の接続には、従来API(米国石油協会)規格に規定された標準的なねじ継手が使用されてきた。しかし、近年、原油や天然ガスの井戸は深井戸化が進み、垂直井から水平井や傾斜井が増加していることから、掘削・生産環境は苛酷化している。また、海洋や極地など劣悪な環境での井戸の開発が増加していることなどから、耐圧縮性能、耐曲げ性能、外圧シール性能(耐外圧性能)など、ねじ継手への要求性能は多様化している。そのため、プレミアムジョイントと呼ばれる高性能の特殊ねじ継手を使用することが増加している。   Threaded joints are widely used to connect steel pipes used in oil industry equipment such as oil well pipes. Conventionally, standard threaded joints defined in API (American Petroleum Institute) standards have been used to connect steel pipes used in the search and production of oil and gas. However, in recent years, wells for crude oil and natural gas have been deepened, and horizontal wells and inclined wells have increased from vertical wells, and the drilling and production environment has become severe. In addition, the demand for screw joints such as compression resistance, bending resistance, and external pressure seal performance (external pressure resistance) has diversified due to the increased development of wells in poor environments such as the ocean and polar regions. ing. Therefore, the use of high-performance special threaded joints called premium joints is increasing.

プレミアムジョイントは、通常、テーパねじ、シール部(詳しくはメタルタッチシール部)、ショルダ部(詳しくはトルクショルダ部)をそれぞれ備えるピン部材とボックス部材とを結合した継手である。テーパねじは管継手を強固に固定するために重要であり、シール部はボックス部材とピン部材とがこの部分でメタル接触することでシール性を確保する役目を担い、ショルダ部は継手の締付け中にストッパの役目を担うショルダ面となる。   The premium joint is usually a joint in which a pin member and a box member each having a taper screw, a seal portion (specifically, a metal touch seal portion), and a shoulder portion (specifically, a torque shoulder portion) are combined. The taper screw is important for firmly fixing the pipe joint, and the seal part plays a role of ensuring the sealing performance by the metal contact between the box member and the pin member at this part, and the shoulder part is tightening the joint. It becomes the shoulder surface that plays the role of the stopper.

図3〜図5は、油井管用プレミアムジョイントの模式的説明図であり、これらは、円管のねじ継手の縦断面図である。ねじ継手は、ピン部材3とこれに対応するボックス部材1とを備えており、ピン部材3(ピン3)は、その外面に雄ねじ7と、ピン3の先端側に雄ねじ7に隣接して設けられたノーズ部8(ピンノーズ8)と呼ばれるねじ無し部とを有する。ノーズ部8は、その外周面にシール部11を、その端面にはトルクショルダ部12を有する。相対するボックス部材1は、その内面に、それぞれピン3の雄ねじ7、シール部11、およびショルダ部12と螺合するか、または接触することができる部分である、雌ねじ5、シール部13、および、ショルダ部14を有している。   3-5 is typical explanatory drawing of the premium joint for oil well pipes, These are the longitudinal cross-sectional views of the threaded joint of a circular pipe. The threaded joint includes a pin member 3 and a box member 1 corresponding thereto, and the pin member 3 (pin 3) is provided on the outer surface thereof adjacent to the male screw 7 and on the tip end side of the pin 3 adjacent to the male screw 7. And a no-thread portion called a nose portion 8 (pin nose 8). The nose portion 8 has a seal portion 11 on its outer peripheral surface and a torque shoulder portion 12 on its end surface. The opposing box member 1 has, on its inner surface, a female screw 5, a seal portion 13, and a portion that can be screwed or contacted with the male screw 7, the seal portion 11, and the shoulder portion 12 of the pin 3, respectively. The shoulder portion 14 is provided.

前記プレミアムジョイントに関する従来技術として、特許文献1〜6が挙げられる。   Patent documents 1-6 are mentioned as conventional technology about the premium joint.

特許第4535064号公報Japanese Patent No. 4535064 特許第4208192号公報Japanese Patent No. 4208192 実公昭61−44068号公報Japanese Utility Model Publication No. 61-44068 特許第4300187号公報Japanese Patent No. 4300187 特開2001−124253号公報JP 2001-124253 A 特許第2705506号公報Japanese Patent No. 2705506

図3〜図5の例では、メタルタッチシール部はピンノーズ8の先端部にあるが、特許文献1には、耐外圧性能を増すために、ピンノーズ8のねじ部近くにメタルタッチシール部を設け、ノーズ部をシール部からショルダ部まで長く伸ばすものも提案されている。この特許文献1に開示されるねじ継手においては、ボックス部材と非接触なピンノーズを、シール部とは不連続な形状となるように長く伸ばしてピンノーズの厚みが薄くならないように構成されており、前述の耐外圧性能の他に、耐軸圧縮性能の向上も実現している。   3 to 5, the metal touch seal portion is located at the tip of the pin nose 8. However, in Patent Document 1, a metal touch seal portion is provided near the screw portion of the pin nose 8 in order to increase the external pressure resistance. In addition, it has been proposed to extend the nose part from the seal part to the shoulder part. In the threaded joint disclosed in Patent Document 1, the pin nose that is not in contact with the box member is configured to be elongated so as to be discontinuous with the seal portion so that the thickness of the pin nose is not reduced. In addition to the above-mentioned external pressure resistance, the axial compression resistance is also improved.

また、特許文献2には、同様にシール部からピンノーズ先端にアペンディックスなる、これもシール部と不連続な形状を有する部位を設けて、半径方向の剛性を確保し軸方向の剛性を下げて、締付け時にこのアペンディックスを変形させ、引張力の負荷時にその回復により、耐引張性能を向上させることが記載されている。
これら、特許文献1,2に記載されるように、シール部位置をピンのねじ部位置近くに置き、ピンノーズ先端から離すことは、耐外圧性能、耐引張性能の向上とともに、ねじに対して安定的な性能を持たせる上で有効であり、それはFEMシミュレーション等からも確認できる。またシール部と不連続な形状となるピンノーズは、強い軸圧縮力が負荷された場合に、それ自体が変形し、ボックス部材のトルクショルダ部の塑性変形を軽減させる効果もある。しかし、一方で、不連続部に不正な変形が入ることもあり、これは締付けトルクに依存すると考えられる。
Similarly, in Patent Document 2, an appendix is formed from the seal portion to the pin nose tip, which also has a portion having a discontinuous shape with the seal portion to ensure radial rigidity and lower axial rigidity. It is described that this appendix is deformed at the time of tightening and the tensile resistance is improved by recovering the appendix when loaded.
As described in Patent Documents 1 and 2, placing the seal part near the screw part of the pin and separating it from the tip of the pin nose is stable against the screw as well as improving the external pressure resistance and tensile resistance. It is effective in giving a realistic performance, and it can be confirmed from FEM simulations and the like. Further, the pin nose that has a shape discontinuous with the seal portion is deformed itself when a strong axial compressive force is applied, and has an effect of reducing plastic deformation of the torque shoulder portion of the box member. However, on the other hand, unauthorized deformation may occur in the discontinuous portion, which is considered to depend on the tightening torque.

締付けトルクは潤滑条件、表面性状等に影響されるので、これに大きくは依存しない設計として、半径方向のシール接触圧力を強くした半径方向シール方式がある。例えば、特許文献3には、大きなピンシールR形状を持ち、シールテーパ角を小さくした半径方向シール方式の例が開示されている。しかし、このようにシールテーパ角を小さくした、半径方向シール方式の問題点は、締付け時にゴーリングが発生し易い点にある。また、半径方向シール方式では、シール性能の確保およびシールの安定性のために、シール干渉量を大きくとる必要があり、ゴーリングの発生のし易さは更に大きくなる。   Since the tightening torque is affected by lubrication conditions, surface properties, etc., a design that does not depend greatly on this is a radial seal method in which the radial contact pressure is increased. For example, Patent Document 3 discloses an example of a radial seal method having a large pin seal R shape and a small seal taper angle. However, a problem with the radial seal method in which the seal taper angle is thus reduced is that goling is likely to occur during tightening. Further, in the radial seal method, it is necessary to increase the amount of seal interference in order to ensure sealing performance and seal stability, and the ease of occurrence of goling is further increased.

特許文献4には、これらの問題を解決するために、トロイド状(円錐曲線回転面形状)ピンシール面の半径を大きく規定することで、シール接触領域を大きくし、接触圧力を低下させている。この対策は有効であり、メタルタッチシール部のゴーリングリスクを大きく軽減できる。しかし、大きなRをとり接触圧力を低下させることで、何らかの僅かなトラブルで接触圧力の低下が生じ、メタルタッチシール部に微小なリークパスが出来た場合、リークが容易には止まらないという問題がある。また、大きなRであるが故に、メタルタッチシール部をノーズ先端から離すことが物理的に困難であり、メタルタッチシール部とピンノーズ先端の長さをある程度以上に確保する場合、ピンノーズ先端の厚みが小さくなりすぎることにも繋がる。   In Patent Document 4, in order to solve these problems, the radius of the toroidal (conical curved rotating surface shape) pin seal surface is specified to be large, thereby increasing the seal contact area and reducing the contact pressure. This measure is effective, and can greatly reduce the goling risk of the metal touch seal part. However, by taking a large R and lowering the contact pressure, there is a problem that the contact pressure is lowered with some slight trouble, and if a minute leak path is formed in the metal touch seal part, the leak does not stop easily. . Also, because of the large R, it is physically difficult to separate the metal touch seal part from the nose tip. When the length of the metal touch seal part and the pin nose tip is secured to a certain extent, the thickness of the pin nose tip is It leads to becoming too small.

耐軸圧縮性能に関しては、特許文献5や特許文献6に記載されるように、ねじ部におけるスタブフランク側の隙間を小さくすることが有効である。但し、この隙間が小さすぎる場合には、ねじ部にゴーリングが発生し易くなるため、適切な隙間をとる必要がある。
以上説明したように、従来提案されているねじ継手においては、未だ何らかの問題を有しており、上述した耐圧縮性能、耐曲げ性能、外圧シール性能など、ねじ継手への要求性能の多様化に十分応えるためには、更なる改良の余地がある。本発明は、このような事情に鑑みて、シール性と耐圧縮性、さらには、耐ゴーリング性を向上させた、鋼管用ねじ継手を提供することを目的とする。
Regarding the axial compression resistance, as described in Patent Document 5 and Patent Document 6, it is effective to reduce the gap on the stub flank side in the threaded portion. However, if this gap is too small, goling tends to occur in the threaded portion, so it is necessary to take an appropriate gap.
As described above, the conventional threaded joints still have some problems, and diversify the performance requirements for threaded joints, such as the above-mentioned compression resistance, bending resistance, and external pressure seal performance. There is room for further improvement in order to fully respond. In view of such circumstances, it is an object of the present invention to provide a threaded joint for steel pipes that has improved sealing properties, compression resistance, and galling resistance.

前述した課題を解決するための手段を見出すべく、発明者らは鋭意検討を重ね、以下の要旨構成になる本発明をなすに至った。すなわち、本発明は以下のとおりである。
(1) 雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピン部材と、
前記雄ねじ部とねじ結合される雌ねじ部と、前記ピン部材のノーズ部外周面に相対するノーズ部内周面と、前記ピン部材のショルダ部に当接するショルダ部とを有するボックス部材とを有し、
前記ねじ結合により前記ピン部材とボックス部材とが結合されてピン部材の前記ノーズ部外周面とボックス部材の前記ノーズ部内周面とがメタル‐メタル接触しその接触界面がシール面をなす鋼管用ねじ継手であって、
前記ボックス部材の前記ノーズ部内周面は、ボックス部材の軸方向断面視で内側に凸状の曲線をなし、該凸状の曲線は、相異なる曲率半径Rを有する内側に凸状の複数の円弧を順次接続してなる複合R曲線を、雌ねじ部から遠ざかるにつれて円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状とし
かつ、前記複合R曲線内の各円弧がなす角度は、前記雌ねじ部に近い円弧のものほど大きいこととしたものであり、
前記ピン部材の前記ノーズ部外周面は、ボックス部材との結合時にボックス部材の前記ノーズ部内周面と干渉するテーパ面とした
ことを特徴とする、鋼管用ねじ継手。
(2) 前記複合R曲線内の前記接続点のいずれかが前記テーパ面のタンジェントポイントになることを特徴とする前記(1)に記載の鋼管用ねじ継手。
(3) 前記テーパ面は、継手の軸方向となす角度が10度以内であることを特徴とする前記(1)又は(2)に記載の鋼管用ねじ継手。
(4) 前記ピン部材のノーズ部の長さが20mm以上であることを特徴とする前記(1)〜(3)のいずれかに記載の鋼管用ねじ継手。
(5) 前記雄ねじ部と前記雌ねじ部とは、スタブフランク角度が0度〜30度の範囲内であることを特徴とする前記(1)〜(4)のいずれかに記載の鋼管用ねじ継手。
(6) 前記雄ねじ部と前記雌ねじ部とは、ロードフランク角度が−5度〜4度の範囲内であることを特徴とする前記(1)〜(5)のいずれかに記載の鋼管用ねじ継手。
(7) 前記ショルダ部のショルダ角度が0度〜20度の範囲内であることを特徴とする前記(1)〜(6)のいずれかに記載の鋼管用ねじ継手。
(8) 前記雄ねじ部と前記雌ねじ部とは、ねじ隙間が0.01〜0.1mmの範囲内であることを特徴とする前記(1)〜(7)のいずれかに記載の鋼管用ねじ継手。
(9) 前記(1)〜(8)のいずれかにおいて、相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線に代えて、相異なる曲率半径Rを有する複数の円弧を直接もしくは線分を介して順次接続した複合R曲線としたことを特徴とする鋼管用ねじ継手。
In order to find out the means for solving the above-described problems, the inventors have conducted intensive studies and have come to achieve the present invention having the following gist. That is, the present invention is as follows.
(1) a pin member having a male screw part, a nose part extending from the male screw part toward the tube end side, and a shoulder part provided at the tip of the nose part;
A female screw part that is screw-coupled to the male screw part, a nose part inner peripheral surface that faces the outer peripheral surface of the nose part of the pin member, and a box member that has a shoulder part that contacts the shoulder part of the pin member,
A screw for a steel pipe in which the pin member and the box member are connected by the screw connection, and the outer peripheral surface of the nose portion of the pin member and the inner peripheral surface of the nose portion of the box member are in metal-metal contact, and the contact interface forms a sealing surface. A joint,
The inner peripheral surface of the nose portion of the box member has an inwardly convex curve in the axial sectional view of the box member, and the convex curve has a plurality of inwardly convex arcs having different curvature radii R. The curved curve shape is such that the radius of curvature R of the arc increases with increasing distance from the female thread portion, and the tangent line on the connection point of the arc matches that of the connection partner arc ,
In addition, the angle formed by each arc in the composite R curve is larger as the arc closer to the female thread portion .
The screw joint for steel pipes, wherein the outer peripheral surface of the nose portion of the pin member is a tapered surface that interferes with the inner peripheral surface of the nose portion of the box member when coupled to the box member.
(2) The threaded joint for steel pipes according to (1), wherein any of the connection points in the composite R curve is a tangent point of the tapered surface.
(3) The threaded joint for steel pipes according to (1) or (2) , wherein an angle formed between the tapered surface and the axial direction of the joint is within 10 degrees.
(4) The length of the nose part of the said pin member is 20 mm or more, The threaded joint for steel pipes in any one of said (1)- (3) characterized by the above-mentioned.
(5) The threaded joint for steel pipes according to any one of (1) to (4) , wherein the male thread part and the female thread part have a stub flank angle in a range of 0 degrees to 30 degrees. .
(6) The screw for a steel pipe according to any one of (1) to (5) , wherein the male screw portion and the female screw portion have a load flank angle in a range of −5 degrees to 4 degrees. Fittings.
(7) The threaded joint for steel pipes according to any one of (1) to (6) , wherein a shoulder angle of the shoulder portion is in a range of 0 degrees to 20 degrees.
(8) The screw for a steel pipe according to any one of (1) to (7) , wherein the male screw part and the female screw part have a screw gap in a range of 0.01 to 0.1 mm. Fittings.
(9) In any one of the above (1) to (8) , instead of a composite R curve in which a plurality of arcs having different curvature radii R are sequentially connected, a plurality of arcs having different curvature radii R are directly or A threaded joint for steel pipes, characterized in that it is a composite R-curve connected sequentially through line segments.

本発明によれば、シール性と耐圧縮性、さらには、耐ゴーリング性を向上させた、鋼管用ねじ継手を得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the screw joint for steel pipes which improved the sealing performance, compression resistance, and also galling resistance.

本発明の実施形態に係る鋼管用ねじ継手のノーズ部を示す断面図Sectional drawing which shows the nose part of the threaded joint for steel pipes concerning embodiment of this invention 図1におけるシール部近傍の部分拡大図Partial enlarged view of the vicinity of the seal portion in FIG. 従来の鋼管用ねじ継手を示す断面図Sectional view showing a conventional threaded joint for steel pipes 図3におけるピンノーズ付近を示す拡大断面図FIG. 3 is an enlarged sectional view showing the vicinity of the pin nose in FIG. 図3におけるねじ部分を示す拡大断面図FIG. 3 is an enlarged sectional view showing a screw portion in FIG. ねじ隙間、ロードフランク角度、スタブフランク角度の定義を示す断面図Sectional view showing definitions of screw clearance, load flank angle, and stub flank angle リークテストシミュレーションにおける負荷履歴を示すチャート図Chart showing load history in leak test simulation

上述のとおり、ノーズ先端から離れた位置にシール部を設け、ノーズ部をシール部からショルダ部まで長く伸ばすことは、耐外圧性能、耐引張性能の向上とともに、ねじに対して安定的な性能を持たせる上で有効であり、特に、ピン部材のシール部におけるボックス部材と最初に接触する点を意味するタンジェントポイントが、ピン部材のノーズ先端からなるべく離れていることが有効である。そこでさらに、発明者らは、シール部をノーズ先端(あるいはショルダ)から離すことができるようにするための、シール部周辺の形状について検討した。   As described above, providing a seal part at a position away from the tip of the nose and extending the nose part from the seal part to the shoulder part for a long time has improved external pressure resistance and tensile resistance, as well as stable performance against screws. In particular, it is effective that the tangent point, which means the first contact point with the box member in the seal portion of the pin member, is as far as possible from the nose tip of the pin member. Therefore, the inventors further examined the shape around the seal part so that the seal part can be separated from the tip of the nose (or the shoulder).

その結果、ボックス部材のノーズ部内周面が、ボックス部材の軸方向断面視で内側に凸状の曲線をなす面形状とされ、ピン部材のノーズ部外周面が、ピン部材の軸方向断面視図面上でボックス部材の凸状の曲線と二点で交わるテーパ面形状とされ、前記ボックス部材のノーズ部内周面と前記ピン部材のノーズ部外周面とでメタルタッチシール部が形成され、該シール部のボックス部材側、ピン部材側の各界面がそれぞれ同部材のシール面となる場合、ボックス部材の凸状の曲線は、相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線を、雌ねじ部から遠ざかるにつれて前記円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状としたものとすることで、シール部のタンジェントポイントをノーズ先端から離すことが可能であるとの発想に至った。さらに、シール部の接触面圧分布に、Rが大きくて面圧が低く接触長が長い部位と、Rが小さくて面圧が高く接触長が短い部位とを設けることで、リークパスができにくく極限シール性能が向上する効果もある知見に至った。   As a result, the inner peripheral surface of the nose portion of the box member has a surface shape that forms a convex curve inward in the axial sectional view of the box member, and the outer peripheral surface of the nose portion of the pin member is an axial sectional view of the pin member A taper surface shape that intersects the convex curve of the box member at two points above, and a metal touch seal portion is formed by the inner peripheral surface of the nose portion of the box member and the outer peripheral surface of the nose portion of the pin member, and the seal portion When each interface on the box member side and the pin member side is a sealing surface of the same member, the convex curve of the box member is a composite R curve in which a plurality of arcs having different curvature radii R are sequentially connected, The radius of curvature R of the arc increases as the distance from the female thread increases, and the tangent line at the connection point of the arc coincides with that of the arc of the connection partner. The stringent point reached on the idea that it is possible to separate from the nose tip. Furthermore, the contact surface pressure distribution of the seal portion is provided with a portion where R is large, the surface pressure is low, and the contact length is long, and a portion where R is small, the surface pressure is high, and the contact length is short. It came to the knowledge which has the effect of improving sealing performance.

図1は、本発明の実施形態に係る鋼管用ねじ継手のノーズ部を示す断面図であり、(a)はピン部材3を、(b)はボックス部材1を、(c)はピン部材3とボックス部材1とを結合した状態を示す。ピン部材3は、鋼管の端部に設けられるものであり、雄ねじ部7と、該雄ねじ部7より管端側に連なるノーズ部8と、該ノーズ部8の先端に設けたトルクショルダ部12とを有する。一方、ボックス部材1は、ピン部材3の雄ねじ部7とねじ結合される雌ねじ部5と、前記ねじ結合によるピン部材3とボックス部材1との結合状態下でノーズ部8の外周面(ノーズ部外周面30)に対向するボックス部材1の内周面(ノーズ部内周面)20と、ショルダ部12に当接されるショルダ部14とを有している。   FIG. 1 is a cross-sectional view showing a nose portion of a threaded joint for steel pipes according to an embodiment of the present invention, where (a) shows a pin member 3, (b) shows a box member 1, and (c) shows a pin member 3. And the box member 1 are shown in a coupled state. The pin member 3 is provided at the end of the steel pipe, and includes a male screw portion 7, a nose portion 8 connected to the pipe end side from the male screw portion 7, and a torque shoulder portion 12 provided at the tip of the nose portion 8. Have On the other hand, the box member 1 includes a female screw portion 5 screwed to the male screw portion 7 of the pin member 3, and an outer peripheral surface (nose portion) of the nose portion 8 in a coupled state of the pin member 3 and the box member 1 by the screw coupling. It has an inner peripheral surface (nose portion inner peripheral surface) 20 of the box member 1 facing the outer peripheral surface 30) and a shoulder portion 14 that comes into contact with the shoulder portion 12.

ボックス部材1のノーズ部内周面20は、ボックス部材1の軸方向断面視で内側に凸状の曲線をなしている。一方、ノーズ部内周面20に対向するピン部材3のノーズ部外周面はねじ継手の軸方向に対して一定の傾角(テーパ角という)αを持つテーパ面30(円錐形状面)とされている。そして、ピン部材3とボックス部材1とを結合させると、テーパ面30とノーズ部内周面20とが干渉してシール部40を形成する。前記テーパ角αは、ピン部材3とボックス部材1とが干渉し合わないと仮定して結合した状態である仮想的無干渉結合状態におけるねじ継手の軸方向断面視で前記凸状の曲線とテーパ面30の母線とが二点A,Bで交わるように設定される。実際にはその二交点A,Bで挟まれた範囲(干渉域40a)内にシール部40は形成される。前記仮想的無干渉結合状態においてボックスノーズ内周面20にはテーパ面30から内側への仮想的張り出し部分が生じるが、該仮想的張り出し部分の、テーパ面30からの最大張り出し量を、シール部40のシール干渉量Sと称し、又、該仮想的張り出し部分の継手軸方向長さを、シール部40のシール接触長さlと称する。ここで、実際にねじを締め付けた際の真実の接触長は、前記接触長さlとは異なるものであり、すなわち、実際の接触長さは負荷される荷重条件によって変化する。   The inner peripheral surface 20 of the nose portion of the box member 1 has a convex curve inward in a sectional view of the box member 1 in the axial direction. On the other hand, the outer peripheral surface of the nose portion of the pin member 3 facing the inner peripheral surface 20 of the nose portion is a tapered surface 30 (conical surface) having a constant inclination angle (called a taper angle) α with respect to the axial direction of the threaded joint. . When the pin member 3 and the box member 1 are coupled, the taper surface 30 and the nose portion inner peripheral surface 20 interfere with each other to form the seal portion 40. The taper angle α is the convex curve and the taper in a cross-sectional view in the axial direction of the threaded joint in a virtual non-interference coupling state in which the pin member 3 and the box member 1 are coupled on the assumption that they do not interfere with each other. It is set so that the generatrix of the surface 30 intersects at two points A and B. Actually, the seal portion 40 is formed in a range (interference area 40a) sandwiched between the two intersections A and B. In the virtual no-interference coupling state, the box nose inner peripheral surface 20 has a virtual projecting portion inward from the tapered surface 30. The maximum projecting amount of the virtual projecting portion from the tapered surface 30 is determined by the seal portion. The joint interference amount S is 40, and the joint axial length of the virtual projecting portion is called the seal contact length l of the seal portion 40. Here, the actual contact length when the screw is actually tightened is different from the contact length l, that is, the actual contact length varies depending on the load condition applied.

ノーズ部内周面20に形成される前記凸状の曲線は、雌ねじ部5に隣接する部分につなげられる、相異なる曲率半径R1,R2,R3を持つ円弧N1,N2,N3を順次、接続点での接線を共有するように接続した複合R曲線Nであり、この複合R曲線Nは、雌ねじ部5から遠ざかるにつれて円弧の曲率半径が大きくなる、すなわち、R1<R2<R3である曲線形状とされている。尚、雌ねじ部5に隣接する部分への複合R曲線Nのつなげ方及びその曲率半径R1<R2<R3の値は、所望のシール接触長さ及びシール干渉量が得られるように適宜設定される。 The convex curve formed in the nose portion inner peripheral surface 20 is arcuate N 1, N 2, N 3 having to be linked to a portion adjacent to the internally threaded portion 5, the different radii R 1, R 2, R 3 Are combined so as to share the tangent line at the connection point, and the radius of curvature of the arc increases with increasing distance from the female screw portion 5, that is, R 1 <R 2. <there is a curved shape that is R 3. It should be noted that the method of connecting the composite R curve N to the portion adjacent to the female thread portion 5 and the value of the curvature radius R 1 <R 2 <R 3 are appropriately determined so that a desired seal contact length and seal interference amount can be obtained. Is set.

これにより図2に示すように、タンジェントポイントのノーズ部先端からの距離をより大きくとることができるようになる。図2は、図1(c)におけるシール干渉域40a付近の拡大図である。ここで、図2には、比較として凸状の曲線を単一R曲線M(曲率半径Rの単一円弧)とし、そのシール部の干渉域および干渉量を複合R曲線Nのシール干渉域40a、シール干渉量Sと同等とした場合を破線で示している。ボックス部材とピン部材とを結合させるとき、ピン部材のテーパ面30は、ボックス部材のシール部を形成する凸状の曲線NあるいはMに対し、図2中の矢印に示したように30aから30bの位置へ移動する。テーパ面30が30aの位置にあるときが、ボックス部材の凸状の曲線NあるいはMとテーパ面30とが接触を開始する時点である。この時点のテーパ面30と凸状の曲線N,Mとの接触点P,P’ が、それぞれ、凸状の曲線がNである場合とMである場合とのタンジェントポイントである。同図から明らかなように、R<R<Rの関係を有する相異なる曲率半径R,R,Rを持つ円弧N,N,Nを順次接続した複合R曲線Nの場合のタンジェントポイントPは、単一R曲線Mの場合のタンジェントポイントP’よりも右側に位置していることがわかる。すなわち、図2よりも左側に位置するノーズ先端からタンジェントポイントまでの距離は、凸状の曲線として上記の複合R曲線Nを採用したほうが、単一R曲線Mを採用する場合に比較して大きくなる。これにより、耐外圧性能、耐引張性能の向上とともに、ねじに対して安定的な性能を持たせることが可能となる。 Thereby, as shown in FIG. 2, the distance from the tip of the nose portion of the tangent point can be made larger. FIG. 2 is an enlarged view of the vicinity of the seal interference area 40a in FIG. Here, in FIG. 2, as a comparison, the convex curve is a single R curve M (single arc of curvature radius R), and the interference area and the interference amount of the seal portion are the seal interference area 40a of the composite R curve N. A case where the amount is equal to the seal interference amount S is indicated by a broken line. When the box member and the pin member are joined, the taper surface 30 of the pin member is 30a to 30b as shown by the arrow in FIG. 2 with respect to the convex curve N or M forming the seal portion of the box member. Move to the position. The time when the tapered surface 30 is at the position 30a is the time when the convex curve N or M of the box member and the tapered surface 30 start contact. Contact points P and P ′ between the tapered surface 30 and the convex curves N and M at this time are tangent points when the convex curve is N and M, respectively. As apparent from the figure, R 1 <R 2 <composite R curve obtained by sequentially connecting the circular arc N 1, N 2, N 3 with different radii R 1, R 2, R 3 have the relationship of R 3 It can be seen that the tangent point P in the case of N is located on the right side of the tangent point P ′ in the case of the single R curve M. That is, the distance from the tip of the nose located on the left side of FIG. 2 to the tangent point is larger when the composite R curve N is used as a convex curve than when the single R curve M is used. Become. As a result, it is possible to improve the external pressure resistance and the tensile resistance, and to give a stable performance to the screw.

また、複合R曲線Nは、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状とされている。例えば、円弧N1とN2との接続点、円弧N2とN3との接続点ではそれぞれ、接続される両円弧の接線を一致させてある。したがって、凸状の曲線は当該曲線上に屈曲点が存在しない連続的な曲線形状となる。これが、非連続的な形状であると、シール接触において部分的な高面圧が発生することがある。尚、前記接続される両円弧同士は、直接接続してもよく、又、前記円弧同士の共通接線と重なる線分を介して接続してもよい。 The composite R curve N has a curved shape in which the tangent line at the connection point of the arc coincides with that of the connection partner arc. For example, the tangents of the two arcs to be connected are made coincident with each other at the connection point between the arcs N 1 and N 2 and the connection point between the arcs N 2 and N 3 . Therefore, the convex curve has a continuous curve shape with no inflection point on the curve. If this is a discontinuous shape, a partial high surface pressure may occur in the seal contact. The two arcs to be connected may be directly connected or may be connected via a line segment that overlaps a common tangent line between the arcs.

ここで、円弧N1,N2,N3の各円弧のなす角度θ123は、雌ねじ部5に近い円弧のものほど大きいこと、すなわち、θ1>θ2>θ3であることが好ましい。さもないと、限られたピン部材3のノーズ部8の長さ(図1(a)中のピンノーズ長さL)に対応するボックス部材1のノーズ部内周面20の長さあるいは限られた干渉域40aの長さ(シール接触長さという)の中で複合R曲線を設計するのが困難となる。 Here, the angles θ 1 , θ 2 , and θ 3 formed by the arcs N 1 , N 2 , and N 3 are larger as the arc closer to the female screw portion 5, that is, θ 1 > θ 2 > θ 3. It is preferable that Otherwise, the length of the inner peripheral surface 20 of the nose portion of the box member 1 corresponding to the length of the nose portion 8 of the limited pin member 3 (pin nose length L in FIG. 1A) or limited interference. It becomes difficult to design a composite R curve within the length of the region 40a (referred to as the seal contact length).

さらに、複合R曲線における円弧の接続点、例えば、円弧N1とN2との接続点、及び、円弧N2とN3との接続点、のいずれかが、ピン部材3のテーパ面30と最初に接触する点を意味するタンジェントポイントと一致していることが好ましい。複合R曲線内の円弧の接続点のいずれかをタンジェントポイントにすることで、シール部にRが大きくて面圧が低く接触長が長い部位と、Rが小さくて面圧が高く接触長が短い部位とを確実に設けることができ、リークパスができにくく極限シール性能が向上するという効果を確実に得ることができる。 Further, the connecting point of the arc in the composite R curve, for example, the connecting point of the arcs N 1 and N 2 or the connecting point of the arcs N 2 and N 3 is either the tapered surface 30 of the pin member 3 or the like. It is preferably coincident with the tangent point which means the first contact point. By using one of the connection points of the arcs in the composite R curve as a tangent point, the seal portion has a portion where R is large and the contact pressure is low and the contact length is long, and R is small and the contact pressure is high and the contact length is short. Therefore, it is possible to reliably provide an effect that a leak path is hardly formed and the ultimate sealing performance is improved.

なお、ピン部材のタンジェントポイントは、シール部をノーズ先端から離す観点から、雄ねじ部先端からの距離が0.7L(上述のとおりLはピンノーズ長さである)以下になる位置に置くのがよい。更には、タンジェントポイントの雄ねじ部先端からの距離が0.2L未満となると、締め付けの際、シール部とねじ部の干渉が生じ易くなるため、0.2L以上が良い。更に安全のためには0.3L以上が良い。   Note that the tangent point of the pin member is preferably placed at a position where the distance from the tip of the male screw portion is 0.7 L or less (L is the pin nose length as described above) from the viewpoint of separating the seal portion from the tip of the nose. Furthermore, when the distance from the distal end of the male screw portion of the tangent point is less than 0.2L, interference between the seal portion and the screw portion is likely to occur during tightening, so 0.2L or more is preferable. Furthermore, 0.3L or more is good for safety.

ピン部材3のテーパ面30のテーパ角αは10度以内であることが好ましい。テーパ角αを10度以内、更に好ましくは5度以内とすることで、半径方向シール方式が好適に実現でき、シール性能の締付けトルク依存性が比較的低くなる。
ピンノーズ長さLは、20mm以上であることが好ましい。これによれば、シール部がピンノーズ先端から十分離間し、その結果、この離間距離範囲内の弾性変形により、シール部へのダメージをより大きく軽減できるため、シール性能の安定化に効果的である。シール性能が安定化するため、シール干渉量S(図1(c)参照)は、半径方向シール方式としては比較的小さくとることが可能であり、ゴーリングリスクが小さい。
The taper angle α of the taper surface 30 of the pin member 3 is preferably within 10 degrees. By making the taper angle α within 10 degrees, more preferably within 5 degrees, the radial seal method can be suitably realized, and the tightening torque dependency of the sealing performance becomes relatively low.
The pin nose length L is preferably 20 mm or more. According to this, the seal portion is sufficiently separated from the tip of the pin nose, and as a result, damage to the seal portion can be greatly reduced by elastic deformation within this separation distance range, which is effective in stabilizing the sealing performance. . Since the seal performance is stabilized, the seal interference amount S (see FIG. 1 (c)) can be relatively small as a radial seal method, and the goling risk is small.

なお、複合R曲線内の2種類以上のRは、比較的小さいRについては1インチ以下、比較的大きいRについては2インチ以上、さらに大きいRについては3インチ以上にとるのが好ましい。詳しくは、複合R曲線の複数のRのうち少なくとも1つを2インチ以上(より好ましくは3インチ以上)、残りのRを少なくとも1つを2インチ未満(より好ましくは1インチ以下)とすることが好ましい。複合R曲線の複数のRのうち少なくとも1つを2インチ以上(より好ましくは3インチ以上)とすることで、シール部の接触長さを確保し易くなり、残りのRを少なくとも1つを2インチ未満(好ましくは1インチ以下)とすることで、高い面圧を達成し易くなる。   The two or more types of R in the composite R curve are preferably 1 inch or less for a relatively small R, 2 inches or more for a relatively large R, and 3 inches or more for a larger R. Specifically, at least one of a plurality of Rs in the composite R curve is 2 inches or more (more preferably 3 inches or more), and at least one R is less than 2 inches (more preferably 1 inch or less). Is preferred. By making at least one of a plurality of Rs of the composite R curve 2 inches or more (more preferably 3 inches or more), it becomes easy to secure the contact length of the seal portion, and at least one of the remaining Rs is 2 By making it less than 1 inch (preferably 1 inch or less), it becomes easy to achieve high surface pressure.

また、複合R曲線内の円弧の個数(相異なるRを持つ円弧の個数)は、2個でもよく、図1に例示した3個でもよく、あるいは4個以上でもよい。円弧の個数が増えると設計の自由度がより大きくなり、よりシール性能を向上させた形状デザインを達成しやすいが、実際の製造における負荷や寸法確認などの手間が増えたりもするから、円弧の個数は実際にねじ継手に要求される性能に応じて設計するのがよい。   Further, the number of arcs in the composite R curve (the number of arcs having different R) may be two, may be three illustrated in FIG. 1, or may be four or more. As the number of arcs increases, the degree of freedom in design increases and it is easy to achieve a shape design with improved sealing performance. The number should be designed according to the performance actually required for the threaded joint.

上記のシール部周辺の形状限定に加えて、雄ねじ部と雌ねじ部とについて、ロードフランク角度、スタブフランク角度、ねじ隙間のいずれか1種又は2種以上を好適範囲に規定することで、それらの組み合わせ効果によって、よりシール性能が全体的に向上することが確認された。ここで、ロードフランク角度は、図6に示すロードフランク角度β、すなわち、ロードフランク面18が継手軸直交面(ねじ継手の軸方向と直交する面の意。以下同じ)に対してなす角度βである。また、スタブフランク角度は、図6に示すスタブフランク角度γ、すなわち、スタブフランク面19が継手軸直交面に対してなす角度γである。また、ねじ隙間は、図5に示すねじ隙間G、すなわち、雄ねじのねじ山7aとこれに噛み合う雌ねじのねじ溝5aとの隙間Gである。   In addition to the above-mentioned shape limitation around the seal portion, for the male screw portion and the female screw portion, any one or two or more of the load flank angle, the stub flank angle, and the screw gap are defined in a preferable range. It was confirmed that the overall sealing performance was further improved by the combined effect. Here, the load flank angle is the load flank angle β shown in FIG. 6, that is, the angle β formed by the load flank surface 18 with respect to the joint axis orthogonal surface (the surface orthogonal to the axial direction of the threaded joint; the same applies hereinafter). It is. The stub flank angle is the stub flank angle γ shown in FIG. 6, that is, the angle γ formed by the stub flank surface 19 with respect to the joint axis orthogonal surface. Further, the screw gap is the screw gap G shown in FIG. 5, that is, the gap G between the thread 7a of the male screw and the screw groove 5a of the female screw meshing with the screw thread 7a.

ロードフランク角度βの好適範囲は−5度〜4度であり、該好適範囲の下限はねじ部の耐ゴーリング性と工具寿命の観点から、上限は耐曲げ性の観点から、それぞれ定められた。
スタブフランク角度γの好適範囲は0度〜30度であり、該好適範囲の下限はねじ部の耐ゴーリング性と工具寿命、締め付け性の観点から、上限は耐軸圧縮性の観点から、それぞれ定められた。
The preferred range of the load flank angle β is -5 ° to 4 °. The lower limit of the preferred range is determined from the viewpoint of galling resistance and tool life of the threaded portion, and the upper limit is determined from the viewpoint of bending resistance.
The preferred range of the stub flank angle γ is 0 to 30 degrees. The lower limit of the preferred range is determined from the viewpoint of galling resistance, tool life, and tightening performance of the threaded portion, and the upper limit is determined from the viewpoint of axial compression resistance. It was.

ねじ隙間Gの好適範囲は0.01〜0.1mmであり、該好適範囲の下限はゴーリングリスクを軽減する観点から、上限は軸圧縮負荷時にピン先端の負担を軽減させる観点から、それぞれ定められた。なお、ねじ切り時のリードの誤差を考慮すると、ねじ隙間Gは小さくとも0.03mm程度が好ましい。また、ねじ隙間Gは0.045mm程度で十分な性能を効果的に発揮できることを見出したので、状況に応じて0.045mm程度としてもよい。   The preferable range of the screw gap G is 0.01 to 0.1 mm. The lower limit of the preferable range is determined from the viewpoint of reducing the goling risk, and the upper limit is determined from the viewpoint of reducing the load on the pin tip during the axial compression load. It was. In consideration of the lead error at the time of threading, the screw gap G is preferably about 0.03 mm at least. Moreover, since it discovered that the screw gap G was about 0.045 mm and can exhibit sufficient performance effectively, it is good also as about 0.045 mm according to a condition.

ロードフランク角度、スタブフランク角度、ねじ隙間の1種又は2種以上を上記のとおりに規定することによるシール性能の全体的向上効果は、特に、一旦軸圧縮を負荷した後の軸引張+内圧もしくは外圧を負荷する条件下で顕著である。
また、ショルダ部のショルダ角度δ(ショルダ部の継手軸方向の端面が継手軸直交面に対してなす角度であり、当該界面のピン外周側がピン内周側からみて継手軸方向外側に張り出す場合を正の角度とする)は、0度〜20度であることが好ましい。ショルダ角度が0度未満ではシール性能や、締め付け特性の点で不利となり、一方、20度超ではボックスショルダ部の塑性変形や、シール部の局所変形が発生し易いという点で不利となる。好ましくは15度以下が良い。更に状況に応じては、7度以下が好ましい。
By defining one or more of the load flank angle, stub flank angle, and screw gap as described above, the overall effect of improving the sealing performance is particularly the axial tension + internal pressure or This is remarkable under conditions where external pressure is applied.
Also, the shoulder angle δ of the shoulder portion (when the end surface of the shoulder portion in the joint axis direction is an angle formed with respect to the joint axis orthogonal surface, and the pin outer peripheral side of the interface protrudes outward in the joint axial direction when viewed from the pin inner peripheral side. Is a positive angle) is preferably 0 to 20 degrees. If the shoulder angle is less than 0 degrees, it is disadvantageous in terms of sealing performance and tightening characteristics, while if it exceeds 20 degrees, it is disadvantageous in that plastic deformation of the box shoulder part and local deformation of the seal part are likely to occur. Preferably it is 15 degrees or less. Furthermore, depending on the situation, 7 degrees or less is preferable.

発明例として、図1に示した、あるいは図1において複合R曲線の円弧のいずれか2つを線分を介して接続した形態とした、本発明に係る鋼管用ねじ継手について、ISO13679に準拠したリークテストをシミュレートし、この際のシール部での接触面積圧(ksi・inch)をFEM解析により求めた。なお、接触面積圧=接触面圧×シール接触長さ、であり、積分計算で求める。このリークテストは、鋼管用ねじ継手に対し、素材の降伏条件の95%に対応した2軸応力、および、内圧、外圧を、図7に示す履歴で負荷させるものである。   As an example of the invention, the threaded joint for steel pipes according to the present invention shown in FIG. 1 or in which any two of the arcs of the composite R curve in FIG. 1 are connected via line segments conforms to ISO 13679. A leak test was simulated, and the contact area pressure (ksi · inch) at the seal portion at this time was determined by FEM analysis. Note that contact area pressure = contact surface pressure × seal contact length, and is obtained by integral calculation. In this leak test, a biaxial stress corresponding to 95% of the yield condition of the material, an internal pressure, and an external pressure are applied to the threaded joint for steel pipes according to the history shown in FIG.

また、ねじ締付け時のゴーリングリスクを表す指標として、締付け開始から完了までのシール部の軸方向各位置における摺動距離(inch)と接触面圧(psi)との積で定義した、ゴーリング指標(psi・inch)=接触面圧×摺動距離、の値をFEM解析により求めた。これも積分計算で求める。ゴーリング指標が小さいほどゴーリングリスクは小さいといえる。
また、比較として、
・比較例1:ボックス部材のシール部の内周面の母線を単一のRを有する凸状の曲線(図1に破線で示した単一R曲線M)形状とした場合、
・比較例2:ボックス部材のシール部の内周面の母線を複合R曲線としたが、円弧のRが雌ねじ部5から遠ざかるほど大きくなるという要件を満たさないとした場合、
について、同様に接触面積圧およびゴーリング指標を求めた。
In addition, as an index indicating the risk of goling during screw tightening, a Goring index (defined by the product of sliding distance (inch) and contact surface pressure (psi) at each axial position of the seal part from the start to the end of tightening. (psi · inch) = contact surface pressure × sliding distance, was obtained by FEM analysis. This is also obtained by integral calculation. It can be said that the smaller the Goring index, the smaller the Goring risk.
For comparison,
Comparative Example 1: When the generatrix of the inner peripheral surface of the seal portion of the box member is a convex curve having a single R (single R curve M indicated by a broken line in FIG. 1),
-Comparative example 2: Although the generating line of the inner peripheral surface of the seal part of the box member is a composite R curve, if it does not satisfy the requirement that the R of the arc increases as it moves away from the female thread part 5,
In the same manner, the contact area pressure and Goling index were obtained.

発明例および比較例について、ねじ継手の各部寸法と併せて、FEM計算で求めた接触面積圧およびゴーリング指標を表1に示す。なお、内圧条件、接触面積圧は、いずれの例も図7の履歴中のロードステップL18近傍(2軸引張応力+内圧)において極小値(最もリークが起こり易い状態に相当)を示した。このロードポイントは、ISO13679では規定が無いものであるが、内圧+引張り条件では、最も厳しい条件であり、必要とされることもあるため、ここでの比較とした。また、一度、圧縮履歴を受けた後であるロードステップL18は、圧縮履歴を受ける前の同じロードポイントであるロードステップL3より、シール性能が低下するため、L18での比較が良い。表1には各例の接触面積圧の極小値を相対極小値(全例の中で最小の極小値を100とし、他はこれに対する比で表したもの)で表示した。また、ゴーリング指標は、極大値(最もゴーリングリスクが高い状態に相当)を示す継手軸方向位置が例ごとに異なった。表1には各例のゴーリング指標の極大値を相対極大値(全例の中で最大の極大値を100とし、他はこれに対する比で表したもの)で表示した。尚、いくつかのサンプルを作り、物理テストを実施して、外圧の条件ではリークが無いことを確認した。問題となるのはQ1の領域のみであり、シール干渉量を小さくすると、一旦軸圧縮を受けた後のL18で、最初にリークが発生するケースがあることを確認済みである。   Table 1 shows the contact area pressure and Goling index determined by FEM calculation for the inventive example and the comparative example, together with the dimensions of each part of the threaded joint. Note that the internal pressure conditions and the contact area pressures all showed local minimum values (corresponding to a state in which leakage is most likely to occur) in the vicinity of the load step L18 (biaxial tensile stress + internal pressure) in the history of FIG. This load point is not specified in ISO 13679, but the internal pressure + tensile condition is the most severe condition and may be required. In addition, since the load performance of the load step L18 after receiving the compression history is lower than that of the load step L3 which is the same load point before receiving the compression history, the comparison at L18 is good. In Table 1, the minimum value of the contact area pressure in each example is displayed as a relative minimum value (the minimum value in all examples is 100, and the others are expressed as ratios relative thereto). In addition, the joint axis direction position showing the maximum value (corresponding to the state with the highest goling risk) of the Goling index was different for each example. In Table 1, the maximum value of the Goring index of each example is displayed as a relative maximum value (the maximum maximum value is 100 among all examples, and the others are expressed as ratios relative thereto). Several samples were made and a physical test was conducted to confirm that there was no leakage under the external pressure conditions. The problem is only in the Q1 region, and it has already been confirmed that when the amount of seal interference is reduced, there is a case where a leak occurs first in L18 after undergoing axial compression.

表1より、発明例ではいずれも、比較例に比べ、接触面積圧が高いにもかかわらずゴーリング指標が小さいか同程度であり、シール性および耐ゴーリング性に優れたねじ継手が実現したことがわかる。   From Table 1, it can be seen that, in all of the inventive examples, compared with the comparative example, although the contact area pressure is high, the galling index is small or similar, and a screw joint excellent in sealing performance and galling resistance has been realized. Recognize.

Figure 0005673089
Figure 0005673089

1 ボックス部材
3 ピン(ピン部材)
5 雌ねじ(雌ねじ部)
5a 雌ねじのねじ溝
7 雄ねじ(雄ねじ部)
7a 雄ねじのねじ山
8 ノーズ部(ピンノーズ)
11、13、40 シール部(詳しくはメタルタッチシール部)
12、14 ショルダ部(詳しくはトルクショルダ部)
18 ロードフランク面
19 スタブフランク面
20 ボックス部材のノーズ部内周面(ボックスノーズ内周面)
30 ピン部材のノーズ部外周面(ピンノーズ外周面)をなすテーパ面
40 シール部
40a 干渉域
1 Box material
3 Pin (Pin material)
5 Female thread (Female thread)
5a Female thread groove
7 Male thread (Male thread)
7a Male thread thread
8 Nose (pin nose)
11, 13, 40 Seal (Details are metal touch seal)
12, 14 Shoulder part (For details, torque shoulder part)
18 Road flank surface
19 Stub flank surface
20 Inner peripheral surface of box member nose (inner peripheral surface of box nose)
30 Tapered surface forming the pin member nose outer peripheral surface (pin nose outer peripheral surface)
40 Seal part
40a Interference zone

Claims (9)

雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピン部材と、
前記雄ねじ部とねじ結合される雌ねじ部と、前記ピン部材のノーズ部外周面に相対するノーズ部内周面と、前記ピン部材のショルダ部に当接するショルダ部とを有するボックス部材とを有し、
前記ねじ結合により前記ピン部材とボックス部材とが結合されてピン部材の前記ノーズ部外周面とボックス部材の前記ノーズ部内周面とがメタル‐メタル接触しその接触界面がシール面をなす鋼管用ねじ継手であって、
前記ボックス部材の前記ノーズ部内周面は、ボックス部材の軸方向断面視で内側に凸状の曲線をなし、該凸状の曲線は、相異なる曲率半径Rを有する内側に凸状の複数の円弧を順次接続してなる複合R曲線を、雌ねじ部から遠ざかるにつれて円弧の曲率半径Rが大きくなり、かつ、円弧の接続点上の接線が接続相手の円弧のそれと一致するような曲線形状とし
かつ、前記複合R曲線内の各円弧がなす角度は、前記雌ねじ部に近い円弧のものほど大きいこととしたものであり、
前記ピン部材の前記ノーズ部外周面は、ボックス部材との結合時にボックス部材の前記ノーズ部内周面と干渉するテーパ面とした
ことを特徴とする、鋼管用ねじ継手。
A pin member having a male screw part, a nose part extending from the male screw part to the tube end side, and a shoulder part provided at the tip of the nose part;
A female screw part that is screw-coupled to the male screw part, a nose part inner peripheral surface that faces the outer peripheral surface of the nose part of the pin member, and a box member that has a shoulder part that contacts the shoulder part of the pin member,
A screw for a steel pipe in which the pin member and the box member are connected by the screw connection, and the outer peripheral surface of the nose portion of the pin member and the inner peripheral surface of the nose portion of the box member are in metal-metal contact, and the contact interface forms a sealing surface. A joint,
The inner peripheral surface of the nose portion of the box member has an inwardly convex curve in the axial sectional view of the box member, and the convex curve has a plurality of inwardly convex arcs having different curvature radii R. The curved curve shape is such that the radius of curvature R of the arc increases with increasing distance from the female thread portion, and the tangent line on the connection point of the arc matches that of the connection partner arc ,
In addition, the angle formed by each arc in the composite R curve is larger as the arc closer to the female thread portion .
The screw joint for steel pipes, wherein the outer peripheral surface of the nose portion of the pin member is a tapered surface that interferes with the inner peripheral surface of the nose portion of the box member when coupled to the box member.
前記複合R曲線内の前記接続点のいずれかが前記テーパ面のタンジェントポイントになることを特徴とする請求項1に記載の鋼管用ねじ継手。 2. The threaded joint for steel pipes according to claim 1, wherein any one of the connection points in the composite R curve is a tangent point of the tapered surface. 前記テーパ面は、継手の軸方向となす角度が10度以内であることを特徴とする請求項1又は2に記載の鋼管用ねじ継手。 The tapered surface is a threaded joint for steel pipes according to claim 1 or 2 angle between the axial direction of the joint is equal to or is within 10 degrees. 前記ピン部材のノーズ部の長さが20mm以上であることを特徴とする請求項1〜のいずれかに記載の鋼管用ねじ継手。 The length of the nose part of the said pin member is 20 mm or more, The threaded joint for steel pipes in any one of Claims 1-3 characterized by the above-mentioned. 前記雄ねじ部と前記雌ねじ部とは、スタブフランク角度が0度〜30度の範囲内であることを特徴とする請求項1〜のいずれかに記載の鋼管用ねじ継手。 The threaded joint for steel pipes according to any one of claims 1 to 4 , wherein the male thread part and the female thread part have a stub flank angle within a range of 0 degrees to 30 degrees. 前記雄ねじ部と前記雌ねじ部とは、ロードフランク角度が−5度〜4度の範囲内であることを特徴とする請求項1〜のいずれかに記載の鋼管用ねじ継手。 The threaded joint for steel pipes according to any one of claims 1 to 5 , wherein the male thread part and the female thread part have a load flank angle within a range of -5 degrees to 4 degrees. 前記ショルダ部のショルダ角度が0度〜20度の範囲内であることを特徴とする請求項1〜のいずれかに記載の鋼管用ねじ継手。 The threaded joint for steel pipes according to any one of claims 1 to 6 , wherein a shoulder angle of the shoulder portion is within a range of 0 degrees to 20 degrees. 前記雄ねじ部と前記雌ねじ部とは、ねじ隙間が0.01〜0.1mmの範囲内であることを特徴とする請求項1〜のいずれかに記載の鋼管用ねじ継手。 The threaded joint for steel pipes according to any one of claims 1 to 7 , wherein the male screw part and the female screw part have a screw gap in a range of 0.01 to 0.1 mm. 請求項1〜のいずれかにおいて、相異なる曲率半径Rを有する複数の円弧を順次接続した複合R曲線に代えて、相異なる曲率半径Rを有する複数の円弧を直接もしくは線分を介して順次接続した複合R曲線としたことを特徴とする鋼管用ねじ継手。 9. In any one of Claims 1-8 , it replaces with the composite R curve which connected the some circular arc which has a different curvature radius R sequentially, and the several circular arc which has a different curvature radius R is sequentially or directly via a line segment. A threaded joint for steel pipes characterized in that it is a composite R curve connected.
JP2010289794A 2010-08-27 2010-12-27 Threaded joints for steel pipes Active JP5673089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289794A JP5673089B2 (en) 2010-08-27 2010-12-27 Threaded joints for steel pipes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010191046 2010-08-27
JP2010191046 2010-08-27
JP2010289794A JP5673089B2 (en) 2010-08-27 2010-12-27 Threaded joints for steel pipes

Publications (2)

Publication Number Publication Date
JP2012067908A JP2012067908A (en) 2012-04-05
JP5673089B2 true JP5673089B2 (en) 2015-02-18

Family

ID=46165399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289794A Active JP5673089B2 (en) 2010-08-27 2010-12-27 Threaded joints for steel pipes

Country Status (1)

Country Link
JP (1) JP5673089B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910284B2 (en) * 2012-04-23 2016-04-27 Jfeスチール株式会社 Coating method for threaded joint for steel pipe and threaded joint product for steel pipe
US9388925B2 (en) * 2013-02-05 2016-07-12 Ultra Premium Oilfield Services, Ltd Tubular connection center shoulder seal
BR112023005702A2 (en) 2020-09-30 2023-04-25 Jfe Steel Corp THREADED TUBE JOINT AND CONNECTION METHOD FOR IT
CN117889137B (en) * 2024-03-18 2024-06-04 中国航发四川燃气涡轮研究院 Bolt structure capable of improving fatigue resistance of inter-disc bolts and design method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8414203D0 (en) * 1984-06-04 1984-07-11 Hunting Oilfield Services Ltd Pipe connectors
EP0703396B1 (en) * 1994-09-23 2000-04-05 Sumitomo Metal Industries, Ltd. Threaded joint for oil well pipes
JPH09119564A (en) * 1994-11-22 1997-05-06 Sumitomo Metal Ind Ltd Threaded joint for oil well pipe
UA71575C2 (en) * 1998-09-07 2004-12-15 Валлурек Маннесманн Ойл Енд Гес Франс Threaded joint of two metal tubes with large screwing moment
CA2739711C (en) * 2008-10-20 2013-08-20 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipes with specific sealing surface

Also Published As

Publication number Publication date
JP2012067908A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP4930647B1 (en) Threaded joints for pipes
JP5660308B2 (en) Threaded joints for steel pipes
JP5849749B2 (en) Threaded joints for pipes
CN107101054B (en) Screw coupling for oil well pipe
JP7120179B2 (en) Threaded joints for oil well pipes
AU2014376828B2 (en) Threaded joint for heavy-walled oil country tubular goods
JP6103137B2 (en) Threaded joints for pipes
JP5978953B2 (en) Threaded joints for pipes
JP5673089B2 (en) Threaded joints for steel pipes
JP6888687B2 (en) Threaded joint
JP5776222B2 (en) Threaded joints for steel pipes
JP6020087B2 (en) Threaded joints for pipes
JP5906588B2 (en) Manufacturing method of threaded joint for steel pipe
JP5673090B2 (en) Threaded joints for steel pipes
JP6051811B2 (en) Threaded joints for pipes
WO2014125545A1 (en) Threaded joint for pipe
JP5906587B2 (en) Manufacturing method of threaded joint for steel pipe

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250