JP4610079B2 - Substrate partial plating method - Google Patents

Substrate partial plating method Download PDF

Info

Publication number
JP4610079B2
JP4610079B2 JP2000386348A JP2000386348A JP4610079B2 JP 4610079 B2 JP4610079 B2 JP 4610079B2 JP 2000386348 A JP2000386348 A JP 2000386348A JP 2000386348 A JP2000386348 A JP 2000386348A JP 4610079 B2 JP4610079 B2 JP 4610079B2
Authority
JP
Japan
Prior art keywords
plating
substrate
catalyst
polylactic acid
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000386348A
Other languages
Japanese (ja)
Other versions
JP2001240975A (en
Inventor
亮 伊藤
Original Assignee
亮 伊藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亮 伊藤 filed Critical 亮 伊藤
Priority to JP2000386348A priority Critical patent/JP4610079B2/en
Publication of JP2001240975A publication Critical patent/JP2001240975A/en
Application granted granted Critical
Publication of JP4610079B2 publication Critical patent/JP4610079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂やその他の材料から構成される基体(チップ部品の基体を多数集合させた集合基体)を部分的にメッキする方法に関し、特に、プリント基板、リードフレームインサート成形回路部品等の電子・電気部品を製造するための上記基体への部分的メッキ方法に関する。
【0002】
【技術背景】
従来から、合成樹脂基体(成形品)を部分的にメッキする方法として、
(1)成形品を表面粗化(例えばエッチング)し、PdやPt等を基礎とするメッキするための触媒を付与した後、メッキすべき部分を残してシルク印刷法やディスペンサー塗布法等によりレジストを塗布し、次いでメッキし、レジストを除去する方法、
(2)上記触媒付与後の成形品を金型にインサートし、この金型内にプラスチックやゴム等(電気絶縁材料)を注入(射出)して、成形品のメッキすべき部分以外の部分を被覆し、次いでメッキし、必要に応じて被覆材を除去する方法、
等が知られている(株式会社シーエムシー発行「プラスチック成形加工の複合化技術」P260〜275、特開平7−316825号公報、特開昭63−4092号公報、特許第2592243号公報等)。
【0003】
しかし、上記(1)の方法では、レジスト塗布後に熱乾燥等によるレジストの硬化工程が必要である。また、メッキ後のレジストの除去に際して塩化メチレン等の有機溶剤の使用を余儀なくされ、この塩化メチレン等の有機溶剤は、クロロフルオロカーボン(CFC)等と同様にオゾン層破壊の原因物質とされ、廃棄量が増大すれば、皮膚ガンや白内障の増加、あるいは植物やプランクトン等の生態系の破壊が懸念される。
上記(2)の方法では、被覆材の密着性が低いため、被覆材の境界面にメッキ液が入り込み、寸法精度が低い。また、必要に応じて被覆材を除去する場合は、上記のレジストと同様の懸念がある。
しかも、上記(1)、(2)の方法とも、成形品の全面に、メッキ用の触媒が付与されているため、メッキ後、すなわち回路成形後の電気的な表面抵抗値が低い。
【0004】
【発明の目的】
本発明は、レジストの塗布・硬化・除去工程がなく、従って有機溶剤による環境問題の懸念もないし、工程を短縮することもできる合成樹脂あるいは他の材料製の基体へのメッキ方法であって、しかも寸法精度が高く、かつ導電率の高い、高品質の電子・電気部品とすることができる、基体への部分的メッキ方法を提供することを目的とする。
【0005】
【発明の概要】
本発明は、上記目的を、メッキしたい部分以外の部分を、加水分解性高分子材料を被覆材として使用することにより達成しようとするものである。
すなわち、〔1〕本発明は、メッキ用触媒を用いて基体を部分的にメッキする方法であって、前記基体は、基体を多数集合させた集合基体であり、該基体を入れた容器をメッキ用触媒液中に浸漬して行うメッキ用触媒の付与工程の前又は後に、メッキ施工面又はメッキ施工面以外の部分にポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程を設けることを特徴とする基体の部分的メッキ方法に関する、また、
〕(1)前記基体の表面を粗化する工程、
(2)粗化面をポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(3)被覆面以外の表面にメッキ用触媒を付与する工程、
(4)被覆材を除去する工程、
(5)触媒付与面にメッキする工程、
をこの順で経るか、
〕(1)前記基体の表面をポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(2)被覆面以外の表面を粗化する工程、
(3)粗化面にメッキ用触媒を付与する工程、
(4)被覆材を除去する工程、
(5)触媒付与面にメッキする工程、
をこの順で経るか、
〕(1)前記基体の表面を粗化する工程、
(2)メッキ用触媒を付与する工程、
(3)ポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(4)被覆面以外の表面をメッキする工程、
(5)被覆材を除去する工程、
をこの順で経るか、あるいは、
〕(1)前記基体の表面を粗化する工程、
(2)メッキ用触媒を付与する工程、
(3)メッキする工程、
(4)ポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(5)被覆面以外の面のメッキ材を除去する工程、
(6)被覆材を除去する工程、
をこの順で経ることが好ましい。
【0006】
また、上記〔〕,〔〕の場合に、(3)のメッキ用触媒の付与工程と(4)の被覆材の除去工程とを同時に行うこともできる。
更に、上記〔〕,〔〕の場合に、(3)のメッキ用触媒の付与工程後に予備メッキ工程を加えることもできる。
そして、上記〔〕の場合には、(5)の被覆材の除去工程後に、後メッキ工程を設けることもできる。
【0007】
以上の本発明によれば、水溶性高分子材料又は加水分解性高分子材料を被覆材として使用するため、該被覆材の除去を、有機溶剤を使用することなく、水溶性高分子材料では水を使用することで、また加水分解性高分子材料ではアルカリ水溶液や酸液を使用することで行うことができる。
これらの高分子材料として生分解性のものを使用すれば、土中や水中の微生物により水と二酸化炭素に容易に分解されるため、環境問題の懸念がなく、基体から除去後の廃棄処理が極めて簡単である。
【0008】
また、水溶性高分子材料又は加水分解性高分子材料は、従来この種の被覆材として使用されていたプラスチックやゴム等に比して、射出成形した場合の転写性(型の形状通りに成形される性質)に優れる上、固化速度が緩慢であるため、基体(一般に被覆材とは異なる材料を使用)との界面密着性が高まり、寸法精度の高いメッキが可能となり、高品質の部分メッキ品を得ることができる。
【0009】
しかも、この水溶性高分子材料又は加水分解性高分子材料は、最終的にはメッキ製品から除去されるため、これらの高分子材料による被覆形状は、最終製品の形状や寸法に左右されず、専らメッキ操作に好都合な設計とすることができ、最終製品の軽薄短小化に寄与する。すなわち、メッキ工程時の被覆材の形状や寸法によって最終製品の形状や寸法が制約されないため、基体を自由に被覆することができ、これにより基体上への立体的なパターンでの回路電極の形成が可能となって、回路電極等のチップ部品、延いては該チップ部品を装備する各種電子・電気部品の設計の自由度が増し、これら電子・電気部品の小型化・軽量化を一層進めることができる。
【0010】
更に、本発明では、メッキが施されていない部分には、メッキ用触媒が残らないため、メッキ後の言い換えれば回路成形後の絶縁抵抗値が高くなり、製品の電気的特性を向上させることができる。
【0011】
〔基体〕
本発明方法における基体としては、熱可塑性樹脂、熱硬化性樹脂等の合成樹脂の他、セラミック、ガラス等の無機材料から構成される基材が使用できる。
好ましくは、芳香族系液晶ポリマー、ポリスルホン、ポリエーテルポリスルホン、ポリアリールスルホン、ポリエーテルイミド、ポリエステル、アクリロニトリル−ブタジエン−スチレン共重合樹脂、ポリアミド、変性ポリフェニレンオキサイド樹脂、ノルボルネン樹脂、フェノール樹脂、エポキシ樹脂等である。
より好ましくは、耐熱性及び熱膨張係数が広い温度条件において金属に近く、しかも金属膜と同等の伸縮性を有して、サーマルサイクルテストにおいて金属膜と同等の優れた特性を有するポリエステル系液晶ポリマーである。
これらの基体は、フィラーとして、ガラス繊維、ピロリン酸カルシウム、ワラストナイト、炭酸カルシウム、チタン酸バリウム、炭素繊維、石英繊維、硫酸バリウム等を加えたものであってもよい。
基体は、平板状のものであっても、各種の形状に成形したもの(成形品)であってもよく、また単品の基板であっても、複数を高集積化させた集合基板であってもよい。
【0012】
〔被覆材〕
また、被覆材としては、前記の水溶性又は加水分解性の高分子材料であり、上記の基体の上で一定形状に成形し得る材料が使用でき、特に生分解性の材料が環境問題を回避する上で好ましい。
具体的には、式1で表されるポリビニルアルコール、式2で示される変性ポリビニルアルコール、式3で示されるポリ乳酸の他、デンプン、微生物発酵脂肪族ポリエステル、脂肪族ポリエステル−ジカルボン酸とジグリコールとの縮合物、脂肪族カプロラクトン系樹脂、セルロースアセテート系樹脂等であり、特に好ましくは、加水分解性のポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体(ランダム共重合体、ブロック共重合体)である。
すなわち、ポリ乳酸は、▲1▼加水分解性でかつ生分解性であること、▲2▼ポリビニルアルコールや変性ポリビニルアルコール等の水溶性高分子材料の場合にメッキ用触媒付与工程で生じる該材料への該触媒の吸着や該材料の膨潤等の不具合が、生じないため、より高精度でのメッキを行うことができること、▲3▼メッキ用触媒付与工程を長くしても、上記の水溶性高分子材料のような不具合(触媒の吸着や膨潤等)が生じないため、メッキ用触媒の付与を正確かつ確実に行うことができること、▲4▼メッキ用触媒が付着したとしても、後述する被覆材の除去工程で該触媒が容易に除去されること等の利点を有する。
【0013】
【化1】

Figure 0004610079
【0014】
また、上記のポリ乳酸は単独で使用してもよいし、あるいはポリ乳酸を主成分とし、これに脂肪族ポリエステル(ポリヒドロキシカルボン酸、ヒドロキシカルボン酸又は脂肪族多価アルコールと脂肪族多価塩基酸とからなる脂肪族ポリエステル、ヒドロキシカルボン酸や脂肪族多価アルコールから選ばれる2種以上のモノマー成分と、脂肪族多価塩基酸から選ばれる2種以上のモノマー成分とからなるランダム共重合体やブロック共重合体等)の単独又は2種以上を、混合したものや、ランダム共重合又はブロック共重合させたものであってもよいし、また必要に応じてアルカリ分解促進剤、有機及び無機充填剤、可塑剤、湿潤剤、紫外線吸収剤、酸化防止剤、滑剤、着色剤等の汎用の合成樹脂に使用できる添加剤を混合したものであってもよい。
この脂肪族ポリエステルの混合量又は共重合量は、混合体又は共重合体の全量に対して1〜10wt%程度、アルカリ分解促進剤の混合量は混合体全量に対して1〜100wt%程度、好ましくは5〜80wt%、より好ましくは10〜60wt%であり、その他の添加剤の混合量は混合体全量に対して1〜5%程度が適している。
【0015】
なお、上記のポリ乳酸の重量平均分子量は、1万〜40万程度が好ましく、脂肪族ポリエステルは、ポリ乳酸と混合させる場合の重量平均分子量は、1万〜50万程度、好ましくは3万〜40万程度、より好ましくは5万〜30万程度が適しており、またポリ乳酸と共重合させる場合はその共重合体の重量平均分子量が、1万〜50万程度、好ましくは3万〜40万程度、より好ましくは5万〜30万程度が適している。
また、上記のヒドロキシカルボン酸としては、グリコール酸、L−乳酸、D−乳酸、D/L−乳酸、3−ヒドロキシブチリックアシッド、4−ヒドロキシブチリックアシッド、3−ヒドロキシバレリックアシッド、5−ヒドロキシバレリックアシッド、6−ヒドロキシカプロン酸等が挙げられ、これらの1種以上が使用できる。
脂肪族多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール、1,4−シクロヘキサンジメタノール、1,4−ベンゼンジメタノール等が挙げられ、これらの1種以上が使用できる。
脂肪族多価塩基酸としては、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、フェニルコハク酸、1,4−フェニレンジ酢酸等が挙げられ、これらの1種以上が使用できる。
アルカリ分解促進剤としては、デンプン、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール等のポリアルキレングリコール、ポリアミノ酸等の親水性高分子化合物、無水コハク酸、ポリコハク酸イミド等のアルカリ加水分解性化合物等が挙げられ、これらの1種以上が使用できる。中でも、ポリ乳酸や脂肪族ポリエステルへの分散性や相溶性、あるいはブリードアウトのし難さ等から、ポリアルキレングリコール、特にポリエチレングリコールが好ましい。
【0016】
以上の被覆材で基体を部分的に被覆するには、射出、押出、圧縮、鋳造、トランスファー、その他の種々の成形方法により被覆形状を成形する手法が挙げられるが、好ましくは基体を型の一部とする射出成形法により被覆材の射出と同時に基体表面の所望箇所を被覆する手法である。
【0017】
上記被覆材を除去するには、水溶性高分子材料の場合は水を用いて行い、加水分解性高分子材料の場合はアルカリ水溶液や酸液(各種の無機酸の液)を用いて行う。
場合によっては、後述するメッキ用触媒の付与工程において、メッキ用触媒の付与と同時に被覆材の除去を行うことができる。
被覆材が水溶性高分子材料の場合、高分子材料の種類にもよるが、一般には、25〜95℃程度の温水中に2〜35時間浸漬して除去するのが好ましい。
被覆材が加水分解性高分子材料、特にポリ乳酸の場合は、濃度2〜15wt%程度で温度25〜70℃程度のカ性アルカリ(NaOH、KOH等)水溶液中に1〜120分程度浸漬して除去するのが好ましい。なお、カ性アルカリ水溶液が高温、高濃度程、被覆材ばかりか、メッキ用触媒をも脱落することがあるため、この程度の範囲で除去工程を行うことが好ましい。
【0018】
〔基体表面の粗化〕
上記の基体の表面を粗化する方法としては、例えば、公知のエッチング方法が適用できる。
エッチング方法には、湿式と乾式とがあり、基体に使用されている材料の種類等により、適宜の方式のエッチング方法を採用すればよい。
乾式法は、例えば、プラズマを照射したり、気体を使用する等して行うことができる。
湿式法は、例えば、NaOH、KOH等のアルカリ金属水酸化物の水溶液、アルコール性ナトリウム、アルコール性カリウム等のアルカリ金属アルコラートの水溶液、あるいはジメチルホルムアミド等の有機溶剤を用い、これらのエッチング液を基体表面に塗布したり、これらの液中に基体を浸漬させる等して接触させて行うことができる。
このうち、NaOH、KOH等の水溶液を用いる方法は、濃度35〜50wt%程度、温度70〜95℃程度の条件とすることが好ましい。
また、アルカリ金属アルコラートの水溶液や、ジメチルホルムアミド等の有機溶剤を用いる方法は、水溶性又は加水分解性の高分子材料で被覆した後に粗化する場合に好適である。
なお、有機溶剤を使用する場合は、基体を膨潤するのみで、粗化まで至らないことがある。この場合は、有機溶剤での処理の後に、酸あるいはアルカリ処理を施せばよい。また、被覆工程後に、粗化を行う場合は、粗化工程で被覆材が完全には除去されないような条件とすることが必要であるが、ある程度除去されても問題ない。
【0019】
なお、湿式法においては、上記のエッチング液と基体とを接触させた後に、塩酸やフッ酸等の酸溶液を用いて処理することが好ましい。この酸処理は、アルカリ性のエッチング液を単に中和するために行うのではなく、基体中に含まれるフィラーであって、かつ基体の表面近傍に存在しているフィラーの一部を除去し、基体表面の粗化効果をより一層高めるために行われる。
従って、この酸処理の条件(pH、温度、時間等)は、上記のフィラーが溶解する程度の条件とすることが好ましい。
また、湿式法は、上記のエッチング液と基体との接触の際、及び上記の酸溶液での処理の際に、基体を容器に入れ、この容器をエッチング液や酸溶液中に浸漬し、該液中で該容器を回転したり、揺動する等して行ってもよい。この容器は、多数の孔を穿設したバレル、球、箱状体のもの、あるいはカゴ状体のもの等が使用でき、その素材はポリプロピレン等の合成樹脂、あるいはフッ素系樹脂等で表面処理した金属等が使用できる。
【0020】
〔メッキ用触媒〕
本発明におけるメッキ用触媒(以下、単に触媒と記すこともある)としては、公知のものが使用でき、中でもPdやPtを含むものが好ましく、これらは、例えば、塩化物等の無機塩として使用される。
メッキ用触媒の付与は、上記の無機塩を基体に付着させた後、アクセレータ処理により上記の触媒金属を析出させることで行われる。
無機塩を基体に付着させるには、無機塩の溶液と基体とを接触させればよく、例えば、無機塩の溶液中に基体を浸漬したり、この水溶液を基体に塗布する等して行われるが、本発明では、上記の粗化工程と同様に、基体を入れた上記のような容器を無機塩の溶液中に浸漬し、該溶液中で該容器を回転したり、揺動する等して行う。
具体的な条件は、基体の材料、メッキの材料、メッキ用触媒の材料、無機塩の付着方法等により種々異なり一概には決められないが、メッキ用触媒の塩として塩化パラジウムを使用し、浸漬法を採用する場合を例にとれば、一例として次のようなものが挙げられる。
【0021】
触媒塩溶液組成
PdCl・2HO:0.1〜0.3g/dm
SnCl・2HO:10〜20g/dm
HCl :150〜250cm/dm
浸漬条件
温度:20〜45℃
時間:1〜10分
【0022】
なお、メッキ用触媒塩溶液の溶媒としては、上記の塩酸以外に、メタノール、エタノール、イソプロピルアルコール等の、上記した水溶性又は加水分解性高分子材料からなる被覆材を完全には溶出させない(一部は溶出してもよい)有機溶剤を用いることもできる。
【0023】
上記のようなメッキ用触媒塩の付着の後、水洗し、アクセレータ処理してメッキ用触媒(金属)を基体上に析出させる。
アクセレータ処理は、一般には、アクセレータ(促進液)と触媒塩付与後の基体とを、浸漬あるいは塗布等により接触させて行うが、本発明では、触媒塩付与後の基体を入れた容器をアクセレータ液中に浸漬し、回転あるいは揺動する等して行う(なお、本発明では、上記のメッキ用触媒塩の付着、水洗、及びアクセレータ処理の全てを、基体を同一の容器に入れたままで行う)。
この促進液としては、硫酸、塩酸、水酸化ナトリウム、アンモニア等の無機溶液が用いられる。
上記組成の触媒塩溶液を用い、上記条件での浸漬で触媒塩が付与されている場合は、水洗により、基体表面に付着しているSn2+−Pd2+の錯体が加水分解され、Sn2+はSn(OH)Clとなって沈殿し、続いて行うアクセレータ処理により、Sn(OH)Clが溶解し、既に錯体状態が解かれているPd2+と酸化還元反応を生起して、金属Pdが基体上で生成する。この金属Pdがメッキ用触媒として作用する。
【0024】
なお、上記のアクセレータ処理の際に水溶性又は加水分解性の高分子材料からなる被覆材が溶出することもあるため、アクセレータ処理と同時に被覆材の除去を行ってもよいし、被覆材を除去した後にアクセレータ処理を行ってもよい。
もちろん、被覆材が完全に溶出する前に、アクセレータ処理を終了することもできる。
【0025】
水溶性又は加水分解性の高分子材料による被覆材の厚さが10〜1000μm程度、好ましくは10〜500μm程度と薄い場合には、上記したメッキ用触媒塩の付着(例えば、上記Sn2+−Pd2+錯体の付着)、水洗(該錯体の加水分解により、Sn(OH)Clの沈殿生成)、アクセレータ処理(Sn(OH)Clが溶解し、水洗の際に錯体状態が解かれたPd2+と酸化還元反応して金属Pdを生成)と言う一連の操作からなるメッキ用触媒の付与工程において、被覆材が完全に溶出することもあり、メッキ用触媒の付与と同時に、被覆材の除去を行うことができる。
この場合、アクセレータ処理を、促進剤の温度を40〜80℃程度とし、該促進剤との接触時間を30〜120分間程度とすることが好ましい。
また、基体の粗面化後に、基体を型の一部とする射出成形法により被覆材を設ける場合にあっては、基体と型とを密に接触させると、基体に設けた凹凸(粗面)が消失する懸念があるため、基体と型との間に微小な隙間を空けて射出成形型を構成し、この微小な隙間(本来的には被覆材を必要としない部分)にも被覆材を成形(すなわち、バリを形成)することがある。この微小な隙間の被覆材(バリ)は、極めて薄いため、上記のメッキ用触媒の付与工程中において、被覆材が完全に溶出させることができる。
以上のように、メッキ用触媒の付与工程と被覆材の除去工程とを同時に行うことは、工程面での効果のみならず、基体の粗面化面の保護、延いては高精度でのメッキ施工と言った効果をも得ることができる。
【0026】
〔メッキ〕
本発明におけるメッキ方法は、公知のメタライジング方法(無電解メッキ方法や電気メッキ方法)が採用できる。
メッキ金属としては、銅、錫、鉛、ニッケル、金、その他各種の金属が挙げられる。
メッキ工程は、多数回に分けて行うこともできるし、1回で一度に行うこともできる。
なお、触媒付与工程の後に、予備メッキ工程を設けることもできる。予備メッキも、公知のメタライジング法で行うことができ、好ましくは無電解メッキ法であり、メッキ金属も、上記のいわゆる本メッキ工程での金属と同様のものが使用できる。この予備メッキ工程を設けることにより、本メッキ工程でのメッキ品質を一層良好なものとすることができる。
また、後メッキ工程を設けることもできる。後メッキ工程も、公知のメタライジング法で行うことができ、好ましくは無電解メッキ法であり、メッキ金属は、本メッキ工程での金属と同種であってもよいが、異種のものであってもよい。
【0027】
〔メッキ材の除去〕
メッキ材の除去は、上記のようなメッキ金属を除去することができる手法であれば、どのような方法によってもよいが、一般には、塩化第二鉄、塩化第二銅などの無機塩の溶液と、メッキ施工面とを、浸漬あるいは塗布等により接触させて行うが、本発明では、上記の粗化工程やメッキ用触媒付与工程と同様に、メッキ後の基体を入れた上記のような容器を無機塩の溶液中に浸漬し、回転あるいは揺動する等して行うことが好ましい。
〔アニール処理〕
本発明では、以上の各工程が終了した後、アニール処理を行うこともできる。
このアニール処理により、メッキ被膜の密着力を更に向上させることができる。
アニール処理の条件は、160〜175℃で、1〜5時間保持の後、室温まで徐々に冷却することが好ましい。
【0028】
【実施例】
実施例1
〔基体の成形工程〕
芳香族系ポリエステル(液晶ポリマー《米国セラニース社製商品名“ベクトラC810”を使用》)により、1次金型を用いて、図1(A)(斜視図),(B)((A)の一部切欠図)に示す形状の基体(単品)1を成形した。
この基体1は、50×30×5(mm)の外形寸法を有し、図示するように、天面の対角線上の位置に、2個の貫通孔(Through Hole)2,2を有している。
この基体1の複数個を多数の孔を穿設したポリプロピレン製のバレル状容器に入れ、この容器を回転させつつ、60℃に加熱した脱脂液(奥野製薬社製商品名“エースクリーンA220”50g/リットル《以下、リットルをLと、ミリリットルをmLと記す》水溶液)に10分間浸漬した後、水洗して脱脂した。
【0029】
〔基体表面の粗化工程〕
メチルアルコール1Lに金属Na350〜500g(本例では430g)を溶解したアルカリ溶液を90℃に加熱し、この加熱溶液中に、上記脱脂後の基体1の複数個を、上記のバレル状容器に入れたままで浸漬し回転しながら、30〜80分間(本例では40分間)保持して、基体1の表面を粗化した。
なお、メチルアルコールに変えてエチルアルコール(金属Na430g)を使用した場合も、同様の条件で粗化することができた。
また、メチルアルコールに変えてイソプロピルアルコール(金属Na430g)を使用した場合は、このアルカリ溶液を60℃に加熱し、この溶液に上記脱脂後の基体1の複数個を上記のバレル状容器に入れたままで浸漬し回転しながら10分間保持の後、クロム酸混液(CrO22wt%と濃硫酸54wt%の混合溶液)を60℃に加熱した中にバレル状容器のままで回転しながら入れることにより、粗化することができた。
更に、水1LにNaOH350〜500g(本例では400g)を溶解したアルカリ溶液を使用した場合は、上記のメチルアルコールを使用した場合と同様の条件で粗化することができた。
【0030】
〔基体の被覆工程〕
表面粗化後の基体1をセットし5〜30℃(本例では10℃)に保持した2次金型内に、150〜260℃(本例では190℃)に加熱した被覆材3としての水溶性高分子材(ポリビニルアルコール《以下、PVA》《クラレ社製商品名“ポバール”を使用》)を、射出圧200〜1200kg/cm(本例では350kg/cm)で射出し、図2(斜視図)に示す態様の部分被覆3成形品を得た。
この成形品の被覆材3の厚さは、1mmと、0.5mmとした。
【0031】
〔メッキ用触媒の付与工程および被覆材の除去工程〕
メチルアルコールに、メッキ用触媒塩としての塩化第一スズと塩化パラジウムとの混合塩酸液(荏原ユージライト社製商品名“エニレックスCT−8”)を20mL/Lの割合で添加し、これを30℃に保持し、この溶液中に、上記の部分的被覆成形品の複数個を上記と同様のバレル状容器に入れ、この容器を3〜5分間(本例では4分間)回転しながら浸漬した後、水洗し、60℃に加温した塩酸(50mL/L)中に60分間浸漬(アクセレータ処理)し、部分被覆成形品の被覆材3以外の部分にメッキ用触媒を付与すると共に、被覆材3の溶解除去を行った。
被覆材3の厚さが1mm、0.5mmの何れの場合も、メッキ用触媒の付与と被覆材3の除去とが同時に良好に行われた。
【0032】
〔メッキ工程〕
被覆材3除去後の基体1の複数個を上記のバレル状容器に入れたままで、表1に示す組成の銅メッキ浴中に浸漬し回転させながら、表2に示すメッキ条件で、該基体1に厚さ0.3〜20.0μm(本例では10μm)となるように、無電解銅メッキを施した後、170℃で1時間保持し、室温まで徐冷するというアニール処理を行って図3に示す態様のものを得た。
また、無電解銅メッキを0.5μm厚さとなるように施した後、上記のバレル状容器に入れたままで、電気銅メッキを0.5μm厚さとなるように施し、次いで上記と同様のアニール処理を行った場合も、同様の態様のものを得た。
なお、図3中、符号4で示す部分が銅メッキが施された部分であり、図3に示すように、この銅メッキ4は、メッキ用触媒付与面のみ、すなわち図2に示した被覆材3で覆われていた部分以外の部分と、貫通孔2内の表面に施されていた。
【0033】
【表1】
銅メッキ浴組成
CuSO・5HO:0.04モル/L
HCHO :0.1モル/L
NaOH :0.2モル/L
EDTA・4Na :0.08モル/L
α,α′−ジピリジル:5〜10ppm
PEG−1000*1 :50〜100ppm
*1PEG−1000:安定剤(荏原ユージライト社製商品名)
【0034】
【表2】
メッキ条件
浴温度 :60〜70℃
エア攪拌:0.1L/L・分
浴 :0〜1dm/L
【0035】
比較例1
〔基体の成形工程〕
実施例1と同様にして図4に示す形状の基体(単品)11を成形した。12は貫通孔を示し、11′は基体11の凹部を示す。
【0036】
〔基体表面の粗化工程〕
この基体11を実施例1と同様にして粗化した。
【0037】
〔メッキ用触媒の付与工程〕
濃度が150mL/Lの濃硫酸中に、メッキ用触媒塩として実施例1と同様の荏原ユージライト社製商品名“エニレックスCT−8”を20mL/Lの割合で混合し、30℃に保持した溶液中に、表面粗化した1次成形品11を、実施例1と同様にして、3分間浸漬した後、水洗し、濃度が80mL/Lの硫酸からなるアクセレータ液を50℃に保持し、この液中に4分間浸漬し、水洗して、基体11の全面にメッキ用触媒を付与した。
【0038】
〔基体の被覆工程〕
メッキ用触媒付与後の基体11を2次金型内にセットし、基体11と同じ樹脂により、図5に示す態様の部分的被覆成形品(図4の凹部11′に基体11と同じ樹脂による被覆材13が成形されたもの)を得た。
【0039】
〔メッキ工程〕
この部分的被覆成形品に、実施例1と同様にして無電解銅メッキを施した。
この銅メッキは、基体11と被覆材13の密着が不良であるため、この界面のメッキ用触媒付与面が覗いている部分にも、施されていることが視認できた。
【0040】
実施例2
〔基体の成形工程〕
実施例1と同様にして実施例1と同様の基体1を成形した。
【0041】
〔基体表面の粗化工程〕
この基体1を実施例1と同様にして粗化した。
【0042】
〔基体の被覆工程〕
表面粗化後の基体1をセットし5〜30℃(本例では10℃)に保持した2次金型内に、150〜260℃(本例では190℃)に加熱した被覆材3としての加水分解性高分子材(ポリ乳酸樹脂《三井化学社製商品名“LACEA”を使用》)を、射出圧200〜1200kg/cm(本例では350kg/cm)で射出し、図2(斜視図)に示す態様の部分被覆3成形品を得た。この成形品の被覆材3の厚さは1.5mmであった。
【0043】
〔メッキ用触媒の付与工程〕
水に、メッキ用触媒塩として実施例1と同様の荏原ユージライト社製商品名“エニレックスCT−8”を20mL/Lの割合で添加し、更にHClを150mL/Lの割合で添加し、これを30℃に保持し、この溶液中に、上記の部分的被覆成形品を、実施例1と同様にして、3〜5分間(本例では4分間)浸漬した後、水洗し、30℃に加温した塩酸(5〜10%、本例では8%)中に4分間浸漬(アクセレータ処理)し、部分被覆成形品の被覆材3以外の部分にメッキ用触媒を付与した。
【0044】
〔被覆材の除去工程〕
メッキ用触媒を付与した後の基体1を、実施例1と同様にして、濃度7wt%で30℃のNaOH水溶液中に40分間浸漬して、被覆材3を除去した。
【0045】
なお、ポリ乳酸による被覆材3の厚さを実施例1と同じ1mmと、0.5mmとした場合は、いずれの場合も、上記のメッキ用触媒の付与工程において、メッキ用触媒の付与と同時に被覆材3の除去を行うことができた。
【0046】
〔メッキ工程〕
この部分的被覆成形品に、実施例1と同様にして無電解銅メッキを施した。
また、実施例1と同様にして、無電解銅メッキを施した後、電気銅メッキを施した。
いずれの場合も、実施例1と同様に、メッキ用触媒付与面のみ、すなわち図2に示した被覆材3で覆われていた部分以外の部分と、貫通孔2内の表面に、銅メッキ4が施されていた。
【0047】
実施例3
〔基体の成形工程〕
実施例1と同様にして実施例1と同様の基体1を成形した。
【0048】
〔基体の被覆工程〕
この基体1をセットし、実施例2と同様にして加水分解性樹脂を射出し、実施例1と同様の部分的被覆成形品を得た。
【0049】
〔基体表面の粗化工程〕
上記の部分的被覆成形品を、35〜60℃(本例では50℃)に加温した濃度60〜80%(本例では50%)のジメチルホルムアミド溶液に、実施例1と同様にして、5〜120分間(本例では60分間)浸漬して、被覆材3以外の部分すなわち基体1の表面を膨潤させた後、水洗し、次いで70〜75℃(本例では70℃)に加熱した濃硫酸(600cm/dm)・89%リン酸(100cm/dm)・クロム酸(30g/dm)に30〜120分間(本例では70分間)浸漬して、この膨潤部分を粗化した。
【0050】
〔メッキ用触媒の付与工程〕
エチルアルコールに、メッキ用触媒塩としての塩化パラジウム(奥野製薬社製)を30mL/Lの割合で添加した溶液を、50〜90℃(本例では60℃)に加熱し、この溶液中に、実施例1と同様にして、上記の表面粗化後の成形品を15〜100分間(本例では60分間)浸漬した後、水洗して、上記の表面粗化部分、すなわち被覆材3以外の部分にメッキ用触媒を付与した。
【0051】
〔被覆材の除去工程〕
触媒付与後の成形品を、実施例1と同様にして、20〜80℃(本例では50℃)の5〜20%(本例では5%)苛性ソーダ溶液に40〜80分間(本例では60分間)浸漬し、被覆材3を加水分解して除去した。
【0052】
〔メッキ工程〕
実施例1と同様にして無電解銅メッキ4を施した。
この銅メッキ4は、実施例1の場合と同様に、被覆材3で覆われていた部分以外の部分と、貫通孔2内の表面に施されていた。
【0053】
実施例4
〔基体の成形工程〕
実施例1と同様にして実施例1と同様の基体1を成形した。
【0054】
〔基体表面の粗化工程〕
実施例1と同様にして基体1の全面を粗化した。
【0055】
〔メッキ用触媒の付与工程〕
実施例1と同様にして基体1の全面にメッキ用触媒を付与した。
【0056】
〔メッキ工程〕
アニール処理を行わない以外は実施例1と同様にして、厚さ5μmの無電解銅メッキを施した。
【0057】
〔被覆工程〕
メッキを施した後の基体に、実施例2で用いたものと同じ加水分解性樹脂により、実施例1と同様にして、部分的被覆(メッキを残す部分への被覆)成形品を得た。
【0058】
〔メッキ材の除去工程〕
塩化第二鉄又は塩化第二銅(28〜42wt%《本例では40wt%》)溶液中に、実施例1と同様にして、被覆工程後の成形品を浸漬して、被覆されていない部分のメッキ材を除去した。
【0059】
〔被覆材の除去工程〕
実施例2と同様にして被覆材を加水分解して除去した後、実施例1と同様のアニール処理を行った。
【0060】
実施例5
〔基体の成形工程〕
実施例1と同様にして実施例1と同様の基体1を成形した。
【0061】
〔基体表面の粗化工程〕
実施例1と同様にして基体1の全面を粗化した。
【0062】
〔メッキ用触媒の付与工程〕
実施例1と同様にして基体1の全面にメッキ用触媒を付与した。
【0063】
〔基体の被覆工程〕
実施例2で用いたものと同じ加水分解性樹脂により、実施例1と同様にして、実施例1と同様の部分的被覆成形品を得た。
【0064】
〔メッキ工程〕
アニール処理を行わない以外は実施例1と同様にして、厚さ1〜5μmの無電解銅メッキを施した。
【0065】
〔被覆材の除去工程〕
60〜90℃の4〜25%苛性ソーダ溶液に、実施例1と同様にして、1〜3時間浸漬し、被覆材を加水分解して除去した。
【0066】
〔後メッキ工程〕
無電解銅メッキが施された成形品の全面に、再度、実施例1と同様にして、厚さ1〜20μmの無電解銅メッキを施した。
【0067】
実施例6
被覆材としてPVAを使用すること、メッキを塩化アルミニウムと水酸化リチウムアルミニウムをテトラヒドロフラン溶液中で処理して厚さ0.5〜2.5μm(本例では2μm)のアルミニウムメッキを得ること以外は、実施例4を繰り返した。
【0068】
実施例7
〔基体の成形工程〕
芳香族系ポリエステル(液晶ポリマー《米国セラニース社製商品名“ベクトラC810”を使用》)により、1次金型を用いて、図6(斜視図)に示す形状の基体(集合基体)21を成形した。
この基体21の外形寸法は、a≒40mm、b≒5mm、c≒4mm、d≒7mm、e≒2mmであり、図示するように、天面に、2本の直線状に、複数個の貫通孔(Through Hole)2,2,・・・を有している。
この集合基体21の複数個を多数の孔を穿設したポリプロピレン製のバレル状容器に入れ、この容器を回転させつつ、60℃に加熱した脱脂液(奥野製薬社製商品名“エースクリーンA220”50g/L水溶液)に10分間浸漬した後、水洗して脱脂した。
【0069】
〔基体表面の粗化工程〕
メチルアルコール1Lに金属Na430gを溶解したアルカリ溶液を90℃に加熱し、この加熱溶液中に、上記脱脂後の基体21の複数個を、上記のバレル状容器に入れたままで浸漬し回転しながら、40分間保持して、基体21の表面を粗化した。
なお、メチルアルコールに変えてエチルアルコール(金属Na430g)を使用した場合も、同様の条件で粗化することができた。
また、メチルアルコールに変えてイソプロピルアルコール(金属Na430g)を使用した場合は、このアルカリ溶液を60℃に加熱し、この溶液に上記脱脂後の基体21の複数個を上記のバレル状容器に入れたままで浸漬し回転しながら10分間保持の後、クロム酸混液(CrO22wt%と濃硫酸54wt%の混合溶液)を60℃に加熱した中にバレル状容器のままで回転しながら入れることにより、粗化することができた。
更に、水1LにNaOH400gを溶解したアルカリ溶液を使用した場合は、上記のメチルアルコールを使用した場合と同様の条件で粗化することができた。
【0070】
〔基体の被覆工程〕
表面粗化後の基体21をセットし10℃に保持した2次金型内に、190℃に加熱した被覆材3としての加水分解性高分子材(ポリ乳酸樹脂《三井化学社製商品名“LACEA”を使用》)を、射出圧350kg/cmで射出し、図7(A)(全体斜視図),(B)(図7(A)のα−α線切断部の説明図),(C)(図7(B)の一部切欠図)に示す態様の部分被覆3成形品(集合成形品)を得た。この成形品の被覆材3の厚さは、1mmと、0.5mmとした。
【0071】
〔メッキ用触媒の付与工程および被覆材の除去工程〕
メチルアルコールに、メッキ用触媒塩としての塩化第一スズと塩化パラジウムとの混合塩酸液(荏原ユージライト社製商品名“エニレックスCT−8”)を20mL/Lの割合で添加し、これを30℃に保持し、この溶液中に、上記の部分的被覆成形品の複数個を上記と同様のバレル状容器に入れ、この容器を4分間回転しながら浸漬した後、水洗し、60℃に加温した塩酸(50mL/L)中に60分間浸漬(アクセレータ処理)し、部分被覆成形品の被覆材3以外の部分にメッキ用触媒を付与すると共に、被覆材3の溶解除去を行った。
被覆材3の厚さが1mm、0.5mmの何れの場合も、メッキ用触媒の付与と被覆材3の除去とが同時に良好に行われた。
【0072】
〔メッキ工程〕
被覆材3除去後の基体21の複数個を上記のバレル状容器に入れたままで、表3に示す組成の予備メッキ浴中に浸漬し回転させながら、同表に示すメッキ条件で、該基体21に厚さ0.5〜1.5μm(本例では1μm)となるように、無電解銅メッキを施した後、表4に示す組成の本メッキ浴中に浸漬し回転させながら、同表に示すメッキ条件で、上記の予備メッキ上に厚さ9.5〜8.5μm(本例では9μm)となるように、無電解銅メッキを施し、全体のメッキ厚さ10μmとした。
なお、この銅メッキの後、無電解Niメッキ・無電解Auメッキ、あるいは電気Niメッキ・電気Auメッキ等の後メッキを施すこともできるし、最終工程として実施例1と同様のアニール処理を行うこともできる。
図8の断面図に、本例でメッキが施された部分を概略的に示す。図8中、符号4で示す部分が銅メッキ(あるいは銅メッキ後に、Niメッキ・Auメッキ等の後メッキ)が施された部分であり、同図に示すように、このメッキ4は、メッキ用触媒付与面のみ、すなわち図7(A)〜(C)に示した被覆材3で覆われていた部分以外の部分と、貫通孔2内の表面に施されていた。
【0073】
【表3】
予備(銅)メッキ浴組成・条件
CuSO・5HO :0.04モル/L
HCHO(37%溶液):0.3モル/L
NaOH :pH12.2
EDTA・4Na :0.10モル/L
安定剤*1 :若干
浴温度 :35℃
*1安定剤:金属(メタルイオン)系
【0074】
【表4】
本(銅)メッキ浴組成・条件
CuSO・5HO :0.04モル/L
HCHO(37%溶液):0.06モル/L
NaOH :pH12
EDTA・4Na :0.1モル/L
安定剤*1 :若干
浴温度 :65℃
メッキ速度 :2.5μm/hr
【0075】
その後、図6に点線で示す仮想線に沿ってカットし、図9(斜視図)に示す形状のチップ部品を得た。
【0076】
実施例8
実施例7の集合基体21を用い、図7(A)〜(C)に示す態様で被覆し、実施例7の表3に示す予備メッキ浴組成・条件及び表4に示す本メッキ浴組成・条件とする以外は、実施例3と同様の工程に沿ってメッキを施した後、実施例7と同様にしてカットして図9(斜視図)に示す形状のチップ部品を得た。
【0077】
実施例9
実施例7の集合基体21を用い、図7(A)〜(C)に示す態様で被覆し、実施例7の表3に示す予備メッキ浴組成・条件及び表4に示す本メッキ浴組成・条件とする以外は、実施例4と同様の工程に沿ってメッキを施した後、実施例7と同様にしてカットして図9(斜視図)に示す形状のチップ部品を得た。
【0078】
実施例10
実施例7の集合基体21を用い、図7(A)〜(C)に示す態様で被覆し、実施例7の表3に示す予備メッキ浴組成・条件及び表4に示す本メッキ浴組成・条件とする以外は、実施例5と同様の工程に沿ってメッキを施した後、実施例7と同様にしてカットして図9(斜視図)に示す形状のチップ部品を得た。
【0079】
実施例11
被覆材としてPVAを使用すること、メッキを塩化アルミニウムと水酸化リチウムアルミニウムをテトラヒドロフラン溶液中で処理して厚さ0.5〜2.5μm(本例では2μm)のアルミニウムメッキを得ること以外は、実施例9を繰り返した。
【0080】
【発明の効果】
本発明によれば、従来のレジストの塗布・硬化・除去工程を省略することができ、従って有機溶剤による環境問題の懸念もないし、工程を短縮することもできる。
また、寸法精度が高く、かつ導電率の高い、高品質の電子・電気部品を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例で用いた基体の形状の一例を示す図で、(A)が斜視図、(B)が(A)の一部切欠図である。
【図2】図1の基体に被覆材を施した状態の一例を示す斜視図である。
【図3】図1のものに無電解メッキを施した状態の一例を示す斜視図である。
【図4】本発明の比較例で用いた基体の一例を示す図である。
【図5】図4の基体に被覆材を施した状態の一例を示す斜視図である。
【図6】本発明の他の実施例で用いた集合基体の形状の一例を示す斜視図である。
【図7】図6の集合基体に被覆材を施した状態の一例を示す図であり、(A)がその全体の斜視図、(B)が(A)のα−α線切断部の説明図、(C)が(B)の一部切欠図である。
【図8】図7の被覆材を施した場合の図6の集合基体にメッキを施した状態を示す一部断面図である。
【図9】図8の状態でメッキが施された集合メッキ製品を各チップ部品にカットした状態を示す斜視図である。
【符号の説明】
1,11,21 基体
2,12 孔
3,13 被覆材
4 メッキ[0001]
BACKGROUND OF THE INVENTION
  The present invention is a substrate made of synthetic resin or other material.(ChiAn assembly base in which a large number of substrate parts are assembled.body)In particular, the present invention relates to a method for partially plating the above-mentioned substrate for manufacturing electronic / electrical components such as printed circuit boards and lead frame insert molded circuit components.
[0002]
[Technical background]
Conventionally, as a method of partially plating a synthetic resin substrate (molded product),
(1) After roughening the surface of the molded product (for example, etching) and applying a catalyst for plating based on Pd, Pt, etc., leave a portion to be plated and resist by silk printing or dispenser coating Applying, then plating and removing the resist,
(2) Insert the molded article after applying the catalyst into a mold, and inject (inject) plastic, rubber or the like (electrical insulating material) into the mold, A method of coating, then plating, and removing the coating material if necessary,
Etc. are known (CMC Co., Ltd., “Composite Technology for Plastic Molding” P260-275, JP-A-7-316825, JP-A-63-4092, JP-A-2592243, etc.).
[0003]
However, in the method (1), a resist curing step by heat drying or the like is necessary after resist application. In addition, when removing the resist after plating, it is necessary to use an organic solvent such as methylene chloride, which, like chlorofluorocarbon (CFC), is considered a cause of ozone layer destruction and is discarded. If this increases, there is a concern that skin cancer and cataracts will increase, or ecosystems such as plants and plankton will be destroyed.
In the method (2), since the adhesion of the coating material is low, the plating solution enters the boundary surface of the coating material, and the dimensional accuracy is low. Moreover, when removing a coating | covering material as needed, there exists a concern similar to said resist.
In addition, in both methods (1) and (2), since the catalyst for plating is applied to the entire surface of the molded product, the electrical surface resistance value after plating, that is, after circuit molding is low.
[0004]
OBJECT OF THE INVENTION
The present invention is a method for plating a substrate made of a synthetic resin or other material, which does not have a resist coating / curing / removing process, and therefore has no concern about environmental problems due to organic solvents, and can shorten the process, Moreover, it is an object of the present invention to provide a partial plating method on a substrate, which can be a high-quality electronic / electrical part with high dimensional accuracy and high electrical conductivity.
[0005]
SUMMARY OF THE INVENTION
  The present invention aims to achieve the above-mentioned purpose except for the portion to be plated.,This is achieved by using a water-decomposable polymer material as a coating material.
  That is, [1] The present invention is a method of partially plating a substrate using a plating catalyst,The substrate is an aggregate substrate in which a large number of substrates are aggregated,Before or after the plating catalyst application step, which is performed by immersing the container containing the substrate in the plating catalyst solution, on the plating construction surface or a portion other than the plating construction surfacePolylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acidThe present invention relates to a method for partially plating a substrate, characterized by providing a step of partially coating with a coating material.Do,Also,
[2] (1)AboveRoughening the surface of the substrate,
  (2) Roughening surfacePolylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acidPartially covering with a covering material,
  (3) A step of applying a plating catalyst to a surface other than the coated surface,
  (4) removing the covering material;
  (5) a step of plating on the catalyst application surface;
Or go through in this order,
[3] (1)AboveThe surface of the substratePolylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acidPartially covering with a covering material,
  (2) a step of roughening the surface other than the coated surface;
  (3) providing a plating catalyst on the roughened surface;
  (4) removing the covering material;
  (5) a step of plating on the catalyst application surface;
Or go through in this order,
[4] (1)AboveRoughening the surface of the substrate,
  (2) providing a plating catalyst;
  (3)Polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acidPartially covering with a covering material,
  (4) a step of plating a surface other than the coated surface;
  (5) a step of removing the covering material;
In this order, or
[5] (1)AboveRoughening the surface of the substrate,
  (2) providing a plating catalyst;
  (3) plating step,
  (4)Polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acidPartially covering with a covering material,
  (5) a step of removing the plating material on the surface other than the coated surface;
  (6) a step of removing the covering material;
It is preferable to pass through in this order.
[0006]
  In addition, [2], [3], The plating catalyst application step (3) and the coating material removal step (4) can be performed simultaneously.
  Furthermore, the above [2], [3], A pre-plating step can be added after the step (3) of applying the plating catalyst.
  And above [4], A post-plating step can be provided after the covering material removing step (5).
[0007]
According to the present invention described above, since a water-soluble polymer material or a hydrolyzable polymer material is used as a coating material, the coating material can be removed without using an organic solvent. In addition, the hydrolyzable polymer material can be used by using an alkaline aqueous solution or an acid solution.
If biodegradable materials are used as these polymer materials, they are easily decomposed into water and carbon dioxide by microorganisms in the soil and water, so there is no concern about environmental problems, and disposal after removal from the substrate is possible. It is extremely simple.
[0008]
In addition, water-soluble polymer materials or hydrolyzable polymer materials are more transferable when molded by injection (molded according to the shape of the mold) than plastics, rubber, etc., which are conventionally used as this type of coating material. In addition to its excellent properties, the solidification rate is slow, so the adhesion to the interface with the substrate (generally using a material different from the coating material) is increased, enabling high dimensional accuracy plating and high quality partial plating. Goods can be obtained.
[0009]
Moreover, since this water-soluble polymer material or hydrolyzable polymer material is finally removed from the plated product, the coating shape with these polymer materials is not affected by the shape or dimensions of the final product, It can be designed exclusively for the plating operation and contributes to the reduction of the thickness and thickness of the final product. That is, since the shape and dimensions of the final product are not restricted by the shape and dimensions of the coating material during the plating process, the substrate can be freely coated, thereby forming circuit electrodes in a three-dimensional pattern on the substrate. It is possible to increase the degree of freedom of design of chip parts such as circuit electrodes, and various electronic / electric parts equipped with the chip parts, and to further reduce the size and weight of these electronic / electric parts. Can do.
[0010]
Furthermore, in the present invention, since the catalyst for plating does not remain in the portion where plating is not performed, the insulation resistance value after plating, that is, after circuit formation is increased, and the electrical characteristics of the product can be improved. it can.
[0011]
[Substrate]
As the substrate in the method of the present invention, a substrate composed of an inorganic material such as ceramic or glass in addition to a synthetic resin such as a thermoplastic resin or a thermosetting resin can be used.
Preferably, aromatic liquid crystal polymer, polysulfone, polyether polysulfone, polyarylsulfone, polyetherimide, polyester, acrylonitrile-butadiene-styrene copolymer resin, polyamide, modified polyphenylene oxide resin, norbornene resin, phenol resin, epoxy resin, etc. It is.
More preferably, it is a polyester-based liquid crystal polymer that is close to a metal under temperature conditions with a wide range of heat resistance and thermal expansion coefficient, and has the same stretchability as that of a metal film, and has excellent characteristics equivalent to that of a metal film in a thermal cycle test. It is.
These substrates may be those added with glass fibers, calcium pyrophosphate, wollastonite, calcium carbonate, barium titanate, carbon fibers, quartz fibers, barium sulfate, and the like as fillers.
The substrate may be a flat plate, molded into various shapes (molded product), or a single substrate, or a collective substrate in which a plurality of substrates are highly integrated. Also good.
[0012]
(Coating material)
Moreover, as the covering material, the water-soluble or hydrolyzable polymer material described above can be used, and a material that can be molded into a certain shape on the above-mentioned substrate can be used. In particular, the biodegradable material avoids environmental problems. This is preferable.
Specifically, in addition to polyvinyl alcohol represented by formula 1, modified polyvinyl alcohol represented by formula 2, polylactic acid represented by formula 3, starch, microorganism fermented aliphatic polyester, aliphatic polyester-dicarboxylic acid and diglycol Condensates, aliphatic caprolactone resins, cellulose acetate resins, etc., particularly preferably hydrolyzable polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acid (random Copolymer, block copolymer).
That is, polylactic acid is (1) hydrolyzable and biodegradable; (2) in the case of water-soluble polymer materials such as polyvinyl alcohol and modified polyvinyl alcohol, to the material generated in the plating catalyst application step In this case, problems such as adsorption of the catalyst and swelling of the material do not occur, so that the plating can be performed with higher accuracy. Since defects such as molecular materials (catalyst adsorption, swelling, etc.) do not occur, the plating catalyst can be applied accurately and reliably. (4) Even if the plating catalyst adheres, the coating material described later This removal step has the advantage that the catalyst is easily removed.
[0013]
[Chemical 1]
Figure 0004610079
[0014]
In addition, the above polylactic acid may be used alone, or it is composed mainly of polylactic acid, and an aliphatic polyester (polyhydroxycarboxylic acid, hydroxycarboxylic acid or aliphatic polyhydric alcohol and aliphatic polyvalent base). Random copolymer comprising two or more monomer components selected from aliphatic polyesters composed of acids, hydroxycarboxylic acids and aliphatic polyhydric alcohols, and two or more monomer components selected from aliphatic polybasic acids Or a block copolymer or a mixture of two or more thereof, a random copolymer or a block copolymer, and an alkali decomposition accelerator, organic and inorganic as necessary. Even if it is a mixture of additives that can be used for general-purpose synthetic resins such as fillers, plasticizers, wetting agents, UV absorbers, antioxidants, lubricants, and colorants There.
The mixing amount or copolymerization amount of the aliphatic polyester is about 1 to 10 wt% with respect to the total amount of the mixture or copolymer, the mixing amount of the alkali decomposition accelerator is about 1 to 100 wt% with respect to the total amount of the mixture, Preferably it is 5-80 wt%, More preferably, it is 10-60 wt%, and about 1-5% is suitable for the mixing amount of another additive with respect to the mixture whole quantity.
[0015]
In addition, the weight average molecular weight of the polylactic acid is preferably about 10,000 to 400,000, and the aliphatic polyester has a weight average molecular weight of about 10,000 to 500,000 when mixed with polylactic acid, preferably 30,000 to About 400,000, more preferably about 50,000 to 300,000 is suitable, and when copolymerizing with polylactic acid, the weight average molecular weight of the copolymer is about 10,000 to 500,000, preferably 30,000 to 40 About 10,000, more preferably about 50,000 to 300,000 is suitable.
Examples of the hydroxycarboxylic acid include glycolic acid, L-lactic acid, D-lactic acid, D / L-lactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5- Hydroxyvaleric acid, 6-hydroxycaproic acid and the like can be mentioned, and one or more of these can be used.
Examples of the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and 3-methyl-1,5-pentane. Diol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylene glycol, 1,4-cyclohexanedimethanol, 1,4-benzenedimethanol, and the like, one or more of these Can be used.
Aliphatic polybasic acids include succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, phenylsuccinic acid, 1, 4-phenylenediacetic acid and the like can be mentioned, and one or more of these can be used.
Examples of the alkali decomposition accelerator include starch, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyalkylene glycols such as polyoxytetramethylene glycol, hydrophilic polymer compounds such as polyamino acids, and alkaline hydrolysis such as succinic anhydride and polysuccinimide. Examples include decomposable compounds, and one or more of these can be used. Among these, polyalkylene glycol, particularly polyethylene glycol is preferable from the viewpoint of dispersibility and compatibility with polylactic acid and aliphatic polyester, difficulty in bleeding, and the like.
[0016]
In order to partially coat the substrate with the above-described coating material, there may be mentioned a method of forming a coated shape by various methods such as injection, extrusion, compression, casting, transfer, and the like. In this method, a desired portion of the substrate surface is coated simultaneously with the injection of the coating material by the injection molding method.
[0017]
The coating material is removed using water in the case of a water-soluble polymer material, and using an alkaline aqueous solution or an acid solution (various inorganic acid solutions) in the case of a hydrolyzable polymer material.
In some cases, the coating material can be removed simultaneously with the application of the plating catalyst in the plating catalyst application process described later.
When the coating material is a water-soluble polymer material, although it depends on the type of the polymer material, it is generally preferable to remove it by immersing it in warm water at about 25 to 95 ° C. for 2 to 35 hours.
When the coating material is a hydrolyzable polymer material, especially polylactic acid, it is immersed for about 1 to 120 minutes in a caustic alkali (NaOH, KOH, etc.) aqueous solution having a concentration of about 2 to 15 wt% and a temperature of about 25 to 70 ° C. Is preferably removed. In addition, since the caustic alkaline aqueous solution may drop not only the coating material but also the plating catalyst as the temperature and concentration are high, it is preferable to perform the removing step within this range.
[0018]
[Roughening of substrate surface]
As a method for roughening the surface of the substrate, for example, a known etching method can be applied.
There are wet and dry etching methods, and an appropriate etching method may be employed depending on the type of material used for the substrate.
The dry method can be performed, for example, by irradiating plasma or using gas.
The wet method uses, for example, an aqueous solution of an alkali metal hydroxide such as NaOH or KOH, an aqueous solution of an alkali metal alcoholate such as alcoholic sodium or alcoholic potassium, or an organic solvent such as dimethylformamide. It can be carried out by applying to the surface or by contacting the substrate by immersing the substrate in these liquids.
Among these, the method using an aqueous solution of NaOH, KOH or the like is preferably performed under conditions of a concentration of about 35 to 50 wt% and a temperature of about 70 to 95 ° C.
A method using an aqueous solution of an alkali metal alcoholate or an organic solvent such as dimethylformamide is suitable for roughening after coating with a water-soluble or hydrolyzable polymer material.
In addition, when using an organic solvent, only a base | substrate is swollen and it may not lead to roughening. In this case, an acid or alkali treatment may be performed after the treatment with the organic solvent. Moreover, when roughening is performed after the coating step, it is necessary to set the conditions such that the coating material is not completely removed in the roughening step, but there is no problem even if it is removed to some extent.
[0019]
In the wet method, it is preferable to perform treatment using an acid solution such as hydrochloric acid or hydrofluoric acid after bringing the etching solution into contact with the substrate. This acid treatment is not performed simply to neutralize the alkaline etching solution, but a part of the filler that is contained in the substrate and is present in the vicinity of the surface of the substrate is removed. This is performed to further enhance the surface roughening effect.
Therefore, it is preferable that the conditions for the acid treatment (pH, temperature, time, etc.) are such that the filler is dissolved.
In the wet method, the substrate is placed in a container during the contact between the etching solution and the substrate and the treatment with the acid solution, and the container is immersed in the etching solution or the acid solution. You may carry out by rotating or swinging the container in the liquid. This container can be used in barrels, spheres, box-like bodies, or cage-like bodies with a large number of holes, and the material is surface-treated with a synthetic resin such as polypropylene or a fluorine resin. Metal etc. can be used.
[0020]
[Catalyst for plating]
As the plating catalyst in the present invention (hereinafter sometimes simply referred to as catalyst), known ones can be used, and those containing Pd and Pt are preferred, and these are used as inorganic salts such as chlorides, for example. Is done.
The application of the catalyst for plating is performed by depositing the above catalyst metal by an accelerator treatment after adhering the above inorganic salt to the substrate.
In order to allow the inorganic salt to adhere to the substrate, the inorganic salt solution and the substrate may be brought into contact with each other, for example, by immersing the substrate in an inorganic salt solution or applying this aqueous solution to the substrate. However, in the present invention, as in the roughening step, the container containing the substrate is immersed in an inorganic salt solution, and the container is rotated or swung in the solution. Do it.
The specific conditions differ depending on the substrate material, plating material, plating catalyst material, inorganic salt deposition method, etc., and cannot be determined unconditionally, but use palladium chloride as the plating catalyst salt and immerse it. Taking the case of adopting the law as an example, the following can be cited as an example.
[0021]
Catalyst salt solution composition
PdCl2・ 2H2O: 0.1 to 0.3 g / dm3
SnCl2・ 2H2O: 10 to 20 g / dm3
HCl: 150-250 cm3/ Dm3
Immersion conditions
Temperature: 20-45 ° C
Time: 1-10 minutes
[0022]
As a solvent for the plating catalyst salt solution, in addition to the above hydrochloric acid, a coating material made of the above water-soluble or hydrolyzable polymer material such as methanol, ethanol, isopropyl alcohol or the like is not completely eluted (one The organic solvent may be used.
[0023]
After adhesion of the plating catalyst salt as described above, it is washed with water and subjected to an accelerator treatment to deposit the plating catalyst (metal) on the substrate.
In general, the accelerator treatment is performed by bringing the accelerator (accelerating liquid) and the base after application of the catalyst salt into contact with each other by dipping or coating. In the present invention, the container containing the base after application of the catalyst salt is used as the accelerator liquid. (In the present invention, all of the above-mentioned plating catalyst salt adhesion, water washing, and accelerator treatment are performed while the substrate is placed in the same container.) .
As this accelerating liquid, an inorganic solution such as sulfuric acid, hydrochloric acid, sodium hydroxide, ammonia or the like is used.
When a catalyst salt solution having the above composition is used and the catalyst salt is applied by immersion under the above conditions, Sn adhered to the substrate surface by washing with water2+-Pd2+The complex of2+Is precipitated as Sn (OH) Cl, and Sn (OH) Cl is dissolved by the subsequent accelerator treatment, so that the complex state has been solved.2+As a result, a redox reaction occurs, and metal Pd is generated on the substrate. This metal Pd acts as a plating catalyst.
[0024]
In addition, since the coating material made of a water-soluble or hydrolyzable polymer material may be eluted during the accelerator processing, the coating material may be removed simultaneously with the accelerator processing, or the coating material may be removed. After that, the accelerator process may be performed.
Of course, the accelerator process can be terminated before the covering material is completely eluted.
[0025]
When the thickness of the coating material made of a water-soluble or hydrolyzable polymer material is as thin as about 10 to 1000 μm, preferably about 10 to 500 μm, the above-described plating catalyst salt adheres (for example, the Sn2+-Pd2+Complex attachment), washing with water (precipitation of Sn (OH) Cl by hydrolysis of the complex), accelerator treatment (Sd (OH) Cl is dissolved, and the complex state is released during washing with water.2+In the process of applying a plating catalyst consisting of a series of operations of producing a metal Pd by oxidation-reduction reaction with the catalyst, the coating material may be completely eluted, and simultaneously with the application of the plating catalyst, the coating material is removed. It can be carried out.
In this case, the accelerator treatment is preferably performed at a temperature of the accelerator of about 40 to 80 ° C. and a contact time with the accelerator of about 30 to 120 minutes.
In addition, in the case where the coating material is provided by the injection molding method in which the base is a part of the mold after the roughening of the base, if the base and the mold are brought into close contact, the unevenness (rough surface) provided on the base ) Disappears, so a small gap is formed between the base and the mold to form an injection mold, and the coating material is also applied to this minute gap (a part that does not require a coating material). May be formed (that is, a burr is formed). Since the coating material (burr) of the minute gaps is extremely thin, the coating material can be completely eluted during the above-described plating catalyst application step.
As described above, the simultaneous application of the plating catalyst application step and the coating material removal step is not only effective in terms of the process surface, but also protects the roughened surface of the substrate, and in addition, highly accurate plating. The effect of construction can also be obtained.
[0026]
〔plating〕
As the plating method in the present invention, a known metalizing method (electroless plating method or electroplating method) can be employed.
Examples of the plating metal include copper, tin, lead, nickel, gold, and other various metals.
The plating process can be performed in multiple times or can be performed once at a time.
In addition, a preliminary plating process can also be provided after a catalyst provision process. Pre-plating can also be performed by a known metalizing method, preferably an electroless plating method, and a plating metal similar to the metal in the so-called main plating process can be used. By providing this preliminary plating step, the plating quality in the main plating step can be further improved.
Further, a post plating step can be provided. The post-plating step can also be performed by a known metalizing method, preferably an electroless plating method, and the plating metal may be the same type as the metal in the main plating step, but is different. Also good.
[0027]
[Removal of plating material]
The plating material can be removed by any method as long as it can remove the plating metal as described above. In general, a solution of an inorganic salt such as ferric chloride or cupric chloride is used. In the present invention, as in the roughening step and the plating catalyst application step, the container as described above is filled with the base after plating. It is preferable to immerse the substrate in an inorganic salt solution and rotate or swing it.
[Annealing treatment]
In the present invention, after each of the above steps is completed, annealing treatment can be performed.
By this annealing treatment, the adhesion of the plating film can be further improved.
The annealing process is preferably performed at 160 to 175 ° C. and held for 1 to 5 hours, and then gradually cooled to room temperature.
[0028]
【Example】
Example 1
[Substrate molding process]
1A (perspective view), (B) ((A) of FIG. 1 (A) using an aromatic polyester (liquid crystal polymer << using the product name "Vectra C810" manufactured by Celanese USA) >>). A substrate (single product) 1 having a shape shown in a partially cutaway view was formed.
The base body 1 has an outer dimension of 50 × 30 × 5 (mm), and has two through holes (Through Holes) 2 and 2 at diagonal positions on the top surface as shown in the figure. Yes.
A plurality of the substrates 1 are put into a polypropylene barrel container having a large number of holes, and a degreasing solution heated to 60 ° C. while rotating the container (trade name “A Screen A220” manufactured by Okuno Pharmaceutical Co., Ltd.) 50 g / Liquid (hereinafter referred to as an aqueous solution of liters as L and milliliters as mL) for 10 minutes, washed with water and degreased.
[0029]
[Roughening process of substrate surface]
An alkaline solution in which 350 to 500 g of metal Na (430 g in this example) is dissolved in 1 L of methyl alcohol is heated to 90 ° C., and a plurality of the degreased substrates 1 are put in the barrel-shaped container in the heated solution. The surface of the substrate 1 was roughened by being kept immersed for 30 to 80 minutes (40 minutes in this example) while being rotated.
In addition, when using ethyl alcohol (metal Na430g) instead of methyl alcohol, roughening was possible under the same conditions.
When isopropyl alcohol (metal Na 430 g) is used instead of methyl alcohol, the alkaline solution is heated to 60 ° C., and a plurality of the degreased substrates 1 are put in the barrel-shaped container in the solution. And then kept for 10 minutes while rotating and then mixed with chromic acid (CrO3A mixture solution of 22 wt% and concentrated sulfuric acid 54 wt%) was heated to 60 ° C., and was put in a barrel-shaped container while being rotated while being roughened.
Further, when an alkaline solution in which 350 to 500 g of NaOH (400 g in this example) was dissolved in 1 L of water was used, roughening could be performed under the same conditions as in the case of using the above methyl alcohol.
[0030]
[Substrate coating step]
As a covering material 3 heated to 150 to 260 ° C. (190 ° C. in this example) in a secondary mold in which the substrate 1 after surface roughening is set and held at 5 to 30 ° C. (10 ° C. in this example) Water-soluble polymer material (polyvinyl alcohol (hereinafter referred to as “PVA”) “using Kuraray's trade name“ Poval ”)), injection pressure of 200 to 1200 kg / cm2(In this example, 350 kg / cm2) To obtain a partially coated 3 molded article having the form shown in FIG. 2 (perspective view).
The thickness of the covering material 3 of this molded product was 1 mm and 0.5 mm.
[0031]
[Plating catalyst application step and coating material removal step]
To methyl alcohol, a mixed hydrochloric acid solution of stannous chloride and palladium chloride as a catalyst salt for plating (trade name “Enylex CT-8” manufactured by Sugawara Eugleite Co., Ltd.) was added at a rate of 20 mL / L. The solution was kept at 0 ° C., and a plurality of the above partially coated molded products were placed in the same barrel-shaped container as described above and immersed in this solution while rotating for 3 to 5 minutes (4 minutes in this example). Then, it was washed with water and immersed in hydrochloric acid (50 mL / L) heated to 60 ° C. for 60 minutes (accelerator treatment) to apply a plating catalyst to the portion other than the coating material 3 of the partially coated molded article, and to cover the coating material. 3 was removed by dissolution.
In both cases where the thickness of the covering material 3 was 1 mm and 0.5 mm, the application of the catalyst for plating and the removal of the covering material 3 were simultaneously performed satisfactorily.
[0032]
[Plating process]
While the plurality of substrates 1 after the removal of the covering material 3 are placed in the barrel-shaped container, the substrates 1 are immersed in a copper plating bath having the composition shown in Table 1 and rotated under the plating conditions shown in Table 2. After performing electroless copper plating to a thickness of 0.3 to 20.0 μm (10 μm in this example), an annealing treatment is performed by holding at 170 ° C. for 1 hour and gradually cooling to room temperature. The thing of the aspect shown in 3 was obtained.
Also, after electroless copper plating is applied to a thickness of 0.5 μm, the copper electroplating is applied to a thickness of 0.5 μm while being placed in the barrel-shaped container, and then the same annealing treatment as described above. In the case of performing the same process, a similar embodiment was obtained.
In FIG. 3, the portion indicated by reference numeral 4 is a portion plated with copper, and as shown in FIG. 3, this copper plating 4 is provided only on the plating catalyst application surface, that is, the coating material shown in FIG. 3 was applied to the portion other than the portion covered with 3 and the surface in the through hole 2.
[0033]
[Table 1]
Copper plating bath composition
CuSO4・ 5H2O: 0.04 mol / L
HCHO: 0.1 mol / L
NaOH: 0.2 mol / L
EDTA · 4Na: 0.08 mol / L
α, α'-dipyridyl: 5 to 10 ppm
PEG-1000* 1    : 50-100ppm
* 1 PEG-1000: Stabilizer (trade name, manufactured by Ebara Eugene Corporation)
[0034]
[Table 2]
Plating conditions
Bath temperature: 60-70 ° C
Air agitation: 0.1 L / L · min
Bath: 0-1dm2/ L
[0035]
Comparative Example 1
[Substrate molding process]
In the same manner as in Example 1, a substrate (single product) 11 having the shape shown in FIG. Reference numeral 12 denotes a through hole, and 11 ′ denotes a concave portion of the substrate 11.
[0036]
[Roughening process of substrate surface]
The substrate 11 was roughened in the same manner as in Example 1.
[0037]
[Plating catalyst application process]
In the concentrated sulfuric acid having a concentration of 150 mL / L, the same product name “Enilex CT-8” manufactured by Ebara Eugelite Co., Ltd. as in Example 1 was mixed as a catalyst salt for plating at a rate of 20 mL / L and kept at 30 ° C. In the solution, the surface-roughened primary molded article 11 was dipped for 3 minutes in the same manner as in Example 1 and then washed with water, and the accelerator liquid composed of sulfuric acid having a concentration of 80 mL / L was maintained at 50 ° C. It was immersed in this solution for 4 minutes, washed with water, and a plating catalyst was applied to the entire surface of the substrate 11.
[0038]
[Substrate coating step]
The base 11 after the plating catalyst is applied is set in the secondary mold, and the partially coated molded product of the embodiment shown in FIG. 5 (with the same resin as the base 11 in the recess 11 ′ in FIG. 4) by the same resin as the base 11. What was obtained by molding the covering material 13) was obtained.
[0039]
[Plating process]
The partially coated molded article was subjected to electroless copper plating in the same manner as in Example 1.
Since this copper plating has poor adhesion between the substrate 11 and the covering material 13, it can be visually recognized that the copper plating is also applied to the portion where the plating catalyst application surface of the interface is viewed.
[0040]
Example 2
[Substrate molding process]
In the same manner as in Example 1, the same substrate 1 as in Example 1 was molded.
[0041]
[Roughening process of substrate surface]
The substrate 1 was roughened in the same manner as in Example 1.
[0042]
[Substrate coating step]
As a covering material 3 heated to 150 to 260 ° C. (190 ° C. in this example) in a secondary mold in which the substrate 1 after surface roughening is set and held at 5 to 30 ° C. (10 ° C. in this example) Hydrolyzable polymer material (polylactic acid resin (using trade name “LACEA” manufactured by Mitsui Chemicals, Inc.)), injection pressure 200 to 1200 kg / cm2(In this example, 350 kg / cm2) To obtain a partially coated 3 molded article having the form shown in FIG. 2 (perspective view). The thickness of the covering material 3 of this molded product was 1.5 mm.
[0043]
[Plating catalyst application process]
As a catalyst salt for plating, the same product name “Enylex CT-8” manufactured by Ebara Eugilite as in Example 1 was added at a rate of 20 mL / L, and HCl was further added at a rate of 150 mL / L. Was kept at 30 ° C., and the partially coated molded article was immersed in this solution in the same manner as in Example 1, for 3 to 5 minutes (4 minutes in this example), and then washed with water to 30 ° C. It was immersed (accelerator treatment) in warmed hydrochloric acid (5 to 10%, 8% in this example) for 4 minutes, and a catalyst for plating was applied to portions other than the coating material 3 of the partially coated molded article.
[0044]
[Coating material removal process]
The substrate 1 after the plating catalyst was applied was immersed in an aqueous NaOH solution at a concentration of 7 wt% and 30 ° C. for 40 minutes in the same manner as in Example 1 to remove the coating material 3.
[0045]
In addition, when the thickness of the coating material 3 made of polylactic acid is 1 mm, which is the same as that of Example 1, and 0.5 mm, in any case, in the plating catalyst application step, the plating catalyst is applied at the same time. The covering material 3 could be removed.
[0046]
[Plating process]
The partially coated molded article was subjected to electroless copper plating in the same manner as in Example 1.
Further, in the same manner as in Example 1, after electroless copper plating, electrolytic copper plating was performed.
In any case, as in Example 1, only the plating catalyst application surface, that is, the portion other than the portion covered with the coating material 3 shown in FIG. Was given.
[0047]
Example 3
[Substrate molding process]
In the same manner as in Example 1, the same substrate 1 as in Example 1 was molded.
[0048]
[Substrate coating step]
The substrate 1 was set, and a hydrolyzable resin was injected in the same manner as in Example 2 to obtain a partially coated molded product similar to that in Example 1.
[0049]
[Roughening process of substrate surface]
In the same manner as in Example 1, the above partially coated molded article was added to a dimethylformamide solution having a concentration of 60 to 80% (50% in this example) heated to 35 to 60 ° C (50 ° C in this example). After immersing for 5 to 120 minutes (60 minutes in this example) to swell the portion other than the covering material 3, that is, the surface of the substrate 1, it was washed with water and then heated to 70 to 75 ° C (70 ° C in this example). Concentrated sulfuric acid (600cm3/ Dm389% phosphoric acid (100cm3/ Dm3) · Chromic acid (30 g / dm3) For 30 to 120 minutes (70 minutes in this example) to roughen the swollen portion.
[0050]
[Plating catalyst application process]
A solution obtained by adding palladium chloride (made by Okuno Pharmaceutical Co., Ltd.) as a plating catalyst salt to ethyl alcohol at a rate of 30 mL / L was heated to 50 to 90 ° C. (60 ° C. in this example). In the same manner as in Example 1, the surface-roughened molded article was immersed for 15 to 100 minutes (60 minutes in this example), then washed with water, and other than the above-mentioned surface roughened portion, that is, the covering material 3. A plating catalyst was applied to the part.
[0051]
[Coating material removal process]
In the same manner as in Example 1, the molded product after applying the catalyst was placed in a 20 to 80 ° C. (50 ° C. in this example) 5 to 20% (5% in this example) caustic soda solution for 40 to 80 minutes (in this example). 60 minutes), and the covering material 3 was hydrolyzed and removed.
[0052]
[Plating process]
In the same manner as in Example 1, electroless copper plating 4 was applied.
The copper plating 4 was applied to the portion other than the portion covered with the covering material 3 and the surface in the through hole 2 as in the case of Example 1.
[0053]
Example 4
[Substrate molding process]
In the same manner as in Example 1, the same substrate 1 as in Example 1 was molded.
[0054]
[Roughening process of substrate surface]
In the same manner as in Example 1, the entire surface of the substrate 1 was roughened.
[0055]
[Plating catalyst application process]
In the same manner as in Example 1, a plating catalyst was applied to the entire surface of the substrate 1.
[0056]
[Plating process]
An electroless copper plating with a thickness of 5 μm was applied in the same manner as in Example 1 except that the annealing treatment was not performed.
[0057]
[Coating process]
Using the same hydrolyzable resin as used in Example 2, the substrate after plating was subjected to partial coating (coating on the portion where plating was left) in the same manner as in Example 1.
[0058]
[Plating material removal process]
The part which is not coated by immersing the molded product after the coating process in a ferric chloride or cupric chloride (28 to 42 wt% << 40 wt% in this example >>) solution in the same manner as in Example 1. The plating material was removed.
[0059]
[Coating material removal process]
After the coating material was hydrolyzed and removed in the same manner as in Example 2, the same annealing treatment as in Example 1 was performed.
[0060]
Example 5
[Substrate molding process]
In the same manner as in Example 1, the same substrate 1 as in Example 1 was molded.
[0061]
[Roughening process of substrate surface]
In the same manner as in Example 1, the entire surface of the substrate 1 was roughened.
[0062]
[Plating catalyst application process]
In the same manner as in Example 1, a plating catalyst was applied to the entire surface of the substrate 1.
[0063]
[Substrate coating step]
Using the same hydrolyzable resin as used in Example 2, a partially coated molded article similar to Example 1 was obtained in the same manner as in Example 1.
[0064]
[Plating process]
Electroless copper plating with a thickness of 1 to 5 μm was performed in the same manner as in Example 1 except that the annealing treatment was not performed.
[0065]
[Coating material removal process]
In the same manner as in Example 1, it was immersed in a 4 to 25% caustic soda solution at 60 to 90 ° C. for 1 to 3 hours to hydrolyze and remove the coating material.
[0066]
[Post-plating process]
In the same manner as in Example 1, electroless copper plating with a thickness of 1 to 20 μm was again applied to the entire surface of the molded article on which electroless copper plating was applied.
[0067]
Example 6
Except for using PVA as a coating material and treating the plating with aluminum chloride and lithium aluminum hydroxide in a tetrahydrofuran solution to obtain an aluminum plating with a thickness of 0.5 to 2.5 μm (in this example 2 μm), Example 4 was repeated.
[0068]
Example 7
[Substrate molding process]
A base (aggregate base) 21 having the shape shown in FIG. 6 (perspective view) is molded from an aromatic polyester (liquid crystal polymer << using the trade name “Vectra C810” manufactured by Celanese, USA>) using a primary mold. did.
The external dimensions of the substrate 21 are a≈40 mm, b≈5 mm, c≈4 mm, d≈7 mm, and e≈2 mm. As shown in the figure, a plurality of through holes are formed on the top surface in two straight lines. It has holes (Through Hole) 2, 2,.
A plurality of aggregate substrates 21 are placed in a polypropylene barrel-shaped container having a large number of holes, and a degreasing solution heated to 60 ° C. while rotating the container (trade name “A Screen A220” manufactured by Okuno Pharmaceutical Co., Ltd.). (50 g / L aqueous solution) for 10 minutes, washed with water and degreased.
[0069]
[Roughening process of substrate surface]
An alkaline solution in which 430 g of metal Na is dissolved in 1 L of methyl alcohol is heated to 90 ° C., and a plurality of the degreased substrates 21 are immersed in the heated barrel solution while rotating in the barrel-shaped container. The surface of the substrate 21 was roughened by holding for 40 minutes.
In addition, when using ethyl alcohol (metal Na430g) instead of methyl alcohol, roughening was possible under the same conditions.
When isopropyl alcohol (metal Na 430 g) is used instead of methyl alcohol, the alkaline solution is heated to 60 ° C., and a plurality of the degreased substrates 21 are placed in the barrel-shaped container. And then kept for 10 minutes while rotating and then mixed with chromic acid (CrO3A mixture solution of 22 wt% and concentrated sulfuric acid 54 wt%) was heated to 60 ° C., and was put in a barrel-shaped container while being rotated while being roughened.
Furthermore, when an alkaline solution in which 400 g of NaOH was dissolved in 1 L of water was used, roughening could be performed under the same conditions as in the case of using the above methyl alcohol.
[0070]
[Substrate coating step]
A hydrolyzable polymer material (polylactic acid resin << trade name of Mitsui Chemicals, Inc.} as a coating material 3 heated to 190 ° C is placed in a secondary mold in which the substrate 21 after surface roughening is set and held at 10 ° C. LACEA "" >>), injection pressure 350 kg / cm27 (A) (overall perspective view), (B) (an explanatory view of the α-α line cutting portion in FIG. 7 (A)), (C) (partially cutaway view of FIG. 7 (B)) The partially coated 3 molded product (collected molded product) having the form shown in FIG. The thickness of the covering material 3 of this molded product was 1 mm and 0.5 mm.
[0071]
[Plating catalyst application step and coating material removal step]
To methyl alcohol, a mixed hydrochloric acid solution of stannous chloride and palladium chloride as a catalyst salt for plating (trade name “Enylex CT-8” manufactured by Sugawara Eugleite Co., Ltd.) was added at a rate of 20 mL / L. In this solution, a plurality of the above partially coated molded products are placed in a barrel-like container similar to the above, immersed in the container while rotating for 4 minutes, washed with water, and heated to 60 ° C. It was immersed in warm hydrochloric acid (50 mL / L) for 60 minutes (accelerator treatment), and a catalyst for plating was applied to portions other than the coating material 3 of the partially coated molded article, and the coating material 3 was dissolved and removed.
In both cases where the thickness of the covering material 3 was 1 mm and 0.5 mm, the application of the catalyst for plating and the removal of the covering material 3 were simultaneously performed satisfactorily.
[0072]
[Plating process]
While the plurality of substrates 21 after the removal of the covering material 3 are placed in the barrel-shaped container, the substrates 21 are immersed in a pre-plating bath having the composition shown in Table 3 and rotated under the plating conditions shown in the same table. After applying electroless copper plating to a thickness of 0.5 to 1.5 μm (1 μm in this example), it is immersed in a main plating bath having the composition shown in Table 4 and rotated. Under the plating conditions shown, electroless copper plating was performed on the preliminary plating so as to have a thickness of 9.5 to 8.5 μm (9 μm in this example), so that the total plating thickness was 10 μm.
In addition, after this copper plating, post-plating such as electroless Ni plating / electroless Au plating, or electric Ni plating / electrical Au plating can be performed, and the same annealing treatment as in the first embodiment is performed as a final process. You can also.
The cross-sectional view of FIG. 8 schematically shows a portion plated in this example. In FIG. 8, the portion indicated by reference numeral 4 is a portion plated with copper (or post-plating such as Ni plating / Au plating after copper plating). As shown in FIG. 8, this plating 4 is used for plating. Only the catalyst application surface, that is, the portion other than the portion covered with the coating material 3 shown in FIGS. 7A to 7C and the surface in the through hole 2 were applied.
[0073]
[Table 3]
Preliminary (copper) plating bath composition and conditions
CuSO4・ 5H2O: 0.04 mol / L
HCHO (37% solution): 0.3 mol / L
NaOH: pH 12.2
EDTA · 4Na: 0.10 mol / L
Stabilizer* 1            :Slightly
Bath temperature: 35 ° C
* 1 Stabilizer: Metal (metal ion) system
[0074]
[Table 4]
This (copper) plating bath composition and conditions
CuSO4・ 5H2O: 0.04 mol / L
HCHO (37% solution): 0.06 mol / L
NaOH: pH 12
EDTA · 4Na: 0.1 mol / L
Stabilizer* 1            :Slightly
Bath temperature: 65 ° C
Plating speed: 2.5 μm / hr
[0075]
Then, it cut along the virtual line shown with a dotted line in FIG. 6, and obtained the chip component of the shape shown in FIG. 9 (perspective view).
[0076]
Example 8
The aggregate substrate 21 of Example 7 was used and coated in the manner shown in FIGS. 7A to 7C, and the pre-plating bath composition / conditions shown in Table 3 of Example 7 and the present plating bath composition / Except for the conditions, plating was performed in the same manner as in Example 3, and then cut in the same manner as in Example 7 to obtain a chip component having the shape shown in FIG. 9 (perspective view).
[0077]
Example 9
The aggregate substrate 21 of Example 7 was used and coated in the manner shown in FIGS. 7A to 7C, and the pre-plating bath composition / conditions shown in Table 3 of Example 7 and the present plating bath composition / Except for the conditions, plating was performed in the same manner as in Example 4, and then cut in the same manner as in Example 7 to obtain a chip component having the shape shown in FIG. 9 (perspective view).
[0078]
Example 10
The aggregate substrate 21 of Example 7 was used and coated in the manner shown in FIGS. 7A to 7C, and the pre-plating bath composition / conditions shown in Table 3 of Example 7 and the present plating bath composition / Except for the conditions, plating was performed in the same manner as in Example 5, and then cut in the same manner as in Example 7 to obtain a chip component having the shape shown in FIG. 9 (perspective view).
[0079]
Example 11
Except for using PVA as a coating material and treating the plating with aluminum chloride and lithium aluminum hydroxide in a tetrahydrofuran solution to obtain an aluminum plating with a thickness of 0.5 to 2.5 μm (in this example 2 μm), Example 9 was repeated.
[0080]
【The invention's effect】
According to the present invention, the conventional resist coating / curing / removing step can be omitted, and therefore there is no concern about environmental problems due to the organic solvent, and the step can be shortened.
In addition, it is possible to provide high-quality electronic / electrical parts with high dimensional accuracy and high electrical conductivity.
[Brief description of the drawings]
1A and 1B are diagrams showing an example of the shape of a base used in an embodiment of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a partially cutaway view of FIG.
FIG. 2 is a perspective view showing an example of a state in which a covering material is applied to the base body of FIG.
FIG. 3 is a perspective view showing an example of a state in which electroless plating is applied to that of FIG.
FIG. 4 is a view showing an example of a substrate used in a comparative example of the present invention.
5 is a perspective view showing an example of a state in which a covering material is applied to the base body of FIG. 4;
FIG. 6 is a perspective view showing an example of the shape of a collective substrate used in another embodiment of the present invention.
7 is a view showing an example of a state in which a covering material is applied to the aggregate base body of FIG. 6; FIG. (C) is a partially cutaway view of (B).
8 is a partial cross-sectional view showing a state in which the aggregate base body of FIG. 6 is plated when the covering material of FIG. 7 is applied.
9 is a perspective view showing a state in which the collective plating product plated in the state of FIG. 8 is cut into each chip part. FIG.
[Explanation of symbols]
1,11,21 substrate
2,12 holes
3,13 Coating material
4 plating

Claims (6)

メッキ用触媒を用いて基体を部分的にメッキする方法であって、前記基体は、基体を多数集合させた集合基体であり、該基体を入れた容器をメッキ用触媒液中に浸漬して行うメッキ用触媒の付与工程の前又は後に、メッキ施工面又はメッキ施工面以外の部分にポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程を設けることを特徴とする基体の部分的メッキ方法。A method for partially plating the substrate using the plating catalyst, the substrate is a collection substrate were assembled many substrates, performed by immersing the vessel containing the substrate to the catalyst solution for plating Before or after the plating catalyst application step, partially coated with polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acid on the plating surface or a portion other than the plating surface A method of partially plating a substrate, comprising the step of coating the substrate. (1)前記基体の表面を粗化する工程、
(2)粗化面をポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(3)被覆面以外の表面にメッキ用触媒を付与する工程、
(4)被覆材を除去する工程、
(5)触媒付与面にメッキする工程、
をこの順で経ることを特徴とする請求項記載の基体の部分的メッキ方法。
(1) a step of roughening the surface of the substrate,
(2) A step of partially covering the roughened surface with a coating material which is polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acid ,
(3) A step of applying a plating catalyst to a surface other than the coated surface,
(4) removing the covering material;
(5) a step of plating on the catalyst application surface;
The base partial plating method according to claim 1, wherein passing through in this order.
(1)前記基体の表面をポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(2)被覆面以外の表面を粗化する工程、
(3)粗化面にメッキ用触媒を付与する工程、
(4)被覆材を除去する工程、
(5)触媒付与面にメッキする工程、
をこの順で経ることを特徴とする請求項記載の基体の部分的メッキ方法。
(1) Surface polylactic acid of the substrate or, the step of partially coated with a mixture or copolymer of an aliphatic polyester composed mainly of polylactic acid coating material,
(2) a step of roughening the surface other than the coated surface;
(3) providing a plating catalyst on the roughened surface;
(4) removing the covering material;
(5) a step of plating on the catalyst application surface;
The base partial plating method according to claim 1, wherein passing through in this order.
メッキ用触媒の付与工程と被覆材の除去工程とを同時に行うことを特徴とする請求項2又は3記載の基体の部分的メッキ方法。4. The method for partially plating a substrate according to claim 2, wherein the step of applying a catalyst for plating and the step of removing the coating material are performed simultaneously. (1)前記基体の表面を粗化する工程、
(2)メッキ用触媒を付与する工程、
(3)ポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(4)被覆面以外の表面をメッキする工程、
(5)被覆材を除去する工程、
をこの順で経ることを特徴とする請求項記載の基体の部分的メッキ方法。
(1) a step of roughening the surface of the substrate,
(2) providing a plating catalyst;
(3) A step of partially coating with a coating material which is polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acid ,
(4) a step of plating a surface other than the coated surface;
(5) a step of removing the covering material;
The base partial plating method according to claim 1, wherein passing through in this order.
(1)前記基体の表面を粗化する工程、
(2)メッキ用触媒を付与する工程、
(3)メッキする工程、
(4)ポリ乳酸又は、ポリ乳酸を主体とする脂肪族ポリエステルとの混合体又は共重合体である被覆材で部分的に被覆する工程、
(5)被覆面以外の面のメッキ材を除去する工程、
(6)被覆材を除去する工程、
をこの順で経ることを特徴とする請求項記載の基体の部分的メッキ方法。
(1) a step of roughening the surface of the substrate,
(2) providing a plating catalyst;
(3) plating step,
(4) A step of partially coating with a coating material which is polylactic acid or a mixture or copolymer with an aliphatic polyester mainly composed of polylactic acid ,
(5) a step of removing the plating material on the surface other than the coated surface;
(6) a step of removing the covering material;
The base partial plating method according to claim 1, wherein passing through in this order.
JP2000386348A 1999-12-21 2000-12-20 Substrate partial plating method Expired - Fee Related JP4610079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386348A JP4610079B2 (en) 1999-12-21 2000-12-20 Substrate partial plating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36333699 1999-12-21
JP11-363336 1999-12-21
JP2000386348A JP4610079B2 (en) 1999-12-21 2000-12-20 Substrate partial plating method

Publications (2)

Publication Number Publication Date
JP2001240975A JP2001240975A (en) 2001-09-04
JP4610079B2 true JP4610079B2 (en) 2011-01-12

Family

ID=26581472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386348A Expired - Fee Related JP4610079B2 (en) 1999-12-21 2000-12-20 Substrate partial plating method

Country Status (1)

Country Link
JP (1) JP4610079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095808A (en) * 2019-02-01 2020-08-11 주식회사 익스톨 Passive component plating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095909B2 (en) * 2003-06-24 2012-12-12 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Catalyst composition and deposition method
JP2009062609A (en) * 2007-08-15 2009-03-26 Sankyo Kasei Co Ltd Method for producing forming circuit component
KR101121388B1 (en) * 2008-12-22 2012-03-09 윤숙규 Manufacturing method of partial plating product and partial plating product
JP5332058B2 (en) * 2009-01-09 2013-11-06 アキレス株式会社 Manufacturing method of molded circuit components
JP5604692B2 (en) * 2010-05-24 2014-10-15 三共化成株式会社 A method for forming a selective electroless plating layer.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217692A (en) * 1982-06-11 1983-12-17 Nishiyama Stainless Chem Kk Masking agent used in plating
JPS63105973A (en) * 1986-09-15 1988-05-11 ゼネラル・エレクトリック・カンパニイ Optical selective metal deposition method
JPH05106056A (en) * 1991-10-11 1993-04-27 Okuno Seiyaku Kogyo Kk Partial plating method
JP2603828B2 (en) * 1986-12-27 1997-04-23 三共化成 株式会社 Manufacturing method of molded products such as circuit boards
JPH1117442A (en) * 1997-06-26 1999-01-22 Otsuka Chem Co Ltd Three-dimensional circuit board and manufacture of the three-dimensional circuit board
JPH11145583A (en) * 1997-11-10 1999-05-28 Sankyo Kasei Co Ltd Manufacture of molded circuit part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716157A (en) * 1980-07-02 1982-01-27 Hitachi Ltd Pretreating method for partial plating
JPH08199367A (en) * 1995-01-20 1996-08-06 Kenseidou Kagaku Kogyo Kk Formation of contact metallic layer on optional surface part of resin molded good

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217692A (en) * 1982-06-11 1983-12-17 Nishiyama Stainless Chem Kk Masking agent used in plating
JPS63105973A (en) * 1986-09-15 1988-05-11 ゼネラル・エレクトリック・カンパニイ Optical selective metal deposition method
JP2603828B2 (en) * 1986-12-27 1997-04-23 三共化成 株式会社 Manufacturing method of molded products such as circuit boards
JPH05106056A (en) * 1991-10-11 1993-04-27 Okuno Seiyaku Kogyo Kk Partial plating method
JPH1117442A (en) * 1997-06-26 1999-01-22 Otsuka Chem Co Ltd Three-dimensional circuit board and manufacture of the three-dimensional circuit board
JPH11145583A (en) * 1997-11-10 1999-05-28 Sankyo Kasei Co Ltd Manufacture of molded circuit part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095808A (en) * 2019-02-01 2020-08-11 주식회사 익스톨 Passive component plating method
KR102210873B1 (en) * 2019-02-01 2021-02-02 주식회사 익스톨 Passive component plating method

Also Published As

Publication number Publication date
JP2001240975A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP4036571B2 (en) Substrate partial plating method
KR100495340B1 (en) Method for partially plating on a base
EP2007931B1 (en) Polyimide substrate and method of manufacturing printed wiring board using the same
KR20120107515A (en) Method of producing formed circuit component
JP2009302081A (en) Method for producing molded interconnect device
JP4610079B2 (en) Substrate partial plating method
JP3343522B2 (en) Manufacturing method of plastic molded products
KR101298746B1 (en) Metallization process of non-conductive polymer substrates using wet surface treatment technology
US3632704A (en) Method for modifying electrically nonconductive surfaces for electroless plating
JP4331840B2 (en) Fine plating method
JP4311853B2 (en) Method of partial plating on the inner surface of a cylinder
JP4646376B2 (en) Accelerator bath solution for direct plating and direct plating method
JP4722254B2 (en) Tubular inner helical antenna
US5178956A (en) Pretreatment process for electroless plating of polyimides
JP2002094218A (en) Method of manufacturing molded circuit component
JP2016132791A (en) Electronic/electrical component
US5441770A (en) Conditioning process for electroless plating of polyetherimides
JP2001308497A (en) Stereoscopic circuit board and method for manufacturing the same
JPH0236075B2 (en)
JP2009062609A (en) Method for producing forming circuit component
JPH07326843A (en) Manufacture of three-dimensional wiring substrate
JP2010504438A (en) How to metalize parts
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JPH08293646A (en) Printed-wiring board and manufacture thereof
CN113564569A (en) Chemical coarsening and metallization process method of LCP plastic

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees