JP2009247085A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2009247085A
JP2009247085A JP2008089162A JP2008089162A JP2009247085A JP 2009247085 A JP2009247085 A JP 2009247085A JP 2008089162 A JP2008089162 A JP 2008089162A JP 2008089162 A JP2008089162 A JP 2008089162A JP 2009247085 A JP2009247085 A JP 2009247085A
Authority
JP
Japan
Prior art keywords
coolant
boundary wall
rotating electrical
electrical machine
bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008089162A
Other languages
Japanese (ja)
Inventor
Koji Masuno
浩二 増野
Yasuyuki Saito
泰行 齋藤
Tsuyoshi Goto
剛志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008089162A priority Critical patent/JP2009247085A/en
Publication of JP2009247085A publication Critical patent/JP2009247085A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water channel structure that prevent the degradation in cooling efficiency due to stagnation of cooling water that occurs in proximity to a cooling liquid discharge port. <P>SOLUTION: A rotary electric machine includes a stator 3 and a rotor 4 rotatably held in the stator 3 with a predetermined gap in-between. A cooling liquid passage 15 is positioned on the outer circumferential surface of the stator 3 and is formed in a band shape in the circumferential direction by a bracket. The cooling liquid passage 15 includes: a boundary wall 131; a cooling liquid feed port 111 provided on one side of the boundary wall 131; and a cooling liquid discharge port 112 provided on the other side. The boundary wall 131 is so formed that the distance between the boundary wall 131 and the cooling liquid discharge port 112 is shorter than the distance between the boundary wall 131 and the cooling liquid feed port 111. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転電機に関する。   The present invention relates to a rotating electrical machine.

自動車に使用される電気/電子機器は小型化ならびに高出力が求められており、回転電機においては電流量の増加による固定子導体で発生した熱を冷却するため、冷却水やオイルによる強制冷却が不可欠になってきている。   Electric / electronic devices used in automobiles are required to be smaller and have higher output. In rotating electrical machines, forced cooling with cooling water or oil is used to cool the heat generated in the stator conductor due to an increase in the amount of current. It is becoming essential.

水冷式の回転電機としては、冷却液導入口と排出口とを近接して設け、その間を境界壁によって分断した帯状の水路構造により構成されたものが知られている(例えば、特許文献1参照)。また、ハウジングに軸方向と平行な仕切りを有し、ハウジング開口部のブラケットに折り返しの流路を設け、水路を蛇行させる構造が知られている(例えば、特許文献2参照)。   As a water-cooled rotating electrical machine, there is known a water-cooled rotating electrical machine having a belt-like water channel structure in which a coolant introduction port and a discharge port are provided close to each other and divided between them by a boundary wall (for example, see Patent Document 1). ). Further, there is known a structure in which a housing has a partition parallel to the axial direction, a folded flow path is provided in a bracket at the housing opening, and the water channel is meandered (for example, see Patent Document 2).

特開2004−364429号公報JP 2004-364429 A 特開2007−20333号公報JP 2007-20333 A

冷却液排出口付近では液体の流れによどみが発生し、よどんだ部分の冷却効率が下がる。また水路構造が複雑なものは、水路内の圧力損失を低く押さえることが困難である。従来技術では、これらの問題が十分に考慮されていなかった。   In the vicinity of the coolant discharge port, stagnation occurs due to the flow of the liquid, and the cooling efficiency of the stagnation portion decreases. Moreover, when the water channel structure is complicated, it is difficult to keep the pressure loss in the water channel low. The prior art has not fully considered these problems.

本発明の目的は、より冷却効果の高い回転電機の冷却構造を提供することである。   An object of the present invention is to provide a cooling structure for a rotating electrical machine having a higher cooling effect.

本発明は、固定子の外周に位置し、ブラケットによって周方向に帯状に形成された冷却液通路と、冷却通路に形成された境界壁と、境界壁を挟んで一方に設けられた冷却液導入口と、その他方に設けられた冷却液排出口と、を有し、境界壁と冷却液導入口との距離よりも、境界壁と冷却液排出口との距離の方が小さい回転電機である。   The present invention is located on the outer periphery of the stator, the coolant passage formed in a belt shape in the circumferential direction by the bracket, the boundary wall formed in the cooling passage, and the coolant introduction provided on one side across the boundary wall A rotating electrical machine having a mouth and a coolant discharge port provided on the other side, wherein the distance between the boundary wall and the coolant discharge port is smaller than the distance between the boundary wall and the coolant introduction port .

本発明によれば、より冷却効果の高い回転電機の冷却構造が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling structure of the rotary electric machine with a higher cooling effect is obtained.

以下、本発明の実施形態を、ハイブリッド自動車に使用される回転電気を用いて説明する。本実施形態の回転電機は、車両の車輪を駆動するモータの機能と、回生を利用して発電を行う発電機の機能を有しており、車両の走行状況に応じてそれらの機能を切り替えて使用される。   Hereinafter, an embodiment of the present invention will be described using rotating electricity used in a hybrid vehicle. The rotating electrical machine of the present embodiment has a function of a motor that drives the wheels of the vehicle and a function of a generator that generates power using regeneration, and switches between these functions according to the traveling state of the vehicle. used.

図1は、本発明の一実施例をなす誘導型回転電機の側面断面図を示す。図2は図1の正面断面図、図3は図1のセンターブラケットの斜視図、図4は図1の冷却液通路の模式図を示す。   FIG. 1 is a side sectional view of an induction type rotating electrical machine that constitutes an embodiment of the present invention. 2 is a front sectional view of FIG. 1, FIG. 3 is a perspective view of the center bracket of FIG. 1, and FIG. 4 is a schematic view of the coolant passage of FIG.

軸方向の一端が開口した器型のリアブラケット11と、その開口部を塞ぐフロントブラケット12を有する。リアブラケット11の軸方向後部には冷却液導入口111と冷却液排出口112をL=30mm〜50mm程度隔てて設けており、センターブラケット13をO−リング等の漏水防止部品を介して内接して有している。センターブラケット13は軸方向前部にてリアブラケット11とフロントブラケット12に挟まれており、複数本のボルトによって一括固定されている。冷却液通路15は、固定子3の外周に位置し、センターブラケット13とリアブラケット11に挟まれて、回転電機100の周方向に帯状に形成されている。   It has a container-shaped rear bracket 11 with one end opened in the axial direction, and a front bracket 12 that closes the opening. A coolant introduction port 111 and a coolant discharge port 112 are provided at a rear portion in the axial direction of the rear bracket 11 so as to be separated from each other by about L = 30 mm to 50 mm. Have. The center bracket 13 is sandwiched between the rear bracket 11 and the front bracket 12 at the front part in the axial direction, and is fixed together by a plurality of bolts. The coolant passage 15 is located on the outer periphery of the stator 3, sandwiched between the center bracket 13 and the rear bracket 11, and formed in a belt shape in the circumferential direction of the rotating electrical machine 100.

図3に示すようにセンターブラケット13は幅2mm〜5mm程度の突起である境界壁131を有し、その境界壁131が冷却液導入口111と冷却液排出口112との間に位置し、さらに図2に示すように冷却液導入口111または冷却液排出口112に近い側になるようにリアブラケット11と組み合わされる。センターブラケット13には焼き嵌め或いは圧入等により固定される固定子3を有し、その内側に回転可能に保持された回転子4を有する。またさらに、リアブラケット11と軸44にはレゾルバ等の回転検出用のセンサー51が取付けられている。   As shown in FIG. 3, the center bracket 13 has a boundary wall 131 that is a protrusion having a width of about 2 mm to 5 mm, and the boundary wall 131 is positioned between the coolant introduction port 111 and the coolant discharge port 112. As shown in FIG. 2, the rear bracket 11 is combined with the coolant introduction port 111 or the coolant discharge port 112. The center bracket 13 includes a stator 3 that is fixed by shrink fitting or press fitting, and a rotor 4 that is rotatably held inside the center bracket 13. Further, a rotation detection sensor 51 such as a resolver is attached to the rear bracket 11 and the shaft 44.

固定子3は、電磁鋼板を積層してなる固定子鉄心31に設けられた複数のスロット33に絶縁紙を隔てて固定子コイル32を巻装してなる。   The stator 3 is formed by winding a stator coil 32 around a plurality of slots 33 provided in a stator core 31 formed by laminating electromagnetic steel plates with insulating paper therebetween.

回転子4は、電磁鋼板を積層してなる回転子鉄心41に設けられた複数のスロット45に挿入された複数本の導体バー42とそれらを接続する短絡環43を軸方向の前後に有する。回転子鉄心41は軸44と焼き嵌め或いは圧入によって締結され、軸44はリアブラケット11とフロントブラケット12に設けられた軸受を介して回転可能に保持され、フロントブラケット12より突出した部分から動力を伝える。   The rotor 4 has a plurality of conductor bars 42 inserted into a plurality of slots 45 provided in a rotor core 41 formed by laminating electromagnetic steel plates, and a short-circuit ring 43 connecting them in front and rear in the axial direction. The rotor core 41 is fastened to the shaft 44 by shrink fitting or press-fitting. The shaft 44 is rotatably held via bearings provided on the rear bracket 11 and the front bracket 12, and receives power from a portion protruding from the front bracket 12. Tell.

上記構成の回転電機は車両(図示省略)のエンジンルーム内に設置され、ベルトを介して駆動力を伝達する。また、3相の電源ケーブルでインバータ等の制御装置と接続され、駆動及び発電の制御が行われる。   The rotating electrical machine having the above-described configuration is installed in an engine room of a vehicle (not shown) and transmits driving force via a belt. Further, it is connected to a control device such as an inverter by a three-phase power cable, and drive and power generation are controlled.

図4に示すように、境界壁131は冷却液排出口112からの距離Dが0mm<D<(L/2)となるように設けられる。従って、境界壁131と冷却液導入口111との距離よりも、境界壁131と冷却液排出口112との距離の方が小さくなる。境界壁131の冷却液排出口112側では冷却液がよどむ領域が低減される。逆に冷却液導入口111側では、冷却液導入口111から流れ込んだ冷却液は境界壁131付近まで回るように流れるので、冷却液導入口111と冷却液排出口112の間の領域での冷却効率が向上する。また、よどみが減少し冷却液排出の流れがスムーズになることで、圧力損失の低減になる。   As shown in FIG. 4, the boundary wall 131 is provided such that the distance D from the coolant discharge port 112 is 0 mm <D <(L / 2). Therefore, the distance between the boundary wall 131 and the coolant discharge port 112 is smaller than the distance between the boundary wall 131 and the coolant introduction port 111. The region where the coolant stagnates is reduced on the coolant discharge port 112 side of the boundary wall 131. Conversely, on the coolant introduction port 111 side, the coolant flowing from the coolant introduction port 111 flows so as to turn to the vicinity of the boundary wall 131, so that cooling in the region between the coolant introduction port 111 and the coolant discharge port 112 is performed. Efficiency is improved. In addition, stagnation is reduced and the flow of coolant discharge is smoothed, so that pressure loss is reduced.

さらに、センターブラケット13に境界壁131をダイカスト等の鋳造により一体成型することが出来るので、境界壁131を別部品で設ける必要がなく部品点数を減らすことができ、コストを押さえることができる。また、リアブラケット11とセンターブラケット13の2部品を使用して冷却液通路15を構成するため、ハウジングに深い溝を設けて水路を構成するときに比べて、鋳造しやすく型寿命を延ばすことが出来る。   Furthermore, since the boundary wall 131 can be integrally formed with the center bracket 13 by casting such as die casting, the boundary wall 131 does not need to be provided as a separate part, so that the number of parts can be reduced and the cost can be reduced. In addition, since the coolant passage 15 is configured by using the two parts of the rear bracket 11 and the center bracket 13, it is easier to cast and prolong the mold life as compared with the case where a water channel is formed by providing a deep groove in the housing. I can do it.

第2の実施例を図5を用いて説明する。ただし、上記実施例1と同様の箇所は説明を省略する。   A second embodiment will be described with reference to FIG. However, the description of the same parts as in the first embodiment is omitted.

本実施例では境界壁131を直線ではなく略V字型とし、冷却液の流れに沿って冷却液排出口112へ向けて流路を絞ることで冷却液排出口112側において冷却液がよどむ領域を無くし、冷却効率を高めることができる構造である。   In this embodiment, the boundary wall 131 is not a straight line but is substantially V-shaped, and the flow path is narrowed toward the cooling liquid discharge port 112 along the flow of the cooling liquid so that the cooling liquid stagnates on the cooling liquid discharge port 112 side. It is a structure that can eliminate cooling and increase cooling efficiency.

第3の実施例を図6を用いて説明する。ただし、上記実施例1と同様の箇所は説明を省略する。   A third embodiment will be described with reference to FIG. However, the description of the same parts as in the first embodiment is omitted.

本実施例では境界壁131を曲線状に形成し、冷却液排出口112を囲うように配置する。これにより排出される冷却液がよどむことなく冷却液排出口112へ導かれ、また導入口111から流入した温度の低い冷却液が循環される領域が広くなることでより冷却効率を向上させることができる。   In the present embodiment, the boundary wall 131 is formed in a curved shape and arranged so as to surround the coolant discharge port 112. As a result, the discharged coolant is guided to the coolant discharge port 112 without stagnation, and the cooling temperature can be further improved by widening the region where the coolant having a low temperature flowing from the introduction port 111 is circulated. it can.

第4の実施例を図7を用いて説明する。ただし、上記実施例1と同様の箇所は説明を省略する。   A fourth embodiment will be described with reference to FIG. However, the description of the same parts as in the first embodiment is omitted.

図7は、境界壁131に隙間を設けて、意図的に冷却液が冷却液導入口111側から冷却液排出口112側へ流れる事ができるようにした水路構造の境界壁131部分の拡大図である。リアブラケット11とセンターブラケット13に設けられた境界壁131の間を、境界壁131の高さを調節することによって水路幅の全てまたは一部に0.1mm〜1mm程度の隙間を設けている。   FIG. 7 is an enlarged view of the boundary wall 131 portion of the water channel structure in which a gap is provided in the boundary wall 131 so that the coolant can intentionally flow from the coolant introduction port 111 side to the coolant discharge port 112 side. It is. By adjusting the height of the boundary wall 131 between the rear bracket 11 and the boundary bracket 131 provided in the center bracket 13, a clearance of about 0.1 mm to 1 mm is provided in all or part of the channel width.

本実施例によれば、温度の比較的低い導入口側の冷却液が温度の比較的高い排出口側の冷却液と混合されるため、境界壁131を挟んだ両側での温度差を低減することができ、固定子コイルをより均一に冷却することが可能である。またリアブラケット11と境界壁131間の嵌め合いを隙間にするため、センターブラケット13製造時に境界壁131の上部を加工する必要が無くなるため、製造の工数を減らすことが可能である。   According to this embodiment, since the coolant on the inlet side having a relatively low temperature is mixed with the coolant on the outlet side having a relatively high temperature, the temperature difference between both sides of the boundary wall 131 is reduced. And the stator coil can be cooled more uniformly. In addition, since the fitting between the rear bracket 11 and the boundary wall 131 is a gap, it is not necessary to process the upper part of the boundary wall 131 when manufacturing the center bracket 13, so that the number of manufacturing steps can be reduced.

さらに、境界壁131が回転電機の上方に設けられ、隙間を冷却液排出口112近傍に配置した場合は、冷却液導入口111付近に残る空気を抜きやすくなり、冷却効率を向上させることが出来る。   Further, when the boundary wall 131 is provided above the rotating electrical machine and the gap is arranged in the vicinity of the coolant discharge port 112, it is easy to remove air remaining in the vicinity of the coolant introduction port 111, and the cooling efficiency can be improved. .

第5の実施例を図9を用いて説明する。ただし、上記実施例1と同様の箇所は説明を省略する。   A fifth embodiment will be described with reference to FIG. However, the description of the same parts as in the first embodiment is omitted.

本実施例では境界壁131は冷却液通路15の中心に形成され、冷却液通路15の両端には冷却液が移動可能な0.5mm〜2mm程度の隙間が設けられている。境界壁131は好ましくは、冷却液排出口112を囲うように屈曲しており、両側の隙間に向かって冷却液が流れやすい形状をしている。本実施例によれば、温度の比較的低い導入口側の冷却液が温度の比較的高い排出口側の冷却液と混合されるため、境界壁131を挟んだ両側での温度差を低減することができ、固定子コイルをより均一に冷却することが可能である。また、冷却液の流れ難い冷却液通路15の端へ冷却液を流すことが出来るので、回転電機の軸方向への冷却効果が高まる。   In this embodiment, the boundary wall 131 is formed at the center of the coolant passage 15, and gaps of about 0.5 mm to 2 mm are provided at both ends of the coolant passage 15 so that the coolant can move. The boundary wall 131 is preferably bent so as to surround the coolant discharge port 112 and has a shape in which the coolant can easily flow toward the gaps on both sides. According to this embodiment, since the coolant on the inlet side having a relatively low temperature is mixed with the coolant on the outlet side having a relatively high temperature, the temperature difference between both sides of the boundary wall 131 is reduced. And the stator coil can be cooled more uniformly. In addition, since the coolant can flow to the end of the coolant passage 15 where it is difficult for the coolant to flow, the cooling effect in the axial direction of the rotating electrical machine is enhanced.

上記の実施形態によれば、圧力損失を増加させること無く、冷却液排出口付近のよどみが無くなり、冷却液通路内での部分的な温度上昇を防ぐことが出来る為、冷却水路内の温度分布がより均一になり冷却効率が上がるという効果が得られる。   According to the above embodiment, without increasing the pressure loss, there is no stagnation in the vicinity of the coolant discharge port, and a partial temperature rise in the coolant passage can be prevented. Is more uniform and the cooling efficiency is improved.

本発明の一実施例をなす誘導型回転電機の側面断面図を示す。The side sectional view of the induction type rotating electrical machine which makes one example of the present invention is shown. 図1の正面断面図を示す。FIG. 2 is a front sectional view of FIG. 1. 図1のセンターブラケットの斜視図を示す。The perspective view of the center bracket of FIG. 1 is shown. 図1の冷却液通路の模式図を示す。The schematic diagram of the cooling fluid channel | path of FIG. 1 is shown. 本発明の一実施例をなす冷却液通路の模式図を示す。The schematic diagram of the cooling fluid path | route which makes one Example of this invention is shown. 本発明の一実施例をなす冷却液通路の模式図を示す。The schematic diagram of the cooling fluid path | route which makes one Example of this invention is shown. 本発明の一実施例をなす冷却液通路の断面図を示す。1 is a cross-sectional view of a coolant passage that constitutes an embodiment of the present invention. 本発明の一実施例をなす冷却液通路の模式図を示す。The schematic diagram of the cooling fluid path | route which makes one Example of this invention is shown. 本発明の一実施例をなす冷却液通路の模式図を示す。The schematic diagram of the cooling fluid path | route which makes one Example of this invention is shown.

符号の説明Explanation of symbols

3 固定子
4 回転子
11 リアブラケット
12 フロントブラケット
13 センターブラケット
15 冷却液通路
111 冷却水導入口
112 冷却水排出口
131 境界壁
3 Stator 4 Rotor 11 Rear bracket 12 Front bracket 13 Center bracket 15 Coolant passage 111 Cooling water inlet 112 Cooling water outlet 131 Boundary wall

Claims (6)

固定子と、
前記固定子の内部に所定のギャップを介して回転可能に保持された回転子と、
前記固定子の外周に位置し、ブラケットによって周方向に帯状に形成された冷却液通路と、
当該冷却通路に形成された境界壁と、
前記境界壁を挟んで一方に設けられた冷却液導入口と、
その他方に設けられた冷却液排出口と、を有し、
前記境界壁と前記冷却液導入口との距離よりも、前記境界壁と前記冷却液排出口との距離の方が小さい回転電機。
A stator,
A rotor held rotatably inside the stator through a predetermined gap;
A coolant passage located on the outer periphery of the stator and formed in a band shape in the circumferential direction by a bracket;
A boundary wall formed in the cooling passage;
A coolant inlet provided on one side of the boundary wall;
A coolant outlet provided on the other side,
A rotating electrical machine in which a distance between the boundary wall and the coolant discharge port is smaller than a distance between the boundary wall and the coolant introduction port.
請求項1に記載の回転電機であって、
前記固定子の外周にセンターブラケット、前記センターブラケットよりも前記冷却液導入口または前記冷却液排出口側にリアブラケット、前記センターブラケットの反リアブラケット側にフロントブラケットを有し、
前記冷却液通路は、前記センターブラケットと前記リアブラケットの間に形成されている回転電機。
The rotating electrical machine according to claim 1,
A center bracket on the outer periphery of the stator, a rear bracket on the coolant introduction port or the coolant discharge port side of the center bracket, a front bracket on the opposite side of the center bracket,
The cooling fluid passage is a rotating electrical machine formed between the center bracket and the rear bracket.
請求項2に記載の回転電機であって、
前記境界壁は、前記センターブラケットの一部をなす突起である回転電機。
The rotating electrical machine according to claim 2,
The rotating electric machine is a rotating electric machine in which the boundary wall is a protrusion that forms a part of the center bracket.
請求項1に記載の回転電機であって、
前記境界壁は、前記冷却液排出口を囲うように屈曲した形に形成されている回転電機。
The rotating electrical machine according to claim 1,
The rotating electrical machine is formed such that the boundary wall is bent so as to surround the coolant discharge port.
請求項1に記載の回転電機であって、
前記境界壁は、冷却液が前記冷却液導入口側から前記冷却液排出口側へ移動可能な隙間を有する回転電機。
The rotating electrical machine according to claim 1,
The boundary wall is a rotating electrical machine having a gap through which a coolant can move from the coolant introduction port side to the coolant discharge port side.
請求項5に記載の回転電機であって、
前記筐体は内側と外側の2つのブラケットにより前記境界壁部分に隙間が形成されている回転電機。
The rotating electrical machine according to claim 5,
The casing is a rotating electrical machine in which a gap is formed in the boundary wall portion by two brackets on the inner side and the outer side.
JP2008089162A 2008-03-31 2008-03-31 Rotary electric machine Pending JP2009247085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089162A JP2009247085A (en) 2008-03-31 2008-03-31 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089162A JP2009247085A (en) 2008-03-31 2008-03-31 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2009247085A true JP2009247085A (en) 2009-10-22

Family

ID=41308397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089162A Pending JP2009247085A (en) 2008-03-31 2008-03-31 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2009247085A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145302A2 (en) * 2011-04-18 2012-10-26 Remy Technologies, Llc Electric machine module cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8513840B2 (en) 2010-05-04 2013-08-20 Remy Technologies, Llc Electric machine cooling system and method
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US20130342046A1 (en) * 2012-06-22 2013-12-26 Lg Innotek Co., Ltd. Motor
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
JP2014087232A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Rotary electric machine
JP2014107888A (en) * 2012-11-26 2014-06-09 Meidensha Corp Water channel structure of motor frame
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
JP2014236613A (en) * 2013-06-04 2014-12-15 株式会社豊田自動織機 Rotary electric machine
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
WO2015087707A1 (en) * 2013-12-11 2015-06-18 三菱電機株式会社 Drive module
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
JP2015223048A (en) * 2014-05-23 2015-12-10 東芝三菱電機産業システム株式会社 Rotary electric machine
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
JP6227091B1 (en) * 2016-11-01 2017-11-08 三菱電機株式会社 Rotating electric machine
US9866087B2 (en) 2014-10-29 2018-01-09 Mitsubishi Electric Corporation Cooling structure for cooling a stator core of a rotating electrical machine and method of manufacturing the cooling structure
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
JP2019103245A (en) * 2017-12-01 2019-06-24 日産自動車株式会社 Rotary electric machine and method of fitting lid member of rotary electric machine
US10404131B2 (en) 2014-04-28 2019-09-03 Hitachi Automotive Systems, Ltd. Dynamo-electric machine
WO2020213052A1 (en) * 2019-04-16 2020-10-22 日産自動車株式会社 Rotating electric machine
EP3840190A1 (en) * 2019-12-19 2021-06-23 Valeo Siemens eAutomotive Germany GmbH Electric machine, vehicle and stator housing for an electric machine
JP2021151060A (en) * 2020-03-18 2021-09-27 東芝産業機器システム株式会社 Cooling structure of rotary electric machine and rotary electric machine
US11855509B2 (en) 2019-07-16 2023-12-26 Hitachi Astemo, Ltd. Rotating electrical machine

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513840B2 (en) 2010-05-04 2013-08-20 Remy Technologies, Llc Electric machine cooling system and method
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
WO2012145302A3 (en) * 2011-04-18 2012-12-27 Remy Technologies, Llc Electric machine module cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
WO2012145302A2 (en) * 2011-04-18 2012-10-26 Remy Technologies, Llc Electric machine module cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
US9825503B2 (en) * 2012-06-22 2017-11-21 Lg Innotek Co., Ltd. Motor with cooling system
US20130342046A1 (en) * 2012-06-22 2013-12-26 Lg Innotek Co., Ltd. Motor
JP2014087232A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Rotary electric machine
JP2014107888A (en) * 2012-11-26 2014-06-09 Meidensha Corp Water channel structure of motor frame
JP2014236613A (en) * 2013-06-04 2014-12-15 株式会社豊田自動織機 Rotary electric machine
WO2015087707A1 (en) * 2013-12-11 2015-06-18 三菱電機株式会社 Drive module
JPWO2015087707A1 (en) * 2013-12-11 2017-03-16 三菱電機株式会社 Drive module
JP6042000B2 (en) * 2013-12-11 2016-12-14 三菱電機株式会社 Drive module
US10404131B2 (en) 2014-04-28 2019-09-03 Hitachi Automotive Systems, Ltd. Dynamo-electric machine
JP2015223048A (en) * 2014-05-23 2015-12-10 東芝三菱電機産業システム株式会社 Rotary electric machine
US9866087B2 (en) 2014-10-29 2018-01-09 Mitsubishi Electric Corporation Cooling structure for cooling a stator core of a rotating electrical machine and method of manufacturing the cooling structure
JP2018074819A (en) * 2016-11-01 2018-05-10 三菱電機株式会社 Rotary electric machine
JP6227091B1 (en) * 2016-11-01 2017-11-08 三菱電機株式会社 Rotating electric machine
JP2019103245A (en) * 2017-12-01 2019-06-24 日産自動車株式会社 Rotary electric machine and method of fitting lid member of rotary electric machine
WO2020213052A1 (en) * 2019-04-16 2020-10-22 日産自動車株式会社 Rotating electric machine
US11855509B2 (en) 2019-07-16 2023-12-26 Hitachi Astemo, Ltd. Rotating electrical machine
EP3840190A1 (en) * 2019-12-19 2021-06-23 Valeo Siemens eAutomotive Germany GmbH Electric machine, vehicle and stator housing for an electric machine
JP2021151060A (en) * 2020-03-18 2021-09-27 東芝産業機器システム株式会社 Cooling structure of rotary electric machine and rotary electric machine
JP7410763B2 (en) 2020-03-18 2024-01-10 東芝産業機器システム株式会社 Cooling structure for rotating electrical machines, rotating electrical machines

Similar Documents

Publication Publication Date Title
JP2009247085A (en) Rotary electric machine
JP6314158B2 (en) Rotating electric machine
JP4563475B2 (en) Rotating electric machine
CN108075607B (en) Rotating electrical machine
US8203240B2 (en) Liquid cooled rotating electrical machine
JP5027542B2 (en) Electric motor for vehicles
JP5392101B2 (en) Motor cooling structure
EP2466724B1 (en) Electric motor and electric vehicle having the same
JP5952204B2 (en) Power transmission device
KR20160050197A (en) Cooling unit of drive motor
JP2019161752A (en) Rotary electric machine stator
JP5240174B2 (en) Motor cooling structure
CA2756448A1 (en) Brushless lundell-type alternator with liquid cooling channels
JP5304617B2 (en) Motor cooling structure
JP5073341B2 (en) Electric motor for vehicles
CN111416456A (en) Liquid-cooled rotor for an electric machine
US9257881B2 (en) Rotating electric machine
JP2018121422A (en) Cooling structure of rotary electric machine
JP2014236616A (en) Dynamo-electric machine
JP5892091B2 (en) Multi-gap rotating electric machine
EP3764524B1 (en) Dynamo-electric machine
JP2011142787A (en) Cooling structure for electric motor
US20230268795A1 (en) Cooling jacket for cooling permanent magnet synchronous electric motor
JP2014100038A (en) Stator of rotary electric machine
JP5678561B2 (en) Motor cooling device