JP2006328138A - Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite - Google Patents
Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite Download PDFInfo
- Publication number
- JP2006328138A JP2006328138A JP2005150752A JP2005150752A JP2006328138A JP 2006328138 A JP2006328138 A JP 2006328138A JP 2005150752 A JP2005150752 A JP 2005150752A JP 2005150752 A JP2005150752 A JP 2005150752A JP 2006328138 A JP2006328138 A JP 2006328138A
- Authority
- JP
- Japan
- Prior art keywords
- resin composite
- plant fiber
- temperature
- fiber
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
本発明は、工業製品などの部材として適用される植物繊維樹脂複合成形品の製造方法及び植物繊維樹脂複合成形品に関する。 The present invention relates to a method for producing a plant fiber resin composite molded product applied as a member of an industrial product or the like and a plant fiber resin composite molded product.
プラスチックは、軽量、高強度であり、錆や腐食に強く、着色が自由、電気絶縁性に優れ、成形が容易であり、さらに大量生産が可能であるという利点を有することから、自動車、航空機、家庭用品の材料として多用されている。プラスチックの使用量が増加するに伴い廃プラスチック量も急増しており、廃プラスチックを地中に埋め、又は焼却する等して処分をしていた。しかし、埋め立て用地の確保が必要となるだけではなく、廃プラスチックの焼却により有害ガス(例えば、CO2)や悪臭等が発生し、環境を汚染してしまうという問題を有していた。 Plastics are lightweight, high-strength, strong against rust and corrosion, free to color, excellent in electrical insulation, easy to mold, and capable of mass production. It is widely used as a material for household goods. As the amount of plastic used has increased, the amount of waste plastic has also increased rapidly, and waste plastic has been disposed of by being buried or incinerated. However, it is not only necessary to secure a landfill site, but there is a problem that waste gas is incinerated to generate harmful gas (for example, CO 2 ), bad odor, etc., and pollute the environment.
そこで、近年、環境負荷の軽減を図るために、従来の石油を原料としたプラスチックに替えて、使用後に自然界の微生物によって分解される生分解性プラスチックの開発が急速に進められている。植物を原料とした生分解性プラスチックの代表例としてポリ乳酸が挙げられる。ポリ乳酸は、植物由来成分の分解物の一種である乳酸を重合して得られ、大量生産、低コスト化が可能であり、さらに、結晶性を有し、他の植物由来の樹脂と比較して物性が優れていること等から、有用性が高いとされている。 Therefore, in recent years, in order to reduce the environmental load, biodegradable plastics that are decomposed by natural microorganisms after use have been rapidly developed in place of conventional plastics made from petroleum. A typical example of biodegradable plastic made from plants is polylactic acid. Polylactic acid is obtained by polymerizing lactic acid, which is a kind of decomposition product of plant-derived components, and can be mass-produced and reduced in cost. Furthermore, it has crystallinity, compared with other plant-derived resins. Because of its excellent physical properties, it is considered highly useful.
しかし、ポリ乳酸の結晶化する速度は遅く、一般的な射出成形、押出成形を用いて成形すると、結晶化が徐々にしか進まず、また、熱処理(アニール処理)などの後処理を行って結晶化する速度を速めたとしても、得られるポリ乳酸の耐熱性及び機械的特性は、既存の熱可塑性樹脂に比べて低くなっていた。 However, the rate of crystallization of polylactic acid is slow, and if it is molded using general injection molding or extrusion molding, crystallization will only progress gradually, and post-treatment such as heat treatment (annealing) will be performed to produce crystals. Even if the speed of conversion was increased, the heat resistance and mechanical properties of the resulting polylactic acid were lower than those of existing thermoplastic resins.
そこで、原材料中に無機繊維(例えば、ガラス繊維)を複合化させて、耐熱性や機械的特性を向上させた樹脂も開発されている。しかし、無機繊維は不燃物であるため、樹脂の廃棄時に焼却処理すると燃焼効率が低下し、燃焼炉の損傷、さらには焼却後の残さが増加するなどの新たな問題も生じていた。 Therefore, a resin in which inorganic fibers (for example, glass fibers) are combined in the raw material to improve heat resistance and mechanical properties has been developed. However, since inorganic fibers are non-combustible materials, incineration treatment at the time of disposal of the resin results in a decrease in combustion efficiency, resulting in new problems such as damage to the combustion furnace and an increase in residue after incineration.
そこで、ガラス繊維などの無機繊維に替えて植物繊維を強化材とした複合材料が開発されている(特許文献1及び特許文献2参照)。
しかしながら、前述した植物繊維を強化材として用いた複合材料は、廃棄時に容易に焼却でき、環境負荷を軽減できるという利点を有するが、従来の熱硬化性樹脂や熱可塑性樹脂に比べると、耐熱性、機械的強度に劣り、使用時の特性が低下するという恐れを有していた。 However, the composite material using the above-mentioned plant fiber as a reinforcing material has the advantage that it can be easily incinerated at the time of disposal and can reduce the environmental load, but it has a heat resistance compared to conventional thermosetting resins and thermoplastic resins. The mechanical strength is inferior, and the properties during use are likely to deteriorate.
本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の植物繊維樹脂複合成形品の製造方法は、植物から得られるリグノセルロース繊維と結晶性の樹脂組成物とを含む植物繊維樹脂複合組成物を、結晶性の樹脂組成物の結晶化温度を基準とした上下30℃の範囲の温度の金型で成形することを特徴とする。 The present invention has been made in order to solve the above-mentioned problems. That is, the method for producing a plant fiber resin composite molded article of the present invention includes lignocellulose fibers obtained from plants and a crystalline resin composition. The plant fiber resin composite composition is characterized in that it is molded with a mold having a temperature in the range of 30 ° C. above and below based on the crystallization temperature of the crystalline resin composition.
また、本発明の植物繊維樹脂複合成形品は、上記植物繊維樹脂複合成形品の製造方法を用いて製造されたことを要旨とする。 The gist of the plant fiber resin composite molded article of the present invention is that it was produced using the above-described method for producing a plant fiber resin composite molded article.
本発明の植物繊維樹脂複合成形品の製造方法によれば、使用時の耐熱性及び機械的特性に優れ、環境負荷を軽減した植物繊維樹脂複合成形品を得ることができる。 According to the method for producing a vegetable fiber resin composite molded article of the present invention, a plant fiber resin composite molded article having excellent heat resistance and mechanical properties during use and reduced environmental burden can be obtained.
本発明の植物繊維樹脂複合成形品によれば、使用時の耐熱性及び機械的特性を損なうことなく、環境負荷を軽減することができる。 According to the plant fiber resin composite molded article of the present invention, it is possible to reduce the environmental load without impairing the heat resistance and mechanical properties during use.
以下、本発明の実施の形態に係る植物繊維樹脂複合成形品の製造方法及び植物繊維樹脂複合成形品を説明する。 Hereinafter, a method for producing a vegetable fiber resin composite molded article and a plant fiber resin composite molded article according to an embodiment of the present invention will be described.
本発明の実施の形態に係る植物繊維樹脂複合成形品の製造方法は、植物から得られるリグノセルロース繊維と、結晶性の樹脂組成物とを含む植物繊維樹脂複合組成物を、結晶性の樹脂組成物の結晶化温度を基準とした上下30℃の範囲の金型温度として成形するものである。 The method for producing a plant fiber resin composite molded article according to an embodiment of the present invention comprises converting a plant fiber resin composite composition containing a lignocellulose fiber obtained from a plant and a crystalline resin composition into a crystalline resin composition. Molding is performed at a mold temperature in the range of 30 ° C above and below the crystallization temperature of the product.
ここで、結晶性の樹脂組成物中にリグノセルロース繊維を含めて成形している。この理由として、リグノセルロース繊維が、強化材として機能して成形品の耐熱性、機械的特性を高めることができるからである。また、リグノセルロース繊維は、その表面に存在する微細構造により、樹脂組成物の結晶核剤として作用し、樹脂組成物の結晶化を促進するからである。逆に、リグノセルロース繊維を含めずに結晶性の樹脂組成物を単独で成形した場合には、成形品の耐熱性、機械的特性が劣るだけではなく、樹脂組成物の結晶化速度が遅いため、結晶性の低い成形品しか得ることができない。実際、結晶性の樹脂組成物として、ポリエチレン、ポリエチレンテレフタレート、シンジオタクチックポリプロポレンなどを用いることができるが、ポリエチレンは結晶化温度が高く、溶融した樹脂組成物を冷却すると、融点付近で凝固しさらに結晶化する。また、ポリエチレンテレフタレート、シンジオタクチックポリプロポレンなどは、結晶化速度が遅いため、冷却速度を遅くすると融点以下の結晶化温度で結晶化するが、樹脂を急速に冷却した場合には、結晶化せず、ガラス転移温度以下で凝固して非晶(ガラス)状態となるため、成形加工が難しくなる。 Here, the crystalline resin composition is molded by including lignocellulose fibers. This is because lignocellulosic fibers can function as a reinforcing material to improve the heat resistance and mechanical properties of the molded product. Moreover, lignocellulose fiber acts as a crystal nucleating agent of the resin composition due to the fine structure present on the surface thereof, and promotes crystallization of the resin composition. Conversely, when a crystalline resin composition is molded alone without including lignocellulose fibers, not only the heat resistance and mechanical properties of the molded product are inferior, but also the crystallization rate of the resin composition is slow. Only molded articles with low crystallinity can be obtained. Actually, polyethylene, polyethylene terephthalate, syndiotactic polypropylene, etc. can be used as the crystalline resin composition, but polyethylene has a high crystallization temperature, and when the molten resin composition is cooled, it solidifies near the melting point. Crystallize further. Polyethylene terephthalate, syndiotactic polypropylene, etc., have a low crystallization rate, so if you slow down the cooling rate, they will crystallize at a crystallization temperature below the melting point, but if the resin is cooled rapidly, it will not crystallize. However, since it is solidified below the glass transition temperature to be in an amorphous (glass) state, the molding process becomes difficult.
また、上記製造方法では、金型温度を結晶性の樹脂組成物の結晶化温度を基準とした上下30℃の範囲内としている。この理由は、結晶性の樹脂組成物の結晶化温度を基準として下に30℃を超えると、樹脂が急速に冷却されてしまい、樹脂を結晶化できないからであり、逆に、上に30℃を超えると金型内で樹脂組成物が十分に凝固し難くなり、金型から取り出し難くなるからである。このため、上記範囲の温度で成形し、除々に冷却することにより、樹脂の結晶化を促進することができる。なお、結晶性の樹脂組成物を単独で用いた場合、本範囲の温度で成形すると、凝固した樹脂組成物は、柔らかく、金型から取り出すことが難しく、さらに取り出し時に変形が生じる恐れもある。これに対して、上記製造方法では、樹脂組成物中に植物から得られるリグノセルロースを含有させたため、樹脂の強度が向上し、金型から容易に取り出すことができ、さらに取り出し時の変形をも防ぐことができる。 Moreover, in the said manufacturing method, the mold temperature is made into the range of 30 degreeC on the upper and lower sides on the basis of the crystallization temperature of a crystalline resin composition. This is because if the temperature exceeds 30 ° C. below the crystallization temperature of the crystalline resin composition, the resin is rapidly cooled, and the resin cannot be crystallized. This is because the resin composition will not be sufficiently solidified in the mold and will be difficult to remove from the mold. For this reason, crystallization of the resin can be promoted by molding at a temperature in the above range and gradually cooling. When a crystalline resin composition is used alone, when it is molded at a temperature within this range, the solidified resin composition is soft and difficult to take out from the mold, and deformation may occur during removal. On the other hand, in the above production method, the resin composition contains lignocellulose obtained from a plant, so that the strength of the resin is improved, the resin composition can be easily taken out from the mold, and the deformation at the time of taking out is also reduced. Can be prevented.
従って、上記製造方法により成形された植物繊維樹脂複合成形品は、その耐熱性が高く、高温時の機械的特性が向上する。 Therefore, the plant fiber resin composite molded product molded by the above production method has high heat resistance and improved mechanical properties at high temperatures.
ここで、リグノセルロース繊維としては、セルロースとリグニンを主成分とした材料が使用可能であり、例えば、麻類植物(例えば、ケナフ、亜麻、ラミー、大麻、ジュートなど)の靭皮から採取される繊維、麻類植物(例えば、マニラ麻、サイザル麻など)の茎又は葉の筋から採取される繊維、あるいは木材繊維を挙げることができる。これらの繊維は、セルロースとリグニンとを主成分として、その他にヘミセルロースやペクチン等の成分が含まれる。例示した繊維の中でも麻類植物の繊維を用いることが好ましい。麻類植物の繊維は、結晶性が高く、強度の高いセルロースに含有される比率が60%以上であり、木材繊維中に含有されるセルロースの比率(30%〜50%)に比べて高いからである。 Here, as lignocellulosic fibers, materials mainly composed of cellulose and lignin can be used, and for example, collected from the bast of hemp plants (for example, kenaf, flax, ramie, cannabis, jute, etc.). Mention may be made of fibers, fibers collected from stem or leaf streaks of hemp plants (eg Manila hemp, sisal hemp, etc.) or wood fibres. These fibers contain cellulose and lignin as main components, and additionally contain components such as hemicellulose and pectin. Among the exemplified fibers, it is preferable to use hemp plant fibers. The fiber of hemp plant has high crystallinity, and the ratio contained in high-strength cellulose is 60% or more, which is higher than the ratio (30% to 50%) of cellulose contained in wood fibers. It is.
また、前述した植物は、レッティングと呼ばれる浸水処理又は物理的な解繊処理によって、長さ20mm以上、直径30〜200μmの繊維を容易に得ることができる。そして、これらの繊維は、長さ1〜20mm以上、直径10〜30μmの単繊維細胞から構成されて、パルプ化等の化学処理によって単繊維化することができる。また、前述した処理から得られる繊維以外にも、繊維状、紡糸処理によって糸状とし、さらにリグノセルロース繊維を加工処理して、シート状、不織布、織布として用いることもできる。 In addition, the above-mentioned plant can easily obtain fibers having a length of 20 mm or more and a diameter of 30 to 200 μm by water immersion treatment or physical defibration treatment called letting. These fibers are composed of single fiber cells having a length of 1 to 20 mm or more and a diameter of 10 to 30 μm, and can be made into single fibers by chemical treatment such as pulping. In addition to the fibers obtained from the above-described treatment, it can be used as a sheet, non-woven fabric, or woven fabric by processing into a fiber or spinning process and further processing the lignocellulose fiber.
また、リグノセルロース繊維は可燃性であることから、廃棄する際の焼却時に発生する残さ量が減少し、廃棄処理が容易となる。また、廃棄後のリサイクルを考慮すると、リグノセルロース繊維は、燃焼により熱量を発生し、高効率で熱回収できるため、サーマルリサイクルが容易となる。さらに、リグノセルロース繊維は、無機繊維(ガラス繊維など)と異なり有機物であるため、加水分解処理、微生物処理、発酵処理などの処理により、エタノール、水素にまで分解されるため、ケミカルリサイクルをすることもできる。 Moreover, since lignocellulosic fiber is flammable, the amount of residue generated at the time of incineration at the time of disposal decreases, and disposal processing becomes easy. In consideration of recycling after disposal, the lignocellulosic fiber generates heat by combustion and can recover heat with high efficiency, so that thermal recycling is easy. Furthermore, lignocellulosic fibers are organic matter unlike inorganic fibers (glass fibers, etc.), so they are decomposed into ethanol and hydrogen by treatments such as hydrolysis treatment, microbial treatment, and fermentation treatment. You can also.
樹脂組成物としては、結晶性を有するものであれば良く、特に限定されないが、結晶化する速度が遅い樹脂組成物を用いることが好ましい。このような樹脂組成物としては、例えば、ポリエチレンテレフタレート、シンジオタクチックポリプロピレン、ポリ乳酸を挙げることができ、特に、ポリ乳酸を用いることが好ましい。 The resin composition is not particularly limited as long as it has crystallinity, but it is preferable to use a resin composition having a slow crystallization rate. Examples of such a resin composition include polyethylene terephthalate, syndiotactic polypropylene, and polylactic acid, and it is particularly preferable to use polylactic acid.
ポリ乳酸は、トウモロコシやサツマイモなどから得られるデンプン、あるいは木本植物などから得られるセルロースを原料として、乳酸発酵して得られる乳酸を脱水縮合して得ることができる。ポリ乳酸にリグノセルロース繊維を含有して植物繊維樹脂複組成物成形品とする場合には、ポリ乳酸の結晶化温度が約100℃であるため、金型温度を70℃〜130℃の範囲として成形することが好ましい。さらに結晶化速度を速くするために、金型温度を85℃〜115℃の範囲とすることが好ましい。 Polylactic acid can be obtained by dehydrating and condensing lactic acid obtained by lactic acid fermentation using starch obtained from corn, sweet potato, etc., or cellulose obtained from a woody plant as a raw material. When polylactic acid contains lignocellulosic fibers to form a plant fiber resin composite composition, since the crystallization temperature of polylactic acid is about 100 ° C, the mold temperature is set in the range of 70 ° C to 130 ° C. It is preferable to mold. In order to further increase the crystallization rate, the mold temperature is preferably in the range of 85 ° C to 115 ° C.
また、ポリ乳酸は、L-体、D-体の光学異性体を有しており、L-体とD-体の混合比率に応じてポリ乳酸の結晶性は変化する。樹脂組成物としては、結晶性が高い樹脂組成物を用いることが好ましい。樹脂の結晶性の指標として、樹脂の融解熱を挙げることができるが、樹脂組成物としてポリ乳酸を用いた場合、リグノセルロース繊維を含有させる前の段階で、融解熱が10J/g以上のポリ乳酸を用いることが好ましい。ポリ乳酸の融解熱が10J/g未満になると、リグノセルロース繊維が結晶化剤として作用するものの、その後に結晶化が促進されず、得られる植物繊維樹脂複合成形品の結晶性が低下し、本発明の効果が相対的に低くなるからである。なお、融解熱は、結晶化した樹脂組成物を加熱しながら、熱分析(DSC)して測定することができる。また、結晶化温度は、溶融した樹脂組成物を冷却しながら、熱分析(DSC)して測定することができる。 In addition, polylactic acid has optical isomers of L-form and D-form, and the crystallinity of polylactic acid changes depending on the mixing ratio of L-form and D-form. As the resin composition, it is preferable to use a resin composition having high crystallinity. An example of the resin crystallinity index is the heat of fusion of the resin. When polylactic acid is used as the resin composition, the heat of fusion is 10 J / g or more before the lignocellulose fiber is contained. It is preferable to use lactic acid. When the heat of fusion of polylactic acid is less than 10 J / g, the lignocellulose fiber acts as a crystallization agent, but the crystallization is not promoted after that, and the crystallinity of the resulting plant fiber resin composite molded article is lowered. This is because the effect of the invention becomes relatively low. The heat of fusion can be measured by thermal analysis (DSC) while heating the crystallized resin composition. The crystallization temperature can be measured by thermal analysis (DSC) while cooling the molten resin composition.
また、上記植物繊維樹脂複合組成物中のリグノセルロース繊維の重量比率は、特に限定されるものではないが、2wt%〜80wt%とすることが好ましい。リグノセルロース繊維の重量比率が2wt%未満になると、強化繊維としての効果が低下し、成形金型からの取り出し時に変形し易くなるからであり、逆に、80wt%を超えると、リグノセルロース繊維と樹脂組成物との結合力が弱まり、得られる成形品の耐熱性、機械的特性が低下するからである。なお、リグノセルロース繊維は、ポリ乳酸の融点以下の温度で軟化することが無いため、得られる植物繊維樹脂複合成形品の耐熱性、機械的特性は向上する。 Moreover, the weight ratio of the lignocellulose fiber in the plant fiber resin composite composition is not particularly limited, but is preferably 2 wt% to 80 wt%. When the weight ratio of lignocellulose fiber is less than 2 wt%, the effect as a reinforcing fiber is reduced, and the lignocellulosic fiber is easily deformed when taken out from the molding die. This is because the bonding strength with the resin composition is weakened, and the heat resistance and mechanical properties of the obtained molded product are lowered. In addition, since lignocellulose fiber does not soften at the temperature below melting | fusing point of polylactic acid, the heat resistance of a vegetable fiber resin composite molded product obtained and a mechanical characteristic improve.
次に、結晶性の樹脂組成物中にリグノセルロース繊維を含める方法としては、リグノセルロース繊維を溶融、あるいはエマルジョン化等により液状とした樹脂組成物に、リグノセルロース繊維を分散又は含浸する方法を用いることができる。また、リグノセルロース繊維と共に、繊維状あるいはペレット状とした樹脂組成物を混抄する方法を用いることができる。 Next, as a method for including lignocellulose fibers in the crystalline resin composition, a method of dispersing or impregnating lignocellulose fibers in a resin composition that is made liquid by melting or emulsifying lignocellulose fibers is used. be able to. Moreover, the method of mixing the resin composition made into the shape of a fiber or a pellet with a lignocellulose fiber can be used.
例えば、樹脂組成物を溶融した後、リグノセルロース繊維と混練する方法を用いると、樹脂組成物とリグノセルロース繊維とが均一に分散されて、均一な成形体とすることができる。この場合には、一般的な混練機、押出機(例えば、一軸押出機、二軸押出機、ロール混練機など)を用いることができる。 For example, when a method in which the resin composition is melted and then kneaded with lignocellulose fibers is used, the resin composition and lignocellulose fibers are uniformly dispersed to form a uniform molded body. In this case, a general kneader and an extruder (for example, a single screw extruder, a twin screw extruder, a roll kneader, etc.) can be used.
成形方法としては、金型を用いて、溶融した樹脂組成物中にリグノセルロース繊維を含めた植物繊維樹脂複合組成物を成形する方法であれば、特に限定されず、上述した押出成形、射出成形、プレス成形、真空成形、圧空成形、ブロー成形、発砲成形などの方法を用いることができる。 The molding method is not particularly limited as long as it is a method of molding a vegetable fiber resin composite composition including lignocellulose fibers in a molten resin composition using a mold, and the above-described extrusion molding and injection molding. Methods such as press molding, vacuum molding, pressure molding, blow molding, and foam molding can be used.
成形条件は、射出成形を用いた場合、スクリュー部温度が樹脂の融点から±20℃以内とすることが好ましい。スクリュー部温度が低くなりすぎると、ショートが発生する等して成形が不安定となり過負荷に陥りやすく、また、成形温度が高くなりすぎると熱分解が起こり、得られる成形体の強度が低下し、着色等の問題が生じるからである。 As the molding conditions, when injection molding is used, the screw part temperature is preferably within ± 20 ° C. from the melting point of the resin. If the screw part temperature becomes too low, short-circuiting will occur and the molding will become unstable and overload will occur, and if the molding temperature becomes too high, thermal decomposition will occur and the strength of the resulting molded product will decrease. This is because problems such as coloring occur.
さらに、植物繊維樹脂複合組成物には、リグノセルロース繊維及び結晶性の樹脂組成物の他にも、他の種類の樹脂組成物、あるいは結晶化を促進する結晶核剤などの添加剤、充填剤を含めることもできる。 In addition to lignocellulose fibers and crystalline resin compositions, vegetable fiber resin composite compositions include other types of resin compositions, or additives such as crystal nucleating agents that promote crystallization, and fillers. Can also be included.
以下、さらに具体的に実施例により説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
実施例1
ケナフ茎部の外皮部分となる靭皮から得られたケナフ繊維束(平均径82μm)を用いて作成した繊維マットに、ポリ乳酸(融解熱6J/g、融点170℃、結晶化温度105℃(PL-1000,ミヨシ油脂(株)社製))のエマルジョンを含浸した。このとき、乾燥した時の重量比率が、ケナフ繊維束マット60wt%、ポリ乳酸40wt%となるように絞りによって調整した。ポリ乳酸を含浸した繊維マットを乾燥器により180℃で5分間加熱して、その後、すぐに金型温度90℃、圧力3.5MPaとして120秒間プレス成形した。得られた成形体を切削してASTM規格測定用サンプルを作製した。
Example 1
Polylactic acid (melting heat 6 J / g, melting point 170 ° C., crystallization temperature 105 ° C.) on a fiber mat made from a bunch of kenaf fibers (average diameter 82 μm) obtained from the bast that forms the outer skin of the kenaf stem PL-1000, manufactured by Miyoshi Oil & Fats Co., Ltd.)). At this time, the weight ratio when dried was adjusted by drawing so that the kenaf fiber bundle mat was 60 wt% and the polylactic acid was 40 wt%. The fiber mat impregnated with polylactic acid was heated in a dryer at 180 ° C. for 5 minutes, and then immediately press-molded at a mold temperature of 90 ° C. and a pressure of 3.5 MPa for 120 seconds. The obtained molded body was cut to prepare a sample for ASTM standard measurement.
実施例2
ケナフ茎部の外皮部分となる靭皮から得られたケナフ繊維束(平均径82μm)1wt%と、ポリ乳酸のペレット(融解熱42J/g、融点170℃、結晶化温度105℃(レイシアH-100J,三井化学工業(株)社製))98wt%と、添加剤としてタルク(竹原化学(株)社製)1wt%とを、一軸混練押出機により180℃、5分間混練して、押出しにより樹脂ペレットを作製した。得られた樹脂ペレットをシリンダ温度190℃、金型温度90、金型で120秒間保持して、射出成形した。その後、得られた成形体からASTM規格測定用サンプルを作製した。
Example 2
1 wt% of kenaf fiber bundle (average diameter 82μm) obtained from bast, which is the outer skin part of kenaf stalk, and polylactic acid pellets (melting heat 42J / g, melting point 170 ° C, crystallization temperature 105 ° C (Lacia H- 100J, manufactured by Mitsui Chemicals Co., Ltd.)) 98 wt% and talc (manufactured by Takehara Chemical Co., Ltd.) 1 wt% as an additive, kneaded at 180 ° C for 5 minutes using a single-screw kneading extruder, and extruded. Resin pellets were prepared. The obtained resin pellets were injection-molded by holding a cylinder temperature of 190 ° C., a mold temperature of 90, and a mold for 120 seconds. Thereafter, a sample for ASTM standard measurement was produced from the obtained molded body.
実施例3
ケナフ茎部の外皮部分となる靭皮から得られたケナフ繊維束(平均径82μm)30wt%と、ポリ乳酸のペレット(融解熱42J/g、融点170℃、結晶化温度105℃(レイシアH-100J,三井化学工業(株)社製))70wt%とを、一軸混練押出機により180℃、5分間混練して、押出しにより樹脂ペレットを作製した。得られた樹脂ペレットをシリンダ温度190℃、金型温度90℃、金型での保持時間を120秒間として射出成形した。その後、得られた成形体からASTM規格測定用サンプルを作製した。
Example 3
30 wt% of kenaf fiber bundle (average diameter 82μm) obtained from bast, which is the outer skin of kenaf stalk, and polylactic acid pellets (melting heat 42J / g, melting point 170 ° C, crystallization temperature 105 ° C (Lacia H- 100J, manufactured by Mitsui Chemicals Co., Ltd.)) and 70 wt% were kneaded at 180 ° C. for 5 minutes with a single-screw kneading extruder, and resin pellets were produced by extrusion. The obtained resin pellets were injection molded with a cylinder temperature of 190 ° C., a mold temperature of 90 ° C., and a holding time in the mold of 120 seconds. Thereafter, a sample for ASTM standard measurement was produced from the obtained molded body.
比較例1
比較例1では、実施例1と同様の方法を用いて調整したポリ乳酸を含浸した繊維マット(ケナフ繊維束マット60wt%、ポリ乳酸40wt%)を乾燥器により180℃で5分間加熱して、その後、すぐに金型温度30℃、圧力3.5MPaとして120秒間プレス成形した。得られた成形体を切削してASTM規格測定用サンプルを作製した。
Comparative Example 1
In Comparative Example 1, a fiber mat impregnated with polylactic acid prepared using the same method as in Example 1 (60 wt% kenaf fiber bundle mat, 40 wt% polylactic acid) was heated at 180 ° C. for 5 minutes with a dryer. Immediately thereafter, press molding was performed at a mold temperature of 30 ° C. and a pressure of 3.5 MPa for 120 seconds. The obtained molded body was cut to prepare a sample for ASTM standard measurement.
比較例2
比較例2では、ケナフ繊維を加えずに、ポリ乳酸のペレット(融解熱42J/g、融点170℃、結晶化温度105℃(レイシアH-100J,三井化学工業(株)社製))を用いて、シリンダ温度190℃、金型温度90℃、金型での保持時間を120秒として射出成形をした。しかし、材料が柔らかすぎるため、金型から材料を取り出すことができなかった。その後、金型での保持時間を240秒として再び射出成形をしたが、依然として材料が柔らかく、金型から材料を取り出すことができなかった。
Comparative Example 2
In Comparative Example 2, polylactic acid pellets (melting heat 42 J / g, melting point 170 ° C., crystallization temperature 105 ° C. (Lacia H-100J, manufactured by Mitsui Chemicals, Inc.)) were used without adding kenaf fiber. Then, injection molding was performed with a cylinder temperature of 190 ° C., a mold temperature of 90 ° C., and a holding time in the mold of 120 seconds. However, since the material was too soft, the material could not be taken out from the mold. Thereafter, injection molding was performed again with the holding time in the mold set to 240 seconds, but the material was still soft and the material could not be taken out from the mold.
比較例3
比較例3では、実施例2と同様の方法を用いて調整した樹脂ペレット(ケナフ繊維束1wt%、ポリ乳酸のペレット98wt%、タルク1wt%)を用いて、シリンダ温度190℃、金型温度30℃、金型での保持時間を120秒として射出成形をした。得られた成形体を切削してASTM規格測定用サンプルを作製した。
Comparative Example 3
In Comparative Example 3, resin pellets (kenaf fiber bundle 1 wt%, polylactic acid pellets 98 wt%, talc 1 wt%) prepared using the same method as in Example 2, cylinder temperature 190 ° C., mold temperature 30 Injection molding was carried out at 120 ° C. and a holding time of 120 ° C. in the mold. The obtained molded body was cut to prepare a sample for ASTM standard measurement.
比較例4
比較例4では、実施例3と同様の方法を用いて調整した樹脂ペレット(ケナフ繊維束30wt%、ポリ乳酸のペレット70wt%)を用いて、シリンダ温度190℃、金型温度30℃、金型での保持時間を120秒として射出成形をした。得られた成形体を切削してASTM規格測定用サンプルを作製した。
Comparative Example 4
In Comparative Example 4, resin pellets (kenaf fiber bundle 30 wt%, polylactic acid pellets 70 wt%) prepared using the same method as in Example 3 were used, cylinder temperature 190 ° C., mold temperature 30 ° C., mold Injection molding was carried out with a holding time of 120 seconds. The obtained molded body was cut to prepare a sample for ASTM standard measurement.
上述した実施例1〜実施例3、比較例1〜比較例4の各サンプルをそのままの状態として、ロックウェル硬さ(ASTM D685)及び熱変形温度(ASTM D648,荷重0.45MPa)を測定した。表1に、その結果を示す。
表1に示すように、実施例1と比較例1は、金型温度以外は同じ条件とし、実施例1では金型温度をポリ乳酸の結晶化温度(105℃)の上下30℃の範囲内としたため、範囲外とした比較例1に比べて、熱変形温度が高くなっていることが判明した。また、実施例2と比較例3は、金型温度以外は同じ条件として、実施例2の金型温度は90℃、比較例3の金型温度は30℃としたため、比較例3に比べて実施例3の熱変形温度が若干高くなっていることが判明した。さらに、実施例3と比較例4は、金型温度以外は同じ条件とし、実施例3ではポリ乳酸の結晶化温度(105℃)の上下30℃の範囲内とし、さらにケナフ繊維の割合を30wt%以上としたため、金型温度を本発明の範囲外とした比較例3に比べて、熱変形温度が大幅に向上し、さらにロックウェル硬度も高く、耐熱性及び高温時の機械強度が向上したことが判明した。逆に、ケナフ繊維を含有しない比較例2では、材料が柔らかすぎて、金型から材料を取り出すことができなかった。この事実から、ケナフ繊維が、強化材と結晶化剤としての両機能を果たしていることが実証された。 As shown in Table 1, Example 1 and Comparative Example 1 have the same conditions except for the mold temperature. In Example 1, the mold temperature is within 30 ° C. above and below the polylactic acid crystallization temperature (105 ° C.). Therefore, it was found that the heat distortion temperature was higher than that of Comparative Example 1 outside the range. Moreover, since Example 2 and Comparative Example 3 were the same except for the mold temperature, the mold temperature of Example 2 was 90 ° C., and the mold temperature of Comparative Example 3 was 30 ° C. Compared to Comparative Example 3 It was found that the heat distortion temperature of Example 3 was slightly higher. Furthermore, Example 3 and Comparative Example 4 are the same except for the mold temperature, and in Example 3, the polylactic acid is within the range of 30 ° C above and below the crystallization temperature (105 ° C), and the ratio of kenaf fibers is 30 wt. Therefore, compared with Comparative Example 3 in which the mold temperature was outside the scope of the present invention, the heat distortion temperature was greatly improved, the Rockwell hardness was also high, the heat resistance and the mechanical strength at high temperature were improved. It has been found. On the contrary, in Comparative Example 2 containing no kenaf fiber, the material was too soft and the material could not be taken out from the mold. This fact proved that kenaf fiber performs both functions as a reinforcing material and a crystallizing agent.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005150752A JP2006328138A (en) | 2005-05-24 | 2005-05-24 | Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005150752A JP2006328138A (en) | 2005-05-24 | 2005-05-24 | Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006328138A true JP2006328138A (en) | 2006-12-07 |
Family
ID=37550182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005150752A Pending JP2006328138A (en) | 2005-05-24 | 2005-05-24 | Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006328138A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009137382A1 (en) * | 2008-05-05 | 2009-11-12 | International Paper Company | Thermoformed article made from bio-based biodegradable polymer composition |
WO2009139508A1 (en) * | 2008-05-16 | 2009-11-19 | Indonesian Institute Of Sciences (Lipi) | Composites of kenaf micro fiber with polypropylene or polylactic acid |
US8231954B2 (en) | 2009-12-08 | 2012-07-31 | International Paper Co. | Thermoformed articles made from reactive extrusion products of biobased materials |
US8637126B2 (en) | 2006-02-06 | 2014-01-28 | International Paper Co. | Biodegradable paper-based laminate with oxygen and moisture barrier properties and method for making biodegradable paper-based laminate |
KR20170123525A (en) * | 2016-04-29 | 2017-11-08 | 금오공과대학교 산학협력단 | Kenaf Fiber/ Cattail Fiber/Polypropylenel Biocomposities and Method for Preparing Thereof |
IT202000003808A1 (en) * | 2020-02-24 | 2021-08-24 | Fintema S R L | COMPOSITION OF BIOMATERIAL, THERMOPLASTIC, INJECTABLE DIRECTLY INTO THE MOLD |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004063282A1 (en) * | 2003-01-10 | 2004-07-29 | Nec Corporation | Kenaf-fiber-reinforced resin composition |
JP2004338185A (en) * | 2003-05-14 | 2004-12-02 | Fuji Photo Film Co Ltd | Polylactic acid resin molded product and its manufacturing method |
JP2005029601A (en) * | 2003-07-07 | 2005-02-03 | Fuji Photo Film Co Ltd | Injection molding material, its manufacturing method and injection molded article |
JP2005035134A (en) * | 2003-07-18 | 2005-02-10 | Toray Ind Inc | Manufacturing method of resin composition |
JP2005060556A (en) * | 2003-08-14 | 2005-03-10 | Unitika Ltd | Resin composition and molded product comprising the same |
JP2005146261A (en) * | 2003-10-20 | 2005-06-09 | Toray Ind Inc | Injection-molded product |
WO2005054366A1 (en) * | 2003-12-02 | 2005-06-16 | Kaneka Corporation | Poly(3-hydroxyalkanoate) composition and molded object thereof |
JP2005220171A (en) * | 2004-02-03 | 2005-08-18 | Mitsui Chemicals Inc | Lactic acid-based polymer composition |
JP2006045428A (en) * | 2004-08-06 | 2006-02-16 | Teijin Ltd | Biodegradable complex |
-
2005
- 2005-05-24 JP JP2005150752A patent/JP2006328138A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004063282A1 (en) * | 2003-01-10 | 2004-07-29 | Nec Corporation | Kenaf-fiber-reinforced resin composition |
JP2005105245A (en) * | 2003-01-10 | 2005-04-21 | Nec Corp | Kenaf fiber-reinforced resin composition |
JP2004338185A (en) * | 2003-05-14 | 2004-12-02 | Fuji Photo Film Co Ltd | Polylactic acid resin molded product and its manufacturing method |
JP2005029601A (en) * | 2003-07-07 | 2005-02-03 | Fuji Photo Film Co Ltd | Injection molding material, its manufacturing method and injection molded article |
JP2005035134A (en) * | 2003-07-18 | 2005-02-10 | Toray Ind Inc | Manufacturing method of resin composition |
JP2005060556A (en) * | 2003-08-14 | 2005-03-10 | Unitika Ltd | Resin composition and molded product comprising the same |
JP2005146261A (en) * | 2003-10-20 | 2005-06-09 | Toray Ind Inc | Injection-molded product |
WO2005054366A1 (en) * | 2003-12-02 | 2005-06-16 | Kaneka Corporation | Poly(3-hydroxyalkanoate) composition and molded object thereof |
JP2005220171A (en) * | 2004-02-03 | 2005-08-18 | Mitsui Chemicals Inc | Lactic acid-based polymer composition |
JP2006045428A (en) * | 2004-08-06 | 2006-02-16 | Teijin Ltd | Biodegradable complex |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8637126B2 (en) | 2006-02-06 | 2014-01-28 | International Paper Co. | Biodegradable paper-based laminate with oxygen and moisture barrier properties and method for making biodegradable paper-based laminate |
WO2009137382A1 (en) * | 2008-05-05 | 2009-11-12 | International Paper Company | Thermoformed article made from bio-based biodegradable polymer composition |
WO2009139508A1 (en) * | 2008-05-16 | 2009-11-19 | Indonesian Institute Of Sciences (Lipi) | Composites of kenaf micro fiber with polypropylene or polylactic acid |
JP2011523430A (en) * | 2008-05-16 | 2011-08-11 | インドネシアン インスティテュート オブ サイエンシーズ(エルアイピーアイ) | Composite containing kenaf microfiber blended with polypropylene or polylactic acid |
US8231954B2 (en) | 2009-12-08 | 2012-07-31 | International Paper Co. | Thermoformed articles made from reactive extrusion products of biobased materials |
KR20170123525A (en) * | 2016-04-29 | 2017-11-08 | 금오공과대학교 산학협력단 | Kenaf Fiber/ Cattail Fiber/Polypropylenel Biocomposities and Method for Preparing Thereof |
KR101880487B1 (en) | 2016-04-29 | 2018-08-16 | 금오공과대학교 산학협력단 | Kenaf Fiber/ Cattail Fiber/Polypropylenel Biocomposities and Method for Preparing Thereof |
IT202000003808A1 (en) * | 2020-02-24 | 2021-08-24 | Fintema S R L | COMPOSITION OF BIOMATERIAL, THERMOPLASTIC, INJECTABLE DIRECTLY INTO THE MOLD |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pappu et al. | Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding | |
US9902813B2 (en) | Method for reinforcing a thermoplastic resin composition | |
Aydın et al. | Effects of alkali treatment on the properties of short flax fiber–poly (lactic acid) eco-composites | |
Ibrahim et al. | Poly (lactic acid)(PLA)-reinforced kenaf bast fiber composites: the effect of triacetin | |
Shih et al. | Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks | |
Hassan et al. | Improving Thermal and Mechanical Properties of Injection Moulded Kenaf Fibre-reinforced Polyhydroxy-butyrate Composites through Fibre Surface Treatment. | |
US20190218371A1 (en) | Plastics containing torrefied biomass additives | |
Debeli et al. | Improved thermal and mechanical performance of ramie fibers reinforced poly (lactic acid) biocomposites via fiber surface modifications and composites thermal annealing | |
Chafidz et al. | Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder | |
Hassan et al. | Study on the performance of hybrid jute/betel nut fiber reinforced polypropylene composites | |
US9663636B2 (en) | Processing method for fiber material used to form biocomposite component | |
JP2006328138A (en) | Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite | |
JP4955980B2 (en) | Method for producing vegetable fiber resin composite composition | |
Shamprasad et al. | Mechanical properties of natural fiber reinforced polylactide composites: A review | |
CN103910909A (en) | High temperature-resistant plastic composite material | |
KR101969416B1 (en) | The Method for Manufacturing Recycled Polypropylene/Bamboo/Kenaf Composites | |
Mahalingam et al. | Investigation of static and dynamic mechanical properties of coconut tree primary flower leaf stalk fiber reinforced polymer composites | |
Kusuma et al. | Manufacturing of natural fiber-reinforced recycled polymer–a systematic literature review | |
JP2007260990A (en) | Method for manufacturing resin composition molding | |
Neoh et al. | Micro palm and kenaf fibers reinforced PLA composite: effect of volume fraction on tensile strength | |
Norrrahim et al. | Performance evaluation of cellulose nanofiber with residual hemicellulose as a nanofiller in polypropylene-based nanocomposite. Polymers 2021; 13: 1064 | |
JP4868719B2 (en) | Manufacturing method of fiber resin composite, fiber resin composite, and fiber resin composite molded product | |
CN110204874B (en) | Preparation method of fibrillated and reinforced stereo polylactic acid composite material by utilizing Lyocell fibers | |
Adefisan et al. | Evaluation of wood plastic composites produced from Mahogany and Teak | |
JP2008156526A (en) | Process for producing vegetable fiber resin composite molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111011 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111212 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120918 |