skip to main content
research-article

A Single Bitline Highly Stable, Low Power With High Speed Half-Select Disturb Free 11T SRAM Cell

Published: 09 July 2024 Publication History

Abstract

A half-select disturb-free 11T (HF11T) static random access memory (SRAM) cell with low power, better stability and high speed is presented in this paper. The proposed SRAM cell works well with bit-interleaving design, which enhances soft-error immunity. A comparison of the proposed HF11T cell with other cutting-edge designs such as single-ended HS free 11T (SEHF11T), a shared-pass-gate 11T (SPG11T), data-dependent stack PMOS switching 10T (DSPS10T), a single-ended half-selected robust 12T (HSR12T), and 11T SRAM cells has been made. It exhibits 4.85×/9.19× less read delay (TRA) and write delay (TWA), respectively as compared to other considered SRAM cells. It achieves 1.07×/1.02× better read and write stability, respectively than the considered SRAM cells. It shows maximum reduction of 1.68×/4.58×/94.72×/9×/145× leakage power, read power, write power consumption, read power delay product (PDP) and write PDP respectively, than the considered SRAM cells. In addition, the proposed HF11T cell achieves 10.14× higher Ion/Ioff ratio than the other compared cells. These improvements come with a trade-off, resulting in 1.13× more TRA compared to SPG11T. The simulation is performed with Cadence Virtuoso 45nm CMOS technology at supply voltage (VDD) of 0.6 V.

References

[1]
N. Maroof and B. S. Kong. 2017. 10T SRAM using half-VDD precharge and row-wise dynamically powered read port for low switching power and ultralow RBL leakage. IEEE Trans. Very Large Scale Integr. Syst. 25, 4 (2017), 1193–1203. DOI:
[2]
J. P. Kulkarni and K. Roy. 2012. Ultralow-voltage process-variation-tolerant schmitt-trigger-based SRAM design. IEEE Trans. Very Large Scale Integr. Syst. 20, 2 (2012), 319–332. DOI:
[3]
B. Wang, T. Q. Nguyen, A. T. Do, J. Zhou, M. Je, and T. T. H. Kim. 2015. Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and CAM-assisted energy efficiency improvement. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 2 (2015), 441–448. DOI:
[4]
S. Pal and A. Islam. 2016. 9-T SRAM cell for reliable ultralow-power applications and solving multibit soft-error issue. IEEE Trans. Device Mater. Reliab. 16, 2 (2016), 172–182. DOI:
[5]
B. H. Calhoun and A. P. Chandrakasan. 2007. A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid-State Circuits 42, 3 (2007), 680–688.
[6]
I. J. Chang, J. J. Kim, S. P. Park, and K. Roy. 2009. A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 44, 2 (2009), 650–658. DOI:
[7]
M. H. Tu, J. Y. Lin, M. C. Tsai, S. J. Jou, and C. Te Chuang. 2010. Single-ended subthreshold SRAM with asymmetrical write/read-assist. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 12 (2010), 3039–3047. DOI:
[8]
M. H. Chang, Y. Te Chiu, S. L. Lai, and W. Hwang. 2011. A 1kb 9T subthreshold SRAM with bit-interleaving scheme in 65nm CMOS. Proc. Int. Symp. Low Power Electron. Des. 291–296. DOI:
[9]
R. Saeidi, S. Member, M. Sharifkhani, and K. Hajsadeghi. 2014. A subthreshold symmetric SRAM cell with high read stability. IEEE Trans. Circuits Syst. II Express Briefs 61, 1 (2014), 26–30.
[10]
N. C. Lien, L. W. Chu, C. H. Chen, H. I. Yang, M. H. Tu, P. S. Kan, Y. J. Hu, C. T. Chuang, S. J. Jou, and W. Hwang. 2014. A 40 nm 512 kb cross-point 8 T pipeline SRAM with binary word-line boosting control, ripple bit-line and adaptive data-aware write-assist. IEEE Trans. Circuits Syst. I Regul. Pap. 61, 12 (2014), 3416–3425.
[11]
H. Fujiwara, Y. H. Chen, C. Y. Lin, W. C. Wu, D. Sun, S. R. Wu, H. J. Liao, and J. Chang. 2016. A 64-Kb 0.37 V 28nm 10T-SRAM with mixed-Vth read-port and boosted WL scheme for IoT applications. In IEEE Asian Solid-State Circuits Conference, 185–188. DOI:
[12]
Y. H. Chen, W. M. Chan, W. C. Wu, H. J. Liao, K. H. Pan, J. J. Liaw, T. H. Chung, Q. Li, C. Y. Lin, M. C. Chiang, and S. Y. Wu. 2014. A 16nm 128Mb SRAM in high-? metal-gate FinFET technology with write-assist circuitry for low-VMIN applications. Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., Vol. 57, 238–239. DOI:
[13]
I. Chatterjee, B. Narasimham, N. N. Mahatme, B. L. Bhuva, R. A. Reed, R. D. Schrimpf, J. K. Wang, N. Vedula, B. Bartz, and C. Monzel. 2014. Impact of technology scaling on SRAM soft error rates. IEEE Trans. Nucl. Sci. 61, 6 (2014), 3512–3518. DOI:
[14]
V. Sharma, S. Vishvakarma, S. S. Chouhan, and K. Halonen. 2018. A write-improved low-power 12T SRAM cell for wearable wireless sensor nodes. Int. J. Circuit Theory Appl. 46, 12 (2018), 2314–2333. DOI:
[15]
S. Pal, S. Bose, W. H. Ki, and A. Islam. 2020. Reliable write assist low power SRAM cell for wireless sensor network applications. IET Circuits, Devices Syst. 14, 2 (2020), 137–147. DOI:
[16]
Y. W. Chiu, Y. H. Hu, M. H. Tu, J. K. Zhao, Y. H. Chu, S. J. Jou, and C. T. Chuang. 2014. 40 Nm Bit-Interleaving 12T subthreshold sram with Data-Aware Write-Assist. IEEE Trans. Circuits Syst. I Regul. Pap. 61, 9 (2014), 2578–2585. DOI:
[17]
S. Pal, S. Bose, W. H. Ki, and A. Islam. 2020. Half-select-free low-power dynamic loop-cutting write assist SRAM cell for space applications. IEEE Trans. Electron Devices 67, 1 (2020), 80–89. DOI:
[18]
E. Abbasian and M. Gholipour. 2021. Single-ended half-select disturb-free 11T static random access memory cell for reliable and low power applications. Int. J. Circuit Theory Appl. 49, 4 (2021), 970–989. DOI:
[19]
A. Sinha and A. Islam. 2017. Low-power half-select free single-ended 10 transistor SRAM cell. Microsyst. Technol. 23, 9 (2017), 4133–4144. DOI:
[20]
D. Shi, J. Yuan, J. Yin, Y. Wang, and S. Qiao. 2022. A bit-interleaving 12T bitcell with built-in write-assist for sub-threshold SRAM. IEICE Electron. Express 19, 10 (2022), 1–6. DOI:
[21]
Y. He, J. Zhang, X. Wu, X. Si, S. Zhen, and B. Zhang. 2019. A half-select disturb-free 11T SRAM cell with built-in write/read-assist scheme for ultralow-voltage operations. IEEE Trans. Very Large Scale Integr. Syst. 27, 10 (2019), 2344–2353. DOI:
[22]
S. Ahmad, B. Iqbal, N. Alam, and M. Hasan. 2018. Low leakage fully half-select-free robust SRAM cells with BTI reliability analysis. IEEE Trans. Device Mater. Reliab. 18, 3 (2018), 337–349. DOI:
[23]
H. Kumar and V. K. Tomar. 2021. Design of low power with expanded noise margin subthreshold 12T SRAM cell for ultra-low power devices. J. Circuits, Syst. Comput. 30, 6 (2021). DOI:
[24]
E. Shakouri, B. Ebrahimi, N. Eslami, and M. Chahardori. 2021. Single-Ended 10T SRAM cell with high yield and low standby power. Circuits, Syst. Signal Process. 40, 7 (2021), 3479–3499. DOI:
[25]
L. Soni and N. Pandey. 2023. A novel CNTFET based Schmitt-Trigger read decoupled 12T SRAM cell with high speed, low power, and high Ion/Ioff ratio. AEU - Int. J. Electron. Commun., 167. DOI:
[26]
J. Singh, S. P. Mohanty, and D. K. Pradhan. 2013. Robust SRAM Designs and Analysis, 1st ed. New York: Springer. DOI:
[27]
S. Pal, S. Bose, W. H. Ki, and A. Islam. 2020. A highly stable reliable SRAM cell design for low power applications. Microelectron. Reliab. 105, 2019 (2020), 113503. DOI:
[28]
M. Gupta, K. Gupta, and N. Pandey. 2021. A novel PVT-variation-tolerant Schmitt-trigger-based 12T SRAM cell with improved write ability and high ION/IOFF ratio in sub-threshold region. Int. J. Circuit Theory Appl. 49, 11 (2021), 3789–3810. DOI:
[29]
B. Rawat and P. Mittal. 2021. A 32 nm single-ended single-port 7T static random access memory for low power utilization. Semicond. Sci. Technol. 36, 9 (2021). DOI:
[30]
E. Abbasian and M. Gholipour. 2022. Improved read/write assist mechanism for 10-transistor static random access memory cell. Int. J. Circuit Theory Appl. 50, 10 (2022), 3642–3660. DOI:
[31]
N. Bai, X. Xiao, Y. Xu, Y. Wang, L. Wang, and X. Zhou. 2023. Soft-error-aware SRAM with multinode upset tolerance for aerospace applications. IEEE Trans. Very Large Scale Integr. Syst. PP, 1–9. DOI:
[32]
P. Praveen and R. K. Singh. 2023. Design of enhanced reversible 9T SRAM design for the reduction in sub-threshold leakage current with14nm FinFET technology. ACM Trans. Des. Autom. Electron. Syst. 28, 6 (2023), 1–29. DOI:

Cited By

View all

Index Terms

  1. A Single Bitline Highly Stable, Low Power With High Speed Half-Select Disturb Free 11T SRAM Cell

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Design Automation of Electronic Systems
    ACM Transactions on Design Automation of Electronic Systems  Volume 29, Issue 4
    July 2024
    360 pages
    EISSN:1557-7309
    DOI:10.1145/3613660
    • Editor:
    • Jiang Hu
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 09 July 2024
    Online AM: 19 June 2024
    Accepted: 12 March 2024
    Revised: 11 February 2024
    Received: 10 September 2023
    Published in TODAES Volume 29, Issue 4

    Check for updates

    Author Tags

    1. Single-bitline SRAM
    2. half-select disturb-free
    3. read and write delay
    4. read static noise margin (RSNM)
    5. hold static noise margin (HSNM) and write ability
    6. power consumption
    7. Ion/Ioff ratio

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)122
    • Downloads (Last 6 weeks)14
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media