skip to main content
10.1145/379240.379262acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
Article

NanoFabrics: spatial computing using molecular electronics

Published: 01 May 2001 Publication History

Abstract

The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN).
In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.

References

[1]
I. Aleksander and R. Scarr. Tunnel devices as switching elements. Journal British IRE, 23(43): 177-192, March 1962.
[2]
Altera Corporation. Apex device family, http://- www.altera.com/html/products/apex.html.
[3]
R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and G. Snider. Teramac-configurable custom computing. In D. A. Buell and K. L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pages 32-38, Napa, CA, Apr. 1995.
[4]
A. Aviram and M. Ratner. Molecular rectifiers. Chemical Physics Letters, 29(2):277-283, Nov. 1974.
[5]
V. Betz and J. Rose. Vpr: A new packing, placement and routing tool for fpga research. In Proceedings of the International Workshop on Field Programmable Logic and Applications, Aug. 1997.
[6]
E Buot. Mesoscopic phyics and nanoelectronics: Nanoscience and nanotechnology. Physics Reports, pages 173-74, 1993.
[7]
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour. Observation of a large on-off ratio and negative differential resistance in an electronic molecular switch. Science, 286:1550- 2, 1999.
[8]
J. Chen, W. Wang, M. A. Reed, M. Rawlett, D. W. Price, and J. M. Tour. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett., 77:1224, 2000.
[9]
R. H. Chen, A. N. Korotov, and K. K. Likharev. Singleelectron transistor logic. Appl. Phys. Lett., 68:1954, 1996.
[10]
C. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, E J. Kuekes, R. S. Williams, and J. R. Heath. Electronically configurable molecular-based logic gates. Science, 285:391-3, July 1999.
[11]
Y. Cui and C. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 291:851-853, 2001.
[12]
W. Culbertson, R. Amerson, R. Carter, E Kuekes, and G. Snider. The Teramac Custom Computer: Extending the Limits with Defect Tolerance. In Proc. IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 1996.
[13]
W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider. Defect tolerance on the Teramac Custom Computer. In Proceedings of the 1997 IEEE Symposium on FP- GAs for Custom Computing Machines, pages 116-124, April 1997.
[14]
D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Parallel programming in split-c. In Proceedings of the Supercomputing '93 Conference, Nov. 1993.
[15]
D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von Eicken. TAM -- a compiler controlled threaded abstract machine. Journal of Parallel and Distributed Computing, 18:347-370, July 1993.
[16]
A.N. et al. Room temperature operation of Si single-electron memory with self-aligned floating dot gate. Appl. Phys. Lett, 70:1742, 1997.
[17]
R. Feynman. Lectures in Computation. Addison-Wesley, 1996.
[18]
S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer. Piperench: A coprocessor for streaming multimedia acceleration. In Proceedings of the 26th Annual International Symposium on Computer Architecture, pages 28-39, May 1999.
[19]
S. Hauck, Z. Li, and E. Schwabe. Configuration compression for the Xilinx XC6200 FPGA. In IEEE Trans. on CAD oflC and Systems, volume 18,8, pages 1107-13, August 1999.
[20]
G. Karypis and V. Kumar. Multilevel graph partitioning and sparse matrix ordering. In Proceedings of the 1995 Intl. Conference on Parallel Processing, 1995.
[21]
R. W. Keyes. Miniaturization of electronics and its limits. IBM Journal of Research and Development, 32(1):24--48, Jan 1988.
[22]
C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool for evaluating and synthesizing multimedia and communications systems. In Micro-30, 30th annual ACM/IEEE international symposium on Microarchitecture, pages 330-335, 1997.
[23]
C. Lent. A device architecture for computing with quantum dots. Proceedings of the 1EEE, 85, April 1997.
[24]
T. Mallouk. Nanomaterials: Synthesis and assembly, http://- research.chem.psu.edu/mallouk/nano.pdf, Nov. 2000. Foresight Conference Tutorial.
[25]
B. Martin, D. Dermody, B. Reiss, M. Fang, L. Lyon, M. Natan, and T. Mallouk. Orthogonal self assembly on colloidal gold-platinum nanorods. Advanced Materials, 11:1021-25, 1999.
[26]
R. Mathews, J. Sage, T. Sollner, S. Calawa, C. Chen, L. Mahoney, P. Maki, and K. Molvar. A new RTD-FET logic family. Proceedings of the IEEE, 87(4):596, 1999.
[27]
J. Mbindyo, B. Reiss, B. Martin, B. Reiss, M. Keating, M. Natan, and T. Mallouk. Dna-directed assembly of gold nanowires on complementary surfaces. Advanced Materials, 2000.
[28]
N.S.M.V. Martinez-Diaz and J. Stoddart. The self-assembly of a switchable {2}rotaxane. Angewandte Chemic International Edition English, 36:1904, 1997.
[29]
H. Park, A. Lim, J. Park, A. Alivisatos, and E McEuen. Fabrication of metallic electrodes with nanometer separation by electromigration, www.physics.berkeley.edu/- research/mceuen/topics/nanocrystal/EMPaper.pdf 1999.
[30]
M.A. Reed. Molecular-scale electronics. Proceedings of the IEEE, 87(4), April 1999.
[31]
D. Rosewater and S. Goldstein. What makes a good molecular computing device? Technical Report CMU-CS-01-114, Carnegie Mellon University, March 2001.
[32]
T. Rueckes, K, Kim., E. Joselevich., G. Tseng, C.-L. Cheung, and C. Lieber. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289:94- 97, 2000.
[33]
J. R. S. Brown, R. Francis and Z. Vranesic. Field- Programmable Gate Arrays. Kluwer, 1992.
[34]
A. Srivastava and A. Eustace. Atom: A system for building customized program analysis tools. Technical report, Digital Equipment Corporation Western Research Laboratory, 1994.
[35]
Standard Performance Evaluation Corp. SPEC CPU95 Benchmark Suite, 1995.
[36]
S. Tans and et al. Individual single-wall carbon nanotubes as quantum wires. Nature, 386(6624):474-7, April 1997.
[37]
R. Turton. The Quantum Dot: A journey into the Future of Microelectronics. Oxford University Press, U.K., 1995.
[38]
T. von Eicken, D. E. Culler, S. Goldstein, and K. E, Schauser. Active messages: a mechanism for integrated communication and computation. In Proceedings of the 19th International Symposium on Computer Architecture, May 1992.
[39]
Xilinx Corporation. Virtex series fpgas. http://www.xilinx.com/products/virtex.htm.
[40]
A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: A high-performance architecture with a tightly-coupled reconfigurable functional unit. In Proceedings of the 27th Annual International Symposium on Computer Architecture, June 2000.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISCA '01: Proceedings of the 28th annual international symposium on Computer architecture
June 2001
289 pages
ISBN:0769511627
DOI:10.1145/379240
  • cover image ACM SIGARCH Computer Architecture News
    ACM SIGARCH Computer Architecture News  Volume 29, Issue 2
    Special Issue: Proceedings of the 28th annual international symposium on Computer architecture (ISCA '01)
    May 2001
    262 pages
    ISSN:0163-5964
    DOI:10.1145/384285
    Issue’s Table of Contents

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 2001

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

ISCA01
Sponsor:

Acceptance Rates

ISCA '01 Paper Acceptance Rate 24 of 163 submissions, 15%;
Overall Acceptance Rate 543 of 3,203 submissions, 17%

Upcoming Conference

ISCA '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)39
  • Downloads (Last 6 weeks)3
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media