skip to main content
article

Joint defect- and variation-aware logic mapping of multi-outputs crossbar-based nanoarchitectures

Published: 01 September 2016 Publication History

Abstract

Nanotechnology-based manufacturing, relying on self-assembly of nanotubes or nanowires, has shown promising potentials for future nanoscale circuit designs. However, high defect density and extreme process variations for crossbar-based nanoarchitectures are expected to be fundamental design challenges. Consequently, defect and variation issues must be considered in logic mapping on nanoscale crossbars. In this paper, we establish a mathematical model for the simultaneous variation and defect-aware logic mapping of multi-outputs crossbar arrays. We model this problem using a new sub-weighted-graph isomorphism problem and propose a greedy algorithm for the variation- and defect-aware logic mapping. Based on Monte-Carlo simulation, we compare the proposed technique with other logic mapping techniques such as, variation-unaware and exhaustive search mapping in terms of accuracy as well as runtime. Results show that the effectiveness of our new mapping technique in variation and defect tolerance as well as run time improvement.

References

[1]
ITRS, International technology roadmap for semiconductors emerging research devices. http://www.itrs.net/links/2009ITRS (2009). Accessed 1 June 2009
[2]
Bachtold, A., Harley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transistors. Science 294, 1317---1320 (2001)
[3]
Cui, Y., Lieber, C.M.: Functional nanoscale electronics devices assembled using silicon nanowire building blocks. Science 291, 851---853 (2001)
[4]
Luo, Y., Collier, C.P., Jeppesen, J.O., Nielsen, K.A., DeIonno, E., Ho, G., Perkins, J., Tseng, H., Yamamoto, T., Stoddart, J.F., Heath, J.R.: Two-dimensional molecular electronics circuits. ChemPhysChem 3, 519---525 (2002)
[5]
Chen, Y., Jung, G.Y., Ohlberg, D.A.A., Li, X., Stewart, D.R., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F., Williams, R.S.: Nanoscale molecular switch crossbar circuits. Nanotechnology 14(4), 462---468 (2003)
[6]
Goldstein, C., Budiu, S. M.: Nanofabrics: spatial computing using molecular electronics. In: Proceedings of annual international symposium on computer architecture, pp. 178-189 (2001)
[7]
DeHon, A.: Nanowire-based programmable architectures. ACM J. Emerg. Technol. Comput. Syst. 1(2), 109---162 (2005)
[8]
Snider, G., Kuekes, P., Williams, R.S.: CMOS-like logic in defective nanoscale crossbars. Nanotechnology 15(8), 881---891 (2004)
[9]
Huang, J., Tahoori, M. B., Lombardi, F.: On the defect tolerance of nano-scale two-dimensional crossbars. In: Proceedings of the IEEE international symposium on defect and fault tolerance in VLSI systems, pp. 96---104 (2004)
[10]
Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617---620 (2002)
[11]
Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater 6(11), 841---850 (2007)
[12]
Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., Lieber, C.M.: Diameter-controlled synthesis of single crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214---2216 (2001)
[13]
Melosh, N.A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P.M., Heath, J.R.: Ultrahigh-density nanowire lattices and circuits. Science 300, 112---115 (2003)
[14]
Raychowdhury, A., Roy, K.: Performance estimation of molecular crossbar architecture considering capacitive and inductive coupling between interconnects. In: Proceedings of the IEEE international Conference on nanotechnology, pp. 445---448 (2003)
[15]
Naeimi, H., DeHon, A.: A greedy algorithm for tolerating defective crosspoints in nanoPLA design. In: Proceedings of the IEEE international conference on field-programmable tehnology, pp. 49---56 (2004)
[16]
Tahoori, M.B.: Application-independent defect tolerance of reconfigurable nanoarchitectures. J. Emerg. Technol. Comput. Syst. 2(3), 197---218 (2006)
[17]
Ghavami, B., Tajary, A., Raji, M., Pedram, H., Defect and variation issues on design mapping of reconfigurable nanoscale crossbars. In: Proceedings of the IEEE computer society annual symposium VLSI, pp 173---178 (2010)
[18]
Rao W., Orailoglu, A., Karri, R.: Topology aware mapping of logic functions onto nanowire-base crossbar architectures. In: Proceedings of the IEEE/ACM design automation conference, pp 723---726 (2006)
[19]
Hogg, T., Snider, G.: Defect-tolerant logic with nanoscale crossbar circuits. J. Electron. Test. 23, 117---129 (2007)
[20]
Rao, W., Karri, R., Orailoglu, A.: Logic mapping in crossbar-based nanoarchitectures. IEEE Des. Test Comput. 26(1), 68---77 (2009)
[21]
Zheng, Y., Huang, C.: Defect-aware logic mapping for nanowire-based programmable logic arrays via satisfiability. In: Proceedings of design, automation & test in Europe, pp. 1279---1283 (2009)
[22]
Goren, S., Ugurdag, H., Palaz, O.: Defect-aware nanocrossbar logic mapping using bipartite subgraph isomorphism and canonization. In: Proceedings of IEEE Eurpe Test Symposium, pp. 246---231 (2010)
[23]
Yang, J.-S., Datta, R.: Efficient function mapping in nanoscale crossbar architecture. In: Proceedings of IEEE Int. symp. defect fault tolerance vlsi nanotechnology system, pp. 190---196 (2011)
[24]
Su, Y., Rao, W.: Defect-tolerant logic implementation onto nanocrossbars by exploiting mapping and morphing simultaneously. In: Proceedings of international conference on computer-aided design, pp. 456---462 (2011)
[25]
Yuan, B., Li, B.: Diversity mapping scheme for defect and fault tolerance in nanoelectronic crossbar. In: Proceedings of international conference on information science and technology, pp. 149---154 (2011)
[26]
Su, Y., Rao, W.: Defect-tolerant logic hardening onto crossbar-based nanosystems. In: Proceedings of design, automation & test in Europe, pp. 1801---1806 (2013)
[27]
Yuan, B., Li, B., Weise, T., Yao, X.: A new memetic algorithm with fitness approximation for the defect-tolerant logic mapping in crossbar-based nanoarchitectures. IEEE Trans. Evol. Comput. 18(6), 846---859 (2014)
[28]
Su, Y., Rao, W.: An integrated framework toward defect-tolerant logic implementation onto nanocrossbars. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(1), 64---75 (2014)
[29]
Gojman, B., Dehon, A.: VMATCH: Using logical variation to counteract physical variation in bottom-up, nanoscale systems. In: Proceedings of the IEEE international conference on field-programmable technology, pp.78---87 (2009)
[30]
Tunc, C., Tahoori, M.: Variation tolerant logic mapping for crossbar array nano architectures. In: Proceedings of the Asia and South Pacific design automation conference, pp. 855---860 (2010)
[31]
Zamani, M., Mirzaei, H., Tahoori, M.B.: ILP formulations for variation/defect-tolerant logic mapping on crossbar nano-architectures. ACM J. Emerg. Technol. Comput. Syst. 9(3), 1---21 (2013)
[32]
Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367---1372 (2004)
[33]
Collaborative Benchmarking Laboratory: LGSynth Benchmarks. North Carolina State University, Department of Computer Science (1993)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational Electronics
Journal of Computational Electronics  Volume 15, Issue 3
September 2016
398 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2016

Author Tags

  1. Crossbar
  2. Defect
  3. Logic mapping
  4. Nanoarchitecture
  5. Variation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media