skip to main content
article

Impact of Auger recombination parameterisations on predicting silicon wafer solar cell performance

Published: 01 September 2014 Publication History

Abstract

For high-efficiency silicon wafer solar cells, Auger recombination is becoming one of the most important efficiency limiting factors. For this purpose it is desirable to be able to use different Auger recombination parameterisations in advanced computer simulations. In this paper we present a method to implement arbitrary Auger parameterisations in the software package Sentaurus TCAD, enabling two- and three-dimensional simulation of solar cells using different Auger parameterisations. As examples, we implemented and investigated three different Auger parameterisations (proposed by Altermatt et al., by Kerr and Cuevas, and by Richter et al.) from the literature. For verification, we simulate Auger lifetimes for different doping densities and injection levels in crystalline silicon. The simulated Auger lifetimes are found to agree well with analytical solutions (differences less than 0.001 %). We then employ the three different Auger parameterisations for fitting measured effective lifetime curves of both $$n$$ n -type and $$p$$ p -type float-zone silicon lifetime samples and show which models are applicable under which conditions. We further compare the difference between the three Auger parameterisations by simulating characteristics of a screen-printed aluminium local back surface field silicon wafer solar cell. The simulation results agree well with the characterisation results. We find that the choice of Auger parameterisation can lead to significant differences in the predicted solar cell behaviour under one-Sun illumination. We demonstrate that different Auger parameterisations may result in significant differences in the blue response, by simulating a heavily doped emitter of an aluminium local back surface field silicon wafer solar cell.

References

[1]
Aberle, A.G., Hezel, R.: Progress in low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Prog. Photovolt. Res. Appl. 5(1), 29---50 (1997)
[2]
Hoex, B., Heil, S.B.S., Langereis, E., van de Sanden, M.C.M., Kessels, W.M.M.: Ultralow surface recombination of $$c$$c-Si substrates passivated by plasma-assisted atomic layer deposited Al$$_{2}$$2O$$_{3}$$3. Appl. Phys. Lett. 89(4), 042112 (2006)
[3]
Dingemans, G., Kessels, W.M.M.: Status and prospects of Al$$_{2}$$2O$$_{3}$$3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 30(4), 040802 (2012)
[4]
Tyagi, M.S., Van Overstraeten, R.: Minority carrier recombination in heavily-doped silicon. Solid-State Electron. 26(6), 577---597 (1983)
[5]
Dziewior, J., Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31(5), 346---348 (1977)
[6]
Laks, D.B., Neumark, G.F., Pantelides, S.T.: Accurate interband-auger-recombination rates in silicon. Phys. Rev. B 42(8), 5176---5185 (1990)
[7]
Schmidt, J., Aberle, A.G.: Accurate method for the determination of bulk minority-carrier lifetimes of mono- and multicrystalline silicon wafers. J. Appl. Phys. 81(9), 6186---6199 (1997)
[8]
Landsberg, P.T.: Trap-Auger recombination in silicon of low carrier densities. Appl. Phys. Lett. 50(12), 745---747 (1987)
[9]
Hangleiter, A., Hacker, R.: Enhancement of band-to-band Auger recombination by electron-hole correlations. Phys. Rev. Lett. 65(2), 215---218 (1990)
[10]
Hacker, R., Hangleiter, A.: Intrinsic upper limits of the carrier lifetime in silicon. J. Appl. Phys. 75(11), 7570---7572 (1994)
[11]
Altermatt, P.P., Schmidt, J., Heiser, G., Aberle, A.G.: Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon. J. Appl. Phys. 82(10), 4938---4944 (1997)
[12]
Kerr, M.J., Cuevas, A.: Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semicond. Sci. Technol. 17(2), 166---172 (2002)
[13]
Richter, A., Glunz, S.W., Werner, F., Schmidt, J., Cuevas, A.: Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86(16), 165202 (2012)
[14]
Manual,Sentaurus.: F-2011.09 ed. Synopsys Inc., Mountain View (2011)
[15]
McIntosh, K.R., Altermatt, P.P.: A freeware 1D emitter model for silicon solar cells. In: 35th IEEE Photovoltaic Specialists Conference, 20---25 June 2010, pp. 2188---2193
[16]
Stangl, R., Kriegel, M., Schmidt, M.: AFORS-HET, version 2.2, a numerical computer program for simulation of heterojunction solar cells and measurements. In: World Conference on Photovoltaic Energy Conversion Hawaii, 7---12 May 2006
[17]
Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835---842 (1952)
[18]
Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87(2), 387---387 (1952)
[19]
Sinton, R.A., Cuevas, A.: Contactless determination of current---voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69(17), 2510---2512 (1996)
[20]
Liao, B., Stangl, R., Ma, F.-J., Mueller, T., Lin, F., Aberle, A.G., Bhatia, C.S., Hoex, B.: Excellent $$c$$c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation. J. Phys. D 46(38), 385102 (2013)
[21]
Trupke, T., Green, M.A., Wurfel, P., Altermatt, P.P., Wang, A., Zhao, J., Corkish, R.: Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 94(8), 4930---4937 (2003)
[22]
Schmidt, J., Lim, B., Walter, D., Bothe, K., Gatz, S., Dullweber, T., Altermatt, P.P.: Impurity-related limitations of next-generation industrial silicon solar cells. IEEE J. Photovolt. 3(1), 114---118 (2013)
[23]
Rudiger, M., Rauer, M., Schmiga, C., Hermle, M.: Effect of incomplete ionization for the description of highly aluminum-doped silicon. J. Appl. Phys. 110(2), 024508 (2011)
[24]
Altermatt, P.P., Steingrube, S., Yang, Y., Sprodowski, C., Dezhdar, T., Koc, S., Veith, B., Herrman, S., Bock, R., Bothe, K., Schmidt, J., Brendel, R.: Highly predictive modelling of entire Si solar cells for industrial applications. In: 24th European Photovoltaic Solar Energy Conference, Hamburg, 21---25 Sept 2009, pp. 901---906
[25]
Schmidt, J., Thiemann, N., Bock, R., Brendel, R.: Recombination lifetimes in highly aluminum-doped silicon. J. Appl. Phys. 106(9), 093707 (2009)
[26]
Altermatt, P.P.: Models for numerical device simulations of crystalline silicon solar cells: a review. J. Comput. Electron. 10(3), 314---330 (2011)

Cited By

View all
  1. Impact of Auger recombination parameterisations on predicting silicon wafer solar cell performance

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Computational Electronics
        Journal of Computational Electronics  Volume 13, Issue 3
        September 2014
        209 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 September 2014

        Author Tags

        1. Auger recombination
        2. Carrier lifetime
        3. Silicon solar cell
        4. Simulation

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 06 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media