skip to main content
article

Effects of acceptor dopants on the enhanced piezoelectric potential of ZnO nanowires: limiting free charge-carrier density through neutralizing donors

Published: 01 September 2014 Publication History

Abstract

The piezoelectric potential of ZnO can be enhanced using acceptor dopants to neutralize the donor concentrations. In this study, unintentional n-type conductivity is assessed through modeling ZnO nanowires where the activation process of donors $$(N_d^+)$$ ( N d + ) is given with a Fermi level $$(E_F)$$ ( E F ) close to the conduction band and followed by the introduction of an acceptor dopant $$(N_a^-)$$ ( N a - ) in order to allow $$E_F$$ E F to be within the optimum range of $$1\le E_F \le 3.2 \hbox { eV}$$ 1 ≤ E F ≤ 3.2 eV , which corresponds to the maximum piezoelectric potential calculated. The finite element method simulation reveals that the maximal range of ZnO piezoelectric potential can be obtained due to the intrinsic characteristics of the ZnO nanowire transformed using acceptor dopants, which implies that the limitations on the free-charge carriers (i.e. free-carrier depletion) could reduce the screening effects on the piezoelectric potential. Furthermore, the difference $${\vert }N_d^+ -N_a^- {\vert }$$ | N d + - N a - | is calculated to approach zero near the mid-gap and the energy band structure, which deviates from the normal flat line within the optimal range of $$1\le E_F \le 3.2 \hbox { eV}$$ 1 ≤ E F ≤ 3.2 eV under the external stress imposed.

References

[1]
Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242---246 (2006)
[2]
Wang, Z.L.: ZnO nanowire and nanoblet platform for nanotechnology. Mater. Sci. Eng. R 64, 33---71 (2009)
[3]
Hu, Y., Zhang, Y., Xu, C., Lin, L., Snyder, R.L., Wang, Z.L.: Self-powered system with wireless data transmission. Nano Lett. 11, 2572---2577 (2011)
[4]
Wang, Z.L.: Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280---285 (2012)
[5]
Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103---1110 (2009)
[6]
Romano, G., Mantini, G., Carlo, A.D., D'Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401---465406 (2011)
[7]
Kröger, F.A.: The Chemistry of Imperfect Crystals. North-Holland, Amsterdam (1974)
[8]
Look, D.C., Hemsky, J.W., Sizelove, J.R.: Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552---2555 (1999)
[9]
Tomlins, G.W., Routbort, J.L., Mason, T.O.: Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. 87, 117---123 (2000)
[10]
Xu, S., Hansen, B.J., Wang, Z.L.: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93---98 (2010)
[11]
Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F., Wang, Z.Y.: Voltage generation from individual $$\text{ BaTiO }_{3}$$BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966---2969 (2007)
[12]
Cha, S.N., Kim, S.M., Kim, H.J., Ku, J.Y., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142---5147 (2011)
[13]
Ming-Pei, L., et al.: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223---1227 (2009)
[14]
Piezoelectric ZnO Property is Supported by the Material Library in COMSOL Multiphysics Package v. 4.2(a)
[15]
Kim, S.M., Kim, H., Nam, Y., Kim, S.: Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes. AIP Adv. 2, 042174---042178 (2012)
[16]
Sohn, J.I., Cha, S.N., Song, B.G., Lee, S., Kim, S.M., Ku, J., Kim, H.J., Park, Y.J., Choi, B.L., Wang, Z.L., Kim, J.M., Kim, K.: Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci. 6, 97---104 (2013)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational Electronics
Journal of Computational Electronics  Volume 13, Issue 3
September 2014
209 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2014

Author Tags

  1. Acceptor
  2. Dopants
  3. Doping
  4. Piezo-enhancing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media