skip to main content
10.5555/2046265.2046303guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Wavelet-type denoising for mechanical structures diagnosis

Published: 22 July 2010 Publication History

Abstract

We propose an adaptive method for the analysis of the dynamical changes in mechanical structures. Using measurement techniques and the flexible Gabor-wavelet transform, we perform an optimal denoising of slowly variable band-limited signals for an improved mechanical structure fault diagnostics.

References

[1]
Liu B., Riemenschneider S. D. and Shen Z., A Fast adaptive time-frequency analysis method and its application in vibration analysis, J. Vibration and Acoustics (Trans. ASME), Vol.to appear.
[2]
Jones D. L., Parks T. W., A High Resolution Data-Adaptive Time-Frequency Representation, IEEE Trans. Acoustics, Speech, and Signal Processing, 38, (1990), pp. 2127-2135.
[3]
Strohmer T. and Xu J., Adaptive and Robust Channel Estimation for Pilot-aided OFDM Systems, IEEE Transactions on Wireless Communications, Vol. submitted.
[4]
Daubechies I., Ten Lectures onWavelets, Society of Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1992).
[5]
Gröbner P., Banachraume glatter Funktionen and Zerlegungmethoden, Ph.D. thesis, University of Vienna, 1992.
[6]
Feichtinger H.G., Modulation spaces on locally compact abelian groups, Technical report, University of Vienna, tehnical reports, (1983).
[7]
Feichtinger H.G., Fornasier M., Flexible Gabor-wavelet atomic decompositions for L2 Sobolev spaces, Annali di Matematica Pura e Applicata (2006), pp 105-131.
[8]
Stockwell R.G., Mansinha L. and Lowe R. P., Localization of the complex spectrum: the S transform, IEEE Trans. Signal Process., Vol.44 No.4, (1996) p.998-1001.
[9]
Feichtinger H.G., Pandey S. S., Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group, J. Math. Anal. Appl., Vol.279 No.2, (2003), pp.380-397.
[10]
Onchis D., Multiple 1D parallel wavelet transform , In IEEE Proc. of SYNASC, Los Alamitos, USA, (2005), pp. 173-181.
[11]
D. Onchis and H. Feichtinger. Constructive reconstruction from irregular sampling in multiwindow spline-type spaces. General Proceedings of the 7th ISAAC Congress, London, 2010.
[12]
J. J. Benedetto and S. Li. The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal., 5(4):389- 427, 1998.
[13]
H. G. Feichtinger. Spline-type spaces in Gabor analysis. In D. X. Zhou, editor, Wavelet Analysis: Twenty Years Developments. Proceedings of the international conference of computational harmonic analysis, Hong Kong, China, June 4- 8, 2001, volume 1 of Ser. Anal., pages 100-122. World Sci.Pub., River Edge, NJ, 2002.
[14]
H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86:307-340, 1989.
[15]
H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math., 108:129-148, 1989.
[16]
H. G. Feichtinger and K. Gröchenig. Gabor wavelets and the Heisenberg group: Gabor Expansions and Short Time Fourier transform from the group theoretical point of view. In C. Chui, editor, Wavelets - A Tutorial in Theory and Applications, volume 2 of Wavelet Anal. Appl., pages 359-397. Academic Press, Boston, 1992.
[17]
J. Xu and S. Osher. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Proc., 16(2):534-544, 2007.
[18]
C. Heil and D. F. Walnut, editors. Fundamental Papers in Wavelet Theory. Princeton University Press, Princeton, NJ, 2006.
[19]
Q. Tao, M. I. Vai, and Y. Xu, editors. Wavelet Analysis and Applications. (Proc. WAA2005, Nov. 29 - Dec. 2, 2005, University of Macau.). Applied and Numerical Harmonic Analysis. Birkhäuser, Basel - Boston - Berlin, 2007.

Cited By

View all
  • (2019)Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysisSignal Processing10.1016/j.sigpro.2013.04.02796(29-44)Online publication date: 3-Jan-2019
  • (2011)The kinematic and dynamic analysis of the crank mechanism with solidworks motionProceedings of the 11th WSEAS international conference on Signal processing, computational geometry and artificial vision, and Proceedings of the 11th WSEAS international conference on Systems theory and scientific computation10.5555/2042878.2042924(245-250)Online publication date: 23-Aug-2011

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
EMESEG'10: Proceedings of the 3rd WSEAS international conference on Engineering mechanics, structures, engineering geology
July 2010
562 pages
ISBN:9789604742035

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Stevens Point, Wisconsin, United States

Publication History

Published: 22 July 2010

Author Tags

  1. adaptive method
  2. denoising
  3. mechanical structures
  4. wavelets

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysisSignal Processing10.1016/j.sigpro.2013.04.02796(29-44)Online publication date: 3-Jan-2019
  • (2011)The kinematic and dynamic analysis of the crank mechanism with solidworks motionProceedings of the 11th WSEAS international conference on Signal processing, computational geometry and artificial vision, and Proceedings of the 11th WSEAS international conference on Systems theory and scientific computation10.5555/2042878.2042924(245-250)Online publication date: 23-Aug-2011

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media