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Abstract: We propose an adaptive method for the analysis of the dynamical changes in mechanical structures.
Using measurement techniques and the flexible Gabor-wavelet transform, we perform an optimal denoising of
slowly variable band-limited signals for an improved mechanical structure fault diagnostics.
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1 Introduction

Mechanical structures diagnosis is an esential pro-
cesses for ensuring the safe running of machines. Sig-
nal analysis is the most common method used for
condition monitoring and fault diagnostics. It al-
lows the mechanical engineer to discover the impor-
tant information contained in the signals and to iso-
late the vibration exposure. However, most of the
mechanical signals recorded are contaminated with
noise and also exhibit a non-linear behaviour and
therefore for a proper indentification of the signal
characteristics we need to apply a flexible transform
followed by a suitable denoising procedure. Since
the main classical tools of time-frequency (e.g. lo-
cal Fourier transforms) and time-scale analysis (e.g.
wavelet transforms) lack of flexible characteristics,
there were many recently atempts to provide adaptive
time-frequency representations with applications to
vibrations like ([1]) that follows from previous work
of Jones and Park ([2]) or for channel estimation in
wireless communications like ([3]). Most of them
are extensions of the STFT(Short-time Fourier trans-
form) in the sense of adaptively modifying the band-
witdth or of the CWT(Continuos wavelet transform)
by adaptively varying either the modulation or the
variance parameters ([4]). We propose here an new
approach based on a proper defined flexible transform
with intrisic adaptability involving both translation-
modulations and dilations, called the flexible Gabor-
wavelet transform or the α-transform due to the pa-
rameter α ∈ [0, 1) that control its dependance of the
frequency on the dilations. The theoretical founda-
tions of this transform are related to the work of Peter
Gröbner ([5]) under the guidance of Hans Feichtinger
and also Nazaret and Holschneider ([10]), who were

looking for a suitable decomposition of the frequency
domain as an intermediate geometry between those
of modulation and Besov spaces ([6]). Latter on, in
an successful intent of theoretical discretization, Mas-
simo Fornasier ([9]), obtained Banach frames for α–
modulation spaces. Applied to the signal processing,
the improved spectrum representations of this trans-
form will most likely produce better results in con-
crete applications than the abovementioned methods.
The structure of the paper is as follows. We start the
first part below with the necessary theoretical back-
ground. The second section will introduce a numeri-
cal algorithm for denoising using the discrete Gabor-
wavelet transform and in the last part we present some
test results on mechanical simulated signals and con-
clusions.

Let ω, t ∈ Rd with ω · t the scalar product
in Rd, then the direct Fourier transform of f ∈
L1(Rd): f̂ (ω) =

∞∫
−∞

f (t)e−2πiω·tdt, allows us a

frequential representation of the signal, which can
be then recovered by the inversion formula f (t) =
∞∫

−∞
f̂ (ω) · e2πiω·tdω. Let f, g, h etc. be signals, i.e.

functions from one the Lebesgue spaces Lp(R)(1 ≤
p ≤ ∞).

Definition 1.1. For x, ω ∈ Rd and s ∈ R \ {0}
we define the following operators: Txf(t) = f(t −
x) (translation), Mωf(t) = e2πiω·tf(t) (modulation),
and Dsf(t) = |s|−

d
2 f
(
t
s

)
(dilation). The operators

TxMω or MωTx are called time-frequency shifts.

The next definition refers to a pair of functions
f and g in the following two situations. If f, g ∈
L2(Rd), then f · T xḡ ∈ L1(Rd), and the Fourier
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transform (f · Txḡ)
∧(ω) is punctually defined. If

g ∈ Lp(Rd) and f ∈ Lp′(Rd), then by Hölder in-
equality f · T xḡ ∈ L1(Rd) and again the Fourier
transform of the product is punctually defined.

Definition 1.2. For f and g like above and g ̸= 0,
then the function

Vgf(x, ω) =
∫
Rd

f(t)g(t− x)e−2πit·ωdt with

x, ω ∈ Rd

is called the short-time Fourier transform of the signal
f with respect to the window g.

Remarks 1.Just for latter reference in the numerical
implementation, we mention that the Fourier trans-
form interacts with the dilation in the form: FDs =
D 1

s
F .

2. We will use windows g ∈ L1 ∩ L2(Rd) that satisfy
the admisibility condition

∫
Rd

g(x)dx = 0.

3. We call a weight, a function defined on R2d noneg-
ative and locally integrable. We consider as a valid
weight any continuous function, in order to drop fur-
ther restrictions (e.g. moderate).

Definition 1.3. Let α ∈ [0, 1) and c > 0. For all g ∈
L2(R)\{0} and for f ∈ L2(R) we define the flexible
Gabor-wavelet transform or the α − transform by
the expression

V α
g (f)(x, ω) :=

⟨
f, TxMωDc(1+|ω|)−α

⟩
=

=
∫
R
f(t)TxMωDc(1+|ω|)−αg(t)dt, with x, ω ∈ R.

For α = 0 the transform V α
g coincides with the

short-time Fourier transform, while for α = 1 is a
slight modification of the wavelet transform. In par-
ticular, the intermediary case α = 1/2 is exactly the
Fourier-Bros-Iagolnitzer transform (FBI transform)
([7]).

2 The adaptive transform for denois-
ing

In (10), the first author introduced an algorithm for
computing the time-frequency representation of the
flexible Gabor-wavelet transform. For the numerical
algebraic algorithm description in the discrete setting
will consider signals of length N .
Algorithm 2.1. The flexible Gabor-wavelet transform
can be computed in the following steps:

1. Compute the Fourier transform of the signal
f , with N samples on the interval T , using the Fast
Fourier Transform. This step is executed only once.

2. For all ω corresponding to the all discrete fre-
quencies.

2.1 Shift f̂ with ω.
2.2 Compute the localized window ĝω.
2.3 Compute the punctual multiplication

C(T−ωf̂ · ĝω).
3. Compute the inverse Fourier transform of the

spectrum obtained by applying the convolution theo-
rem in step 2.

4. Finish.

Making use, whenever it is possible, of the com-
putational efficiency of the Fast Fourier Transform,
we get a number of operation of the order N(N +
N logN), when the flexible Gabor-wavelet transform
has N2 samples. All the steps can be performed in
reverse order without any informations loss, so the in-
version routing is also quite straightforward. The trun-
cation error can be neglected since we are not using
only local information. Therefore, the high precision
of the estimates in the transform computation formula
can be achieved without further assumptions on the
window g or on the α parameter in the frame of the
two theorems about the truncation error from ([9]).

In the follow, we will use this algorithm combined
with a soft thresholding procedure for a more accurate
denoising of vibration signals coming from mechani-
cal vibrations measurements simulations. Typical vi-
bration applications use accelerometers to measure vi-
bration. An accelerometer consists of a piezoelectric
element connected to a known mass. When the ac-
celerometer is vibrated, the mass applies force to the
piezoelectric element, generating an electrical charge
that is proportional to the applied force. This charge
can be measured to determine vibration characteris-
tics. Most accelerometers require a current source of 4
mA and a compliance voltage of at least 18 V to drive
their internal circuitry. Other accelerometers require
a 2 mA current source, but have limitations in cable
length and bandwidth. We will use for simulations
vibrations signals taken using AC Coupling to mea-
sure low frequency signals accurately at the Nyquist
sampling rate and loaded in Matlab. Our ideal anti-
aliasing filter passes all signals in the band of interest
and blocks all signals outside of that band. However,
in practical use, the rolloff characteristics of the an-
tialiasing filter allow some signals to pass above the
filters cutoff frequency. By using AC coupling, we
can eliminate any DC that may pass through the anti-
aliasing filter. We will apply a denoising procedure
using a wavelet denosing filter with threshold and the
flexible Gabor-wavelet filter with the same threshold
procedure and compare the results. The common de-
noising procedure for both the wavelet denoising and
the flexible Gabor-wavelet denoising follows the next
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steps:
Algorithm 2.2. Wavelet-based denoising with thresh-
old:

1. Decompose: Select a wavelet and select a level
L. Compute the wavelet decomposition of the signal
at level L.

2. Threshold detail coefficients: For each level
from 1 to L, select a threshold and apply soft thresh-
olding to the detail coefficients.

3. Reconstruct: Compute wavelet-based recon-
struction using the original approximation coefficients
of level L and the modified detail coefficients of levels
from 1 to L.

4. Re-iterate or Finish.

3 Simulation of signal denoising

We have applied the denoising procedure based on the
flexible Gabor-wavelet transform for highly perturbed
and non-linear measurements in the sense of mixed
stationary and transient components with an elevated
signal-to-noise ratio, simulating the most complicated
cases that can be recorded for mechanical structures.
Our experiments were done in Matlab, after the ac-
quisition of the sampled signal and with extra noise
added. The improvements are expected to lead to bet-
ter localization of defects in the clean signal.
For comparison purposes, we have compared our de-
noising procedure with the stardard wavelet denois-
ing at different level of decomposition. We observed
that the ’cleaning’ properties of the denoising pro-
cedure based on the flexible Gabor-wavelet trans-
form are powerful from the first level of decomposi-
tion. Actually, we managed to improve in only one
step the signal-to-noise ration with more than half
a point above the results that can be obtained using
the wavelet transform (e.g. SNRoriginal=3, SNR-
wavelet=2.5, SNRgaborwavelet=2). Even at a simple
visual inspection of the figures on the right, it is obvi-
ous that at the same level of decomposition and using
the same some threshold criteria the flexible Gabor-
transform performs a better denoising than the stan-
dard wavelet procedure. One straightforward expla-
nation of this effect is the following: meanwhile the
wavelets are dealing well with rapid-variable compo-
nents of high frequencies, our flexible Gabor-wavelet
procedures performs a time-frequency representation
both at high and low frequency levels where it is ex-
tremely difficult to separate the noise in the raw mea-
surements. In this way, we can approach the denoising
not only for band-limited signals but also for slowly-
variable band-limited signals by dilating the analyzing
window accordingly to the frequency content.
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Figure 1: Denoising comparison at level 1
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Figure 2: Denoising comparison at level 2
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Figure 3: Denoising comparison at level 3
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4 Conclusion
We introduced in this paper a new denoising pro-
cedure based on the flexible Gabor-wavelet trans-
form and we compared the results with the typi-
cal wavelet denoising procedure. We observed that
due to its adaptive characteristics, involving a well
defined connection of frequencies and dilations the
Gabor-wavelet denoising procedure is more accurate
for complicated measurements of mechanical struc-
tures, simulated under heavy noise perturbations.
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