skip to main content
10.5555/1761171.1761181guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Multiple classifier methods for offline handwritten text line recognition

Published: 23 May 2007 Publication History

Abstract

This paper investigates the use of multiple classifier methods for offline handwritten text line recognition. To obtain ensembles of recognisers we implement a random feature subspace method. The word sequences returned by the individual ensemble members are first aligned. Then the final word sequence is produced. For this purpose we use a voting method and two novel statistical combination methods. The conducted experiments show that the proposed multiple classifier methods have the potential to improve the recognition accuracy of single recognisers.

References

[1]
Kim, G., Govindaraju, V., Srihari, S.: Architecture for handwritten text recognition systems. In Lee, S.W., ed.: Advances in Handwriting Recognition, World Scientific Publ. Co. (1999) 163-172.
[2]
Senior, A., Robinson, A.: An off-line cursive handwriting recognition system. IEEE Transactions on Pattern Analysis and Machine Intelligence <b>20</b>(3) (1998) 309-321.
[3]
Vinciarelli, A., Bengio, S., Bunke, H.: Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Transactions on Pattern Analysis and Machine Intelligence <b>26</b>(6) (2004) 709-720.
[4]
Zimmermann, M., Chappelier, J.C., Bunke, H.: Offline grammar-based recognition of handwritten sentences. IEEE Transactions on Pattern Analysis and Machine Intelligence <b>28</b>(5) (2006) 818-821.
[5]
Rahman, A., Fairhurst, M.: Multiple classifier decision combination strategies for character recognition: A review. International Journal on Document Analysis and Recognition <b>5</b>(4) (2003) 166-194.
[6]
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons Inc (2004).
[7]
Oza, N., Polikar, R., Kittler, J., Roli, F., eds.: Multiple Classifier Systems, 6th International Workshop, Springer LNCS 3541 (2005).
[8]
Huang, Y.S. Suen, C.: A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence <b>17</b>(1) (1995) 90-94.
[9]
Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles applied to handwriting recognition. International Journal on Document Analysis and Recognition <b>8</b>(4) (2006) 262-279.
[10]
Sirlantzkis, K., Fairhurst, M., Hoque, M.: Genetic algorithm for multiple classifier configuration: A case study in character recognition. In: 2nd International Workshop on Multiple Classifier Systems, Cambridge, England. (2001) 99-108.
[11]
Gader, P., Mohamed, M., Keller, J.: Fusion of handwritten word classifiers. Pattern Recognition Letters <b>17</b> (1996) 577-584.
[12]
Günter, S., Bunke, H.: Multiple classifier systems in off-line handwritten word recognition - on the influence of training set and vocabulary size. International Journal of Pattern Recognition and Artificial Intelligence <b>18</b>(7) (2004) 1303-1320.
[13]
Marti, U.V., Bunke, H.: Use of positional information in sequence alignment for multiple classifier combination. In: 2nd International Workshop on Multiple Classifier Systems, Cambridge, England. (2001) 388-398.
[14]
Bertolami, R., Bunke, H.: Ensemble methods for handwritten text line recognition systems. In: International Conference on Systems, Man and Cybernetics, Hawaii, USA. (2005) 2334-2339.
[15]
Fiscus, J.: A post-processing system to yield reduced word error rates: Recognizer output voting error reduction. In: IEEE Workshop on Automatic Speech Recognition and Understanding, Santa Barbara. (1997) 347-352.
[16]
Marti, U.V., Bunke, H.: Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. International Journal of Pattern Recognition and Artificial Intelligence <b>15</b> (2001) 65-90.
[17]
Brakensiek, A., Rigoll, G.: Handwritten address recognition using hidden Markov models. In Dengel, A., Junker, M., Weisbecker, A., eds.: Reading and Learning, Springer (2004) 103-122.
[18]
Ho, T.K.: The random space method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence <b>20</b>(8) (1998) 832-844.
[19]
Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics <b>22</b>(3) (1992) 418-435.
[20]
Raudys, S.: Trainable fusion rules. i. large sample size case. Neural Networks <b>19</b>(10) (1006) 1506-1516.
[21]
Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition <b>5</b> (2002) 39-46.
[22]
Johansson, S., Atwell, E., Garside, R., Leech, G.: The Tagged LOB Corpus, User's Manual. Norwegian Computing Center for the Humanities, Bergen, Norway. (1986).
[23]
Francis, W.N., Kucera, H.: Brown corpus manual, Manual of Information to accompany A Standard Corpus of Present-Day Edited American English, for use with Digital Computers. Department of Linguistics, Brown University, Providence, USA (1979).
[24]
Bauer, L.: Manual of Information to Accompany TheWellington Corpus of Written New Zealand English. Department of Linguistics, Victoria University, Wellington, New Zealand (1993).
[25]
Goodman, J.: A bit of progress in language modeling. Technical Report MSR-TR- 2001-72, Microsoft Research (2001).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
MCS'07: Proceedings of the 7th international conference on Multiple classifier systems
May 2007
524 pages
ISBN:9783540724810
  • Editors:
  • Michal Haindl,
  • Josef Kittler,
  • Fabio Roli

Sponsors

  • EU IST FP6 BioSecure Network of Excellence
  • EU IST FP6 MUSCLE Network of Excellence
  • IAPR: International Association for Pattern Recognition
  • University of Surrey
  • University of Cagliari: University of Cagliari

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 May 2007

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media