skip to main content
10.5555/1717561.1717714guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Fast estimating data dependence structure via fuzzy empirical copula

Published: 20 August 2009 Publication History

Abstract

As a non-parametric algorithm, Empirical Copula is an effective way to estimate the dependence structure of high-dimension arbitrarily distributed data. However, it suffers from the problem of huge computation time because of its high computational complexity. In this paper, Fuzzy Empirical Copula is proposed to solve this problem by combining the Fuzzy Clustering by Local Approximation of Memberships (FLAME) with Empirical Copula. In the proposed algorithm, FLAME is extended from two-dimension data to high-dimension data and FLAME+ is implemented to identify the highest density objects which represent the original dataset, and then Empirical Copula is used to estimate its independence structure according to the new dataset. Case studies have been carried out to demonstrate the effectiveness of the Fuzzy Empirical Copula.

References

[1]
A. Edmunds and A. Morris. The problem of information overload in business organisations: a review of the literature. International Journal of Information Management, 20(1):17-28, 2000.
[2]
R. Bellman. Adaptive control processes: A guided tour. Princeton University Press, 1961.
[3]
K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(6):559-572, 1901.
[4]
K.V. Mardia, J.T. Kent, J.M. Bibby, et al. Multivariate analysis. 1979.
[5]
T. Hastie and W. Stuetzle. Principal Curves. Journal of the American Statistical Association, 84(406):502-516, 1989.
[6]
T. Kohonen. Self-Organizing Maps. Springer, 2001.
[7]
J. Karhunen. Nonlinear Independent Component Analysis. ICA: Principles and Practice, pages 113-134, 2001.
[8]
N. Belacel, P. Hansen, and N. Mladenovic. Fuzzy J-Means: a new heuristic for fuzzy clustering. Pattern Recognition, 35(10):2193-2200, 2002.
[9]
P. VUORIMAA. FUZZY SELF-ORGANIZING MAP. Fuzzy sets and systems, 66(2):223-231, 1994.
[10]
P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S. Lander, and T.R. Golub. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA, 96:2907-2912, 1999.
[11]
KY Yeung, C. Fraley, A. Murua, AE Raftery, and WL Ruzzo. Model-based clustering and data transformations for gene expression data. Bioinformatics, 17(10):977-987, 2001.
[12]
P. Deheuvels. La fonction de dépendance empirique et ses propriétés: Un test non paramétrique dindépendance. Bulletin de lAcadémie royale de Belgique: Classe des sciences, 65:274-292, 1979.
[13]
A. Kolesarova, R. Mesiar, J. Mordelova, and C. Sempi. Discrete Copulas. Fuzzy Systems, IEEE Transactions on, 14(5):698-705, 2006.
[14]
M.A.H. Dempster, E.A. Medova, S.W. Yang, and Judge Business School (Cambridge University. Empirical Copulas for CDO Tranche Pricing Using Relative Entropy. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 10(4):679, 2007.
[15]
J. Ma and Z. Sun. Dependence Structure Estimation via Copula. Arxiv preprint arXiv:0804.4451, 2008.
[16]
L. Fu and E. Medico. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics, 8:3, 2007.
[17]
J.D. FERMANIAN and O. SCAILLET. Nonparametric Estimation of Copulas for Time Series. 2003.
[18]
A. Sklar. Fonctions de répartition a n dimensions et leurs marges. Publ Inst Statist Univ Paris, 8:229-231, 1959.
[19]
R.B. Nelsen. An Introduction to Copulas (Springer Series in Statistics). 2006.
[20]
N. Kolev, U. Anjos, and B.V.M. Mendes. Copulas: A Review and Recent Developments. Stochastic Models, 22(4):617-660, 2006.
[21]
W.H. Kruskal. Ordinal measures of association. Journal of the American Statistical Association, 53(284):814-861, 1958.
[22]
E.L. Lehmann. Some concepts of dependence. Ann. Math. Statist, 37(1):137-1, 1966.
[23]
A. Asuncion and D.J. Newman. UCI machine learning repository. 2007.
[24]
H. Liu. A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations. IEEE Transactions on Fuzzy Systems, 16(6):1522-1530, 2008.
[25]
H. Liu, DJ Brown, and GM Coghill. Fuzzy qualitative robot kinematics. IEEE Transactions on Fuzzy Systems, 16(3):808-822, 2008.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
FUZZ-IEEE'09: Proceedings of the 18th international conference on Fuzzy Systems
August 2009
2186 pages
ISBN:9781424435968

Publisher

IEEE Press

Publication History

Published: 20 August 2009

Author Tags

  1. FLAME
  2. computation cost
  3. dependence structure
  4. fuzzy empirical copula

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media