skip to main content
research-article

An Examination of Ultrasound Mid-air Haptics for Enhanced Material and Temperature Perception in Virtual Environments

Published: 24 September 2024 Publication History

Abstract

Rendering realistic tactile sensations of virtual objects remains a challenge in VR. While haptic interfaces have advanced, particularly with phased arrays, their ability to create realistic object properties like state and temperature remains unclear. This study investigates the potential of Ultrasound Mid-air Haptics (UMH) for enhancing the perceived congruency of virtual objects. In a user study with 30 participants, we assessed how UMH impacts the perceived material state and temperature of virtual objects. We also analyzed EEG data to understand how participants integrate UMH information physiologically. Our results reveal that UMH significantly enhances the perceived congruency of virtual objects, particularly for solid objects, reducing the feeling of mismatch between visual and tactile feedback. Additionally, UMH consistently increases the perceived temperature of virtual objects. These findings offer valuable insights for haptic designers, demonstrating UMH's potential for creating more immersive tactile experiences in VR by addressing key limitations in current haptic technologies.

Supplemental Material

MP4 File
Supplemental video

References

[1]
David J. Acunzo, Graham MacKenzie, and Mark C.W. van Rossum. 2012. Systematic biases in early ERP and ERF components as a result of high-pass filtering. Journal of Neuroscience Methods 209, 1 (2012), 212--218. https://doi.org/ 10.1016/j.jneumeth.2012.06.011
[2]
Adilzhan Adilkhanov, Amir Yelenov, Ramakanth Singal Reddy, Alexander Terekhov, and Zhanat Kappassov. 2020. VibeRo: Vibrotactile Stiffness Perception Interface for Virtual Reality. IEEE Robotics and Automation Letters 5 (2020), 2785--2792.
[3]
I. Almesri, H. B. Awbi, E. Foda, and K. Sirén. 2013. An Air Distribution Index for Assessing the Thermal Comfort and Air Quality in Uniform and Nonuniform Thermal Environments. Indoor and Built Environment 22, 4 (2013), 618--639. https://doi.org/10.1177/1420326X12451186 arXiv:https://doi.org/10.1177/1420326X12451186
[4]
Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2016. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI '16). Association for Computing Machinery, New York, NY, USA, 1968--1979. https://doi.org/10.1145/2858036.2858226
[5]
Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2014. Displaying Shapes with Various Types of Surfaces Using Visuo-Haptic Interaction. In Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology (Edinburgh, Scotland) (VRST '14). Association for Computing Machinery, New York, NY, USA, 191--196. https://doi.org/10.1145/2671015.2671028
[6]
Héctor Barreiro, Stephen Sinclair, and Miguel A Otaduy. 2019. Ultrasound rendering of tactile interaction with fluids. In 2019 IEEE World Haptics Conference (WHC '19). IEEE, New York, NY, USA, 521--526. https://doi.org/10.1109/WHC. 2019.8816137
[7]
Ahmed Bentaleb, Samir BENBELKACEM, and Nadia Zenati-Henda. 2020. Smart Thermo-Haptic Bracelet for VR Environment. In Proceedings of the 26th ACM Symposium on Virtual Reality Software and Technology (VRST'20). Association for Computing Machinery, New York, NY, USA, 1--2. https://doi.org/10.1145/3385956.3422108
[8]
Joanna Bergström, Aske Mottelson, and Jarrod Knibbe. 2019. Resized Grasping in VR: Estimating Thresholds for Object Discrimination. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST '19). Association for Computing Machinery, New York, NY, USA, 1175--1183. https: //doi.org/10.1145/3332165.3347939
[9]
Raoul Bickmann, Celine Tran, Ninja Ruesch, and KatrinWolf. 2019. Haptic Illusion Glove: A Glove for Illusionary Touch Feedback When Grasping Virtual Objects. In Proceedings of Mensch Und Computer 2019 (Hamburg, Germany) (MuC'19). Association for Computing Machinery, New York, NY, USA, 565--569. https://doi.org/10.1145/3340764.3344459
[10]
Andreea Dalia Blaga, Maite Frutos-Pascual, Chris Creed, and Ian Williams. 2020. Too Hot to Handle: An Evaluation of the Effect of Thermal Visual Representation on User Grasping Interaction in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI '20). Association for Computing Machinery, New York, NY, USA, 1--16. https://doi.org/10.1145/3313831.3376554
[11]
Jas Brooks, Steven Nagels, and Pedro Lopes. 2020. Trigeminal-Based Temperature Illusions. Association for Computing Machinery, New York, NY, USA, 1--12. https://doi.org/10.1145/3313831.3376806
[12]
Shaoyu Cai, Pingchuan Ke, Shanshan Jiang, Takuji Narumi, and Kening Zhu. 2019. Demonstration of ThermAirGlove: A Pneumatic Glove for Material Perception in Virtual Reality through Thermal and Force Feedback. In SIGGRAPH Asia 2019 Emerging Technologies (SA '19). Association for Computing Machinery, New York, NY, USA, 11--12. https: //doi.org/10.1145/3355049.3360529
[13]
Tom Carter, Sue Ann Seah, Benjamin Long, Bruce Drinkwater, and Sriram Subramanian. 2013. UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST '13). Association for Computing Machinery, New York, NY, USA, 505--514. https://doi.org/10.1145/2501988.2502018
[14]
Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and Andrew D. Wilson. 2017. Sparse Haptic Proxy: Touch Feedback in Virtual Environments Using a General Passive Prop. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI '17). Association for Computing Machinery, New York, NY, USA, 3718--3728. https://doi.org/10.1145/3025453.3025753
[15]
Inrak Choi, Yiwei Zhao, Eric J. Gonzalez, and Sean Follmer. 2021. Augmenting Perceived Softness of Haptic Proxy Objects Through Transient Vibration and Visuo-Haptic Illusion in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 27 (2021), 4387--4400.
[16]
Timothy R. Coles, Dwight Meglan, and Nigel W. John. 2011. The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art. IEEE Transactions on Haptics 4, 1 (Jan. 2011), 51--66. https://doi.org/10.1109/TOH.2010.19 Conference Name: IEEE Transactions on Haptics.
[17]
Alain de Cheveigné and Israel Nelken. 2019. Filters: When, Why, and How (Not) to Use Them. Neuron 102, 2 (2019), 280--293. https://doi.org/10.1016/j.neuron.2019.02.039
[18]
Xavier de Tinguy, Claudio Pacchierotti, Maud Marchal, and Anatole Lécuyer. 2018. Enhancing the Stiffness Perception of Tangible Objects in Mixed Reality Using Wearable Haptics. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2018), 81--90.
[19]
Marc O Ernst and Martin S Banks. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 6870 (2002), 429--433.
[20]
Roberta Etzi, Francesco Ferrise, Monica Bordegoni, Massimiliano Zampini, and Alberto Gallace. 2018. The Effect of Visual and Auditory Information on the Perception of Pleasantness and Roughness of Virtual Surfaces. Multisensory Research 31, 6 (2018), 501 -- 522. https://doi.org/10.1163/22134808-00002603
[21]
Leonor Fermoselle, Alexander Toet, Nirul Hoeba, Jeanine van Bruggen, Nanda van der Stap, Frank B. ter Haar, and Jan Van Erp. 2022. Grasping Temperature: Thermal Feedback in VR Robot Teleoperation. In Proceedings of the 2022 ACM International Conference on Interactive Media Experiences (IMX '22). Association for Computing Machinery, New York, NY, USA, 261--266. https://doi.org/10.1145/3505284.3532969
[22]
Euan Freeman. 2021. Enhancing Ultrasound Haptics with Parametric Audio Effects. In Proceedings of the 2021 International Conference on Multimodal Interaction (Montréal, QC, Canada) (ICMI '21). Association for Computing Machinery, New York, NY, USA, 692--696. https://doi.org/10.1145/3462244.3479951
[23]
Euan Freeman, Ross Anderson, Julie Williamson, Graham Wilson, and Stephen A. Brewster. 2017. Textured surfaces for ultrasound haptic displays. In Proceedings of the 19th ACM International Conference on Multimodal Interaction (ICMI '17). Association for Computing Machinery, New York, NY, USA, 491--492. https://doi.org/10.1145/3136755.3143020
[24]
William Frier, Damien Ablart, Jamie Chilles, Benjamin Long, Marcello Giordano, Marianna Obrist, and Sriram Subramanian. 2018. Using Spatiotemporal Modulation to Draw Tactile Patterns in Mid-Air. In Haptics: Science, Technology, and Applications. Springer International Publishing, Cham, 270--281. https://doi.org/10.1007/978--3--319--93445--7_24
[25]
William Frier, Dario Pittera, Damien Ablart, Marianna Obrist, and Sriram Subramanian. 2019. Sampling Strategy for Ultrasonic Mid-Air Haptics. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI '19). Association for Computing Machinery, New York, NY, USA, 1--11. https://doi.org/ 10.1145/3290605.3300351
[26]
Lukas Gehrke, Sezen Akman, Pedro Lopes, Albert Chen, Avinash Kumar Singh, Hsiang-Ting Chen, Chin-Teng Lin, and Klaus Gramann. 2019. Detecting Visuo-Haptic Mismatches in Virtual Reality using the Prediction Error Negativity of Event-Related Brain Potentials. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland Uk, 1--11. https://doi.org/10.1145/3290605.3300657
[27]
Alex Girdler and Orestis Georgiou. 2020. Mid-Air Haptics in Aviation--creating the sensation of touch where there is nothing but thin air. arXiv preprint arXiv:2001.01445 (2020). https://doi.org/10.48550/ARXIV.2001.01445 arXiv:2001.01445
[28]
Gowri Shankar Giri, Yaser Maddahi, and Kourosh Zareinia. 2021. An Application-Based Review of Haptics Technology. Robotics 10, 1 (March 2021), 29. https://doi.org/10.3390/robotics10010029 Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
[29]
Sebastian Günther, Florian Müller, Dominik Schön, Omar Elmoghazy, Max Mühlhäuser, and Martin Schmitz. 2020. Therminator: Understanding the Interdependency of Visual and On-Body Thermal Feedback in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI '20). Association for Computing Machinery, New York, NY, USA, 1--14. https://doi.org/10.1145/3313831.3376195
[30]
Kyle Harrington, David R. Large, Gary Burnett, and Orestis Georgiou. 2018. Exploring the Use of Mid-Air Ultrasonic Feedback to Enhance Automotive User Interfaces. In Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Toronto, ON, Canada) (AutomotiveUI '18). Association for Computing Machinery, New York, NY, USA, 11--20. https://doi.org/10.1145/3239060.3239089
[31]
Ronan Hinchet, Velko Vechev, Herbert Shea, Otmar Hilliges, and Eth Zurich. 2018. DextrES:Wearable Haptic Feedback for Grasping in VR via a Thin Form-Factor Electrostatic Brake. The 31st Annual ACM Symposium on User Interface Software and Technology (2018), 901--912. https://doi.org/10.1145/3242587.3242657
[32]
Mohssen Hosseini, Ali Sengül, Yudha Pane, Joris De Schutter, and Herman Bruyninck. 2018. ExoTen-Glove: A Force-Feedback Haptic Glove Based on Twisted String Actuation System. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, New York, NY, USA, 320--327. https://doi.org/10.1109/ ROMAN.2018.8525637
[33]
Thomas Howard, Gerard Gallagher, Anatole Lécuyer, Claudio Pacchierotti, and Maud Marchal. 2019. Investigating the Recognition of Local Shapes Using Mid-air Ultrasound Haptics. In 2019 IEEE World Haptics Conference (WHC). 503--508. https://doi.org/10.1109/WHC.2019.8816127
[34]
Thomas Howard, Guillaume Gicquel, Claudio Pacchierotti, and Maud Marchal. 2023. Can we effectively combine tangibles and ultrasound mid-air haptics? A study of acoustically transparent tangible surfaces. IEEE Transactions on Haptics (2023), 1--6. https://doi.org/10.1109/TOH.2023.3267096 Conference Name: IEEE Transactions on Haptics.
[35]
Inwook Hwang, Hyungki Son, and Jin Ryong Kim. 2017. AirPiano: Enhancing music playing experience in virtual reality with mid-air haptic feedback. In 2017 IEEE World Haptics Conference (WHC). 213--218. https://doi.org/10.1109/ WHC.2017.7989903
[36]
Seki Inoue, Yasutoshi Makino, and Hiroyuki Shinoda. 2015. Active touch perception produced by airborne ultrasonic haptic hologram. In 2015 IEEE World Haptics Conference (WHC). 362--367. https://doi.org/10.1109/WHC.2015.7177739
[37]
Mainak Jas, Denis A. Engemann, Yousra Bekhti, Federico Raimondo, and Alexandre Gramfort. 2017. Autoreject: Automated artifact rejection for MEG and EEG data. NeuroImage 159 (2017), 417--429. https://doi.org/10.1016/j. neuroimage.2017.06.030
[38]
Lynette Jones. 2018. Haptics. The MIT Press.
[39]
Takaaki Kamigaki, Shun Suzuki, and Hiroyuki Shinoda. 2020. Mid-air Thermal Display via High-intensity Ultrasound. In SIGGRAPH Asia 2020 Emerging Technologies (SA '20). Association for Computing Machinery, New York, NY, USA, 1--2. https://doi.org/10.1145/3415255.3422895
[40]
Takaaki Kamigaki, Shun Suzuki, and Hiroyuki Shinoda. 2020. Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound. In Haptics: Science, Technology, Applications (Lecture Notes in Computer Science), Ilana Nisky, Jess Hartcher-O'Brien, Michaël Wiertlewski, and Jeroen Smeets (Eds.). Springer International Publishing, Cham, 271--278. https://doi.org/10.1007/978--3-030--58147--3_30
[41]
Ivo Käthner, Thomas Bader, and Paul Pauli. 2019. Heat pain modulation with virtual water during a virtual hand illusion. Scientific Reports 9, 1 (13 Dec 2019), 19137. https://doi.org/10.1038/s41598-019--55407-0
[42]
Takahiro Kawabe. 2020. Mid-Air Action Contributes to Pseudo-Haptic Stiffness Effects. IEEE Transactions on Haptics 13, 1 (2020), 18--24. https://doi.org/10.1109/TOH.2019.2961883
[43]
R. L. Klatzky and S. J. Lederman. 2002. Haptic perception. https://philpapers.org/rec/KLAHP
[44]
Roberta L. Klatzky and Susan J. Lederman. 2003. Touch. In Handbook of Psychology. John Wiley & Sons, Ltd, 147--176. https://doi.org/10.1002/0471264385.wei0406 Section: 6 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471264385.wei0406.
[45]
Roberta L. Klatzky, Jack M. Loomis, Susan J. Lederman, HiromiWake, and Naofumi Fujita. 1993. Haptic identification of objects and their depictions. Perception&Psychophysics 54, 2 (March 1993), 170--178. https://doi.org/10.3758/BF03211752
[46]
Martin Kocur, Lukas Jackermeier, Valentin Schwind, and Niels Henze. 2023. The Effects of Avatar and Environment on Thermal Perception and Skin Temperature in Virtual Reality. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. ACM, Hamburg Germany, 1--15. https://doi.org/10.1145/3544548.3580668
[47]
Alexandra Kuznetsova, Per B. Brockhoff, and Rune H. B. Christensen. 2017. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software 82, 13 (2017), 1--26. https://doi.org/10.18637/jss.v082.i13
[48]
Anatole Lécuyer, Jean-Marie Burkhardt, and Laurent Etienne. 2004. Feeling Bumps and Holes without a Haptic Interface: The Perception of Pseudo-Haptic Textures. Association for Computing Machinery, New York, NY, USA, 239--246. https://doi.org/10.1145/985692.985723
[49]
Anatole Lécuyer, Jean-Marie Burkhardt, and Chee-Hian Tan. 2008. A Study of the Modification of the Speed and Size of the Cursor for Simulating Pseudo-Haptic Bumps and Holes. ACM Trans. Appl. Percept. 5, 3, Article 14 (Sept. 2008), 21 pages. https://doi.org/10.1145/1402236.1402238
[50]
S. J. Lederman and R. L. Klatzky. 1990. Haptic classification of common objects: knowledge-driven exploration. Cognitive Psychology 22, 4 (Oct. 1990), 421--459. https://doi.org/10.1016/0010-0285(90)90009-s
[51]
Susan J. Lederman and Roberta L. Klatzky. 1993. Extracting object properties through haptic exploration. Acta Psychologica 84, 1 (Oct. 1993), 29--40. https://doi.org/10.1016/0001--6918(93)90070--8
[52]
Benjamin Long, Sue Ann Seah, Tom Carter, and Sriram Subramanian. 2014. Rendering Volumetric Haptic Shapes in Mid-Air Using Ultrasound. ACM Trans. Graph. 33, 6, Article 181 (Nov. 2014), 10 pages. https://doi.org/10.1145/2661229. 2661257
[53]
Tomosuke Maeda and Tetsuo Kurahashi. 2019. TherModule:Wearable and Modular Thermal Feedback System based on a Wireless Platform. In Proceedings of the 10th Augmented Human International Conference 2019 (AH2019). Association for Computing Machinery, New York, NY, USA, 1--8. https://doi.org/10.1145/3311823.3311826
[54]
Andualem Tadesse Maereg, Atulya Nagar, David Reid, and Emanuele L. Secco. 2017. Wearable Vibrotactile Haptic Device for Stiffness Discrimination during Virtual Interactions. Frontiers in Robotics and AI 4 (2017). https://doi.org/ 10.3389/frobt.2017.00042
[55]
M. Marchal, G. Gallagher, A. Lécuyer, and C. Pacchierotti. 2020. Can Stiffness Sensations Be Rendered in Virtual Reality Using Mid-air Ultrasound Haptic Technologies?. In Haptics: Science, Technology, Applications (Lecture Notes in Computer Science), Ilana Nisky, Jess Hartcher-O?Brien, Michaël Wiertlewski, and Jeroen Smeets (Eds.). Springer International Publishing, Cham, 297--306. https://doi.org/10.1007/978--3-030--58147--3_33
[56]
Steven Martin and Nick Hillier. 2009. Characterisation of the Novint Falcon haptic device for application as a robot manipulator. In Australasian Conference on Robotics and Automation (ACRA). Citeseer, Australian Robotics and Automation Association, Sydney, Australia, 291--292.
[57]
Jonatan Martinez, Adam Harwood, Hannah Limerick, Rory Clark, and Orestis Georgiou. 2019. Mid-Air Haptic Algorithms for Rendering 3D Shapes. In 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE). IEEE, New York, NY, USA, 1--6. https://doi.org/10.1109/HAVE.2019.8921211
[58]
Asier Marzo, Tom Corkett, and Bruce W. Drinkwater. 2018. Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 65, 1 (Jan. 2018), 102--111. https://doi.org/10.1109/TUFFC.2017.2769399 Conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
[59]
Tao Morisaki, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki Shinoda. 2021. Midair Haptic-Optic Display with Multi-Tactile Texture based on Presenting Vibration and Pressure Sensation by Ultrasound. In SIGGRAPH Asia 2021 Emerging Technologies (SA '21). Association for Computing Machinery, New York, NY, USA, 1--2. https://doi.org/10.1145/3476122.3484849
[60]
Hanaho Motoyama, Masahiro Fujiwara, Tao Morisaki, Hiroyuki Shinoda, and Yasutoshi Makino. 2022. Touchable Cooled Graphics: Midair 3D Image with Noncontact Cooling Feedback using Ultrasound-Driven Mist Vaporization. In SIGGRAPH Asia 2022 Emerging Technologies (SA '22). Association for Computing Machinery, New York, NY, USA, 1--2. https://doi.org/10.1145/3550471.3558402
[61]
Mitsuru Nakajima, Keisuke Hasegawa, Yasutoshi Makino, and Hiroyuki Shinoda. 2018. Remotely displaying cooling sensation via ultrasound-driven air flow. In 2018 IEEE Haptics Symposium (HAPTICS). 340--343. https://doi.org/10. 1109/HAPTICS.2018.8357198 ISSN: 2324--7355.
[62]
Marianna Obrist, Sriram Subramanian, Elia Gatti, Benjamin Long, and Thomas Carter. 2015. Emotions Mediated Through Mid-Air Haptics. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). Association for Computing Machinery, New York, NY, USA, 2053--2062. https: //doi.org/10.1145/2702123.2702361
[63]
Roshan Lalintha Peiris, Wei Peng, Zikun Chen, Liwei Chan, and Kouta Minamizawa. 2017. ThermoVR: Exploring Integrated Thermal Haptic Feedback with Head Mounted Displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). Association for Computing Machinery, New York, NY, USA, 5452--5456. https://doi.org/10.1145/3025453.3025824
[64]
Dario Pittera, Elia Gatti, and Marianna Obrist. 2019. I'm Sensing in the Rain: Spatial Incongruity in Visual-Tactile Mid-Air Stimulation Can Elicit Ownership in VR Users. Association for Computing Machinery, New York, NY, USA, 1--15. https://doi.org/10.1145/3290605.3300362
[65]
Zhan Fan Quek, Samuel B. Schorr, Ilana Nisky, Allison M. Okamura, and William R. Provancher. 2013. Sensory augmentation of stiffness using fingerpad skin stretch. In 2013 World Haptics Conference (WHC). IEEE, New York, NY, USA, 467--472. https://doi.org/10.1109/WHC.2013.6548453
[66]
Zhan Fan Quek, Samuel B. Schorr, Ilana Nisky, Allison M. Okamura, and William R. Provancher. 2014. Augmentation Of Stiffness Perception With a 1-Degree-of-Freedom Skin Stretch Device. IEEE Transactions on Human-Machine Systems 44, 6 (2014), 731--742. https://doi.org/10.1109/THMS.2014.2348865
[67]
Ismo Rakkolainen, Euan Freeman, Antti Sand, Roope Raisamo, and Stephen Brewster. 2021. A Survey of Mid-Air Ultrasound Haptics and Its Applications. IEEE Transactions on Haptics 14, 1 (Jan. 2021), 2--19. https://doi.org/10.1109/ TOH.2020.3018754 Conference Name: IEEE Transactions on Haptics.
[68]
Anca Salagean, Jacob Hadnett-Hunter, Daniel J. Finnegan, Alexandra A. De Sousa, and Michael J. Proulx. 2022. A Virtual Reality Application of the Rubber Hand Illusion Induced by Ultrasonic Mid-Air Haptic Stimulation. ACM Trans. Appl. Percept. 19, 1, Article 3 (jan 2022), 19 pages. https://doi.org/10.1145/3487563
[69]
Steeven Villa Salazar, Claudio Pacchierotti, Xavier de Tinguy, Anderson Maciel, and Maud Marchal. 2020. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics. IEEE Transactions on Haptics 13 (2020), 167--174.
[70]
Majed Samad, Elia Gatti, Anne Hermes, Hrvoje Benko, and Cesare Parise. 2019. Pseudo-Haptic Weight: Changing the Perceived Weight of Virtual Objects By Manipulating Control-Display Ratio. Association for Computing Machinery, New York, NY, USA, 1--13. https://doi.org/10.1145/3290605.3300550
[71]
Samuel B. Schorr, Zhan Fan Quek, Robert Y. Romano, Ilana Nisky, William R. Provancher, and Allison M. Okamura. 2013. Sensory substitution via cutaneous skin stretch feedback. In 2013 IEEE International Conference on Robotics and Automation. IEEE, New York, NY, USA, 2341--2346. https://doi.org/10.1109/ICRA.2013.6630894
[72]
Yatharth Singhal, Haokun Wang, Hyunjae Gil, and Jin Ryong Kim. 2021. Mid-Air Thermo-Tactile Feedback Using Ultrasound Haptic Display. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology (Osaka, Japan) (VRST '21). Association for Computing Machinery, New York, NY, USA, Article 28, 11 pages. https: //doi.org/10.1145/3489849.3489889
[73]
Nadiya Slobodenyuk, Yasmina Jraissati, Ali Kanso, Lama Ghanem, and Imad Elhajj. 2015. Cross-Modal Associations between Color and Haptics. Attention, Perception, & Psychophysics 77, 4 (May 2015), 1379--1395. https://doi.org/10. 3758/s13414-015-0837--1
[74]
Gabrielle Almeida de Souza, Laura Amaya Torres, Vinicius Stein Dani, David Steeven Villa, Abel Ticona Larico, Anderson Maciel, and Luciana Nedel. 2018. Evaluation of Visual, Auditory and Vibro-Tactile Alerts in Supervised Interfaces. In 2018 20th Symposium on Virtual and Augmented Reality (SVR). 163--169. https://doi.org/10.1109/SVR. 2018.00033
[75]
Andrew A. Stanley, James C. Gwilliam, and Allison M. Okamura. 2013. Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. 2013 World Haptics Conference (WHC) (2013), 25--30.
[76]
Aishwari Talhan and Seokhee Jeon. 2018. Pneumatic Actuation in Haptic-Enabled Medical Simulators: A Review. IEEE Access 6 (2018), 3184--3200.
[77]
Yujie Tao, Shan-Yuan Teng, and Pedro Lopes. 2021. Altering Perceived Softness of Real Rigid Objects by Restricting Fingerpad Deformation. The 34th Annual ACM Symposium on User Interface Software and Technology (2021).
[78]
Yusuke Ujitoko, Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, Koichi Hirota, and Michitaka Hirose. 2015. Yubi-Toko: Finger Walking in Snowy Scene Using Pseudo-Haptic Technique on Touchpad. In SIGGRAPH Asia 2015 Emerging Technologies (Kobe, Japan) (SA '15). Association for Computing Machinery, New York, NY, USA, Article 29, 3 pages. https://doi.org/10.1145/2818466.2818491
[79]
Steeven Villa, Sven Mayer, Jess Hartcher-O'Brien, Albrecht Schmidt, and Tonja-Katrin Machulla. 2022. Extended Mid-air Ultrasound Haptics for Virtual Reality. Proceedings of the ACM on Human-Computer Interaction 6, ISS (Nov. 2022), 578:500--578:524. https://doi.org/10.1145/3567731
[80]
Steeven Villa, Jose Abel Ticona, Rafael Torchelsen, Luciana Nedel, and Anderson Maciel. 2018. Heat-based bidirectional phase shifting simulation using position-based dynamics. Computers and Graphics 76 (2018), 107--116. https: //doi.org/10.1016/j.cag.2018.09.004
[81]
Yon Visell, Keerthi Adithya Duraikkannan, and Vincent Hayward. 2014. A Device and Method for Multimodal Haptic Rendering of Volumetric Stiffness. In EuroHaptics. Springer, Berlin, Germany.
[82]
Yon Visell, Bruno L. Giordano, Guillaume Millet, and Jeremy R. Cooperstock. 2011. Vibration Influences Haptic Perception of Surface Compliance During Walking. PLOS ONE 6, 3 (03 2011), 1--11. https://doi.org/10.1371/journal. pone.0017697
[83]
Dangxiao Wang, Yuan Guo, Shiyi Liu, Yuru Zhang, Weiliang Xu, and Jing Xiao. 2019. Haptic display for virtual reality: progress and challenges. Virtual Reality & Intelligent Hardware 1, 2 (April 2019), 136--162. https://doi.org/10.3724/SP.J. 2096--5796.2019.0008
[84]
HanWang, Xin Liu, Peiguang Jing, and Yu Liu. 2023. Airborne Ultrasound Haptics From Amplitude and Spatiotemporal Modulation of Acoustic Vortices. IEEE Sensors Letters 7, 8 (Aug. 2023), 1--4. https://doi.org/10.1109/LSENS.2023.3296345 Conference Name: IEEE Sensors Letters.
[85]
Chyanna Wee, Kian Meng Yap, and Woan Ning Lim. 2021. Haptic Interfaces for Virtual Reality: Challenges and Research Directions. IEEE Access 9 (2021), 112145--112162. https://doi.org/10.1109/ACCESS.2021.3103598 Conference Name: IEEE Access.
[86]
YannickWeiss, Steeven Villa, Albrecht Schmidt, Sven Mayer, and Florian Müller. 2023. Using Pseudo-Stiffness to Enrich the Haptic Experience in Virtual Reality. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI '23). Association for Computing Machinery, New York, NY, USA, Article 388, 15 pages. https://doi.org/10.1145/3544548.3581223
[87]
Bodo Winter. 2013. Linear models and linear mixed effects models in R with linguistic applications. https://doi.org/10. 48550/ARXIV.1308.5499 Publisher: arXiv Version Number: 1.
[88]
Bob G. Witmer and Michael J. Singer. 1998. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments 7, 3 (June 1998), 225--240. https://doi.org/10.1162/105474698565686
[89]
Vibol Yem and Hiroyuki Kajimoto. 2018. A Fingertip Glove with Motor Rotational Acceleration Enables Stiffness Perception When Grasping a Virtual Object. In Human Interface and the Management of Information. Interaction, Visualization, and Analytics, Sakae Yamamoto and Hirohiko Mori (Eds.). Springer International Publishing, Cham, 463--473.
[90]
Mounia Ziat, Carrie Anne Balcer, Andrew Shirtz, and Taylor Rolison. 2016. A Century Later, the Hue-Heat Hypothesis: Does Color Truly Affect Temperature Perception?. In Haptics: Perception, Devices, Control, and Applications (Lecture Notes in Computer Science), Fernando Bello, Hiroyuki Kajimoto, and Yon Visell (Eds.). Springer International Publishing, Cham, 273--280. https://doi.org/10.1007/978--3--319--42321-0_25
[91]
Igor Zubrycki and Grzegorz Granosik. 2016. Novel Haptic Device Using Jamming Principle for Providing Kinaesthetic Feedback in Glove-Based Control Interface. Journal of Intelligent and Robotic Systems: Theory and Applications 85, 3--4 (2016), 413--429. https://doi.org/10.1007/s10846-016-0392--6
[92]
Alain F Zuur, Elena N Ieno, Neil J Walker, Anatoly A Saveliev, and Graham M Smith. 2009. Mixed effects models and extensions in ecology with R. Vol. 574. Springer.

Index Terms

  1. An Examination of Ultrasound Mid-air Haptics for Enhanced Material and Temperature Perception in Virtual Environments

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Proceedings of the ACM on Human-Computer Interaction
        Proceedings of the ACM on Human-Computer Interaction  Volume 8, Issue MHCI
        MHCI
        September 2024
        1136 pages
        EISSN:2573-0142
        DOI:10.1145/3697825
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 24 September 2024
        Published in PACMHCI Volume 8, Issue MHCI

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. VR rendering
        2. haptic perception
        3. ultrasonic mid-air haptics
        4. virtual reality

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 169
          Total Downloads
        • Downloads (Last 12 months)169
        • Downloads (Last 6 weeks)30
        Reflects downloads up to 06 Jan 2025

        Other Metrics

        Citations

        View Options

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media