skip to main content
research-article

Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics

Published: 01 January 2020 Publication History

Abstract

Tangible objects are used in virtual reality (VR) and augmented reality (AR) to enhance haptic information on the general shape of virtual objects. However, they are often passive or unable to simulate rich varying mechanical properties. This article studies the effect of combining simple passive tangible objects and wearable haptics for improving the display of varying stiffness, friction, and shape sensations in these environments. By providing timely cutaneous stimuli through a wearable finger device, we can make an object feel softer or more slippery than it really is, and we can also create the illusion of encountering virtual bumps and holes. We evaluate the proposed approach carrying out three experiments with human subjects. Results confirm that we can increase the compliance of a tangible object by varying the pressure applied through a wearable device. We are also able to simulate the presence of bumps and holes by providing timely pressure and skin stretch sensations. Altering the friction of a tangible surface showed recognition rates above the chance level, albeit lower than those registered in the other experiments. Finally, we show the potential of our techniques in an immersive medical palpation use case in VR. These results pave the way for novel and promising haptic interactions in VR, better exploiting the multiple ways of providing simple, unobtrusive, and inexpensive haptic displays.

References

[1]
S. Lee and G. J. Kim, “Effects of haptic feedback, stereoscopy, and image resolution on performance and presence in remote navigation,” Int. J. Human-Comput. Studies, vol. 66, pp. 701–717, 2008.
[2]
B. Insko, “Passive haptics significantly enhances virtual environments,” Ph.D. dissertation, Dept. Comput. Sci., Univ. North Carolina Chapel Hill, Chapel Hill, NC, USA, 2001.
[3]
A. D. Cheok, X. Yang, Z. Z. Ying, M. Billinghurst, and H. Kato, “Touch-space: Mixed reality game space based on ubiquitous, tangible, and social computing,” Personal Ubiquitous Comp., vol. 6, no. 5-6, pp. 430–442, 2002.
[4]
H. Ishii, D. Leithinger, S. Follmer, A. Zoran, P. Schoessler, and J. Counts, “Transform: Embodiment of radical atoms at milano design week,” in Proc. CHI, 2015, pp. 687–694.
[5]
C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo, “Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives,” IEEE Trans. Haptics, vol. 10, no. 4, pp. 580–600, Oct.–Dec. 2017.
[6]
S. B. Schorr and A. M. Okamura, “Fingertip tactile devices for virtual object manipulation and exploration,” in Proc. CHI, 2017, pp. 3115–3119.
[7]
D. Leonardis, M. Solazzi, I. Bortone, and A. Frisoli, “A 3-RSR haptic wearable device for rendering fingertip contact forces,” IEEE Trans. Haptics, vol. 10, no. 3, pp. 305–316, Jul.–Sep. 2017.
[8]
M. Maisto, C. Pacchierotti, F. Chinello, G. Salvietti, A. De Luca, and D. Prattichizzo, “Evaluation of wearable haptic systems for the fingers in augmented reality applications,” IEEE Trans. Haptics, vol. 10, no. 4, pp. 511–522, Oct.–Dec. 2017.
[9]
F. Chinello, C. Pacchierotti, M. Malvezzi, and D. Prattichizzo, “A three revolute-revolute-spherical wearable fingertip cutaneous device for stiffness rendering,” IEEE Trans. Haptics, vol. 11, no. 1, pp. 39–50, Jan.–Mar. 2018.
[10]
H. Kim, M. Kim, and W. Lee, “Hapthimble: A wearable haptic device towards usable virtual touch screen,” in Proc. CHI, 2016, pp. 3694–3705.
[11]
S. Je, B. Rooney, L. Chan, and A. Bianchi, “Tactoring: A skin-drag discrete display,” in Proc. CHI, 2017, pp. 3106–3114.
[12]
M. Gabardi, M. Solazzi, D. Leonardis, and A. Frisoli, “A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features,” in Proc. IEEE Haptics Symp., 2016, pp. 140–146.
[13]
M. Aggravi, F. Pausé, P. R. Giordano, and C. Pacchierotti, “Design and evaluation of a wearable haptic device for skin stretch, pressure, and vibrotactile stimuli,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2166–2173, Jul. 2018.
[14]
H. Benko, C. Holz, M. Sinclair, and E. Ofek, “NormalTouch and TextureTouch: High-fidelity 3D haptic shape rendering on handheld virtual reality controllers,” in Proc. Annu. Symp. User Interface Softw. Technol., 2016, pp. 717–728.
[15]
E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair, “Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller,” in Proc. CHI, 2018, Art. no.
[16]
A. Lécuyer, “Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback,” Presence, Teleoperators Virtual Environ., vol. 18, no. 1, pp. 39–53, 2009.
[17]
I. Jang and D. Lee, “On utilizing pseudo-haptics for cutaneous fingertip haptic device,” in Proc. IEEE Haptics Symp., 2014, pp. 635–639.
[18]
M. Harders, G. Bianchi, B. Knoerlein, and G. Székely, “Calibration, registration, and synchronization for high precision augmented reality haptics,” IEEE Trans. Visualization Comput. Graph., vol. 15, no. 1, pp. 138–149, Jan.–Feb. 2009.
[19]
H. Culbertson and K. Kuchenbecker, “Ungrounded haptic augmented reality system for displaying roughness and friction,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 4, pp. 1839–1849, Aug. 2017.
[20]
S. Jeon and S. Choi, “Haptic augmented reality: Taxonomy and an example of stiffness modulation,” Presence, Teleoperators Virtual Environ., vol. 18, no. 5, pp. 387–408, 2009.
[21]
H. Ando, E. Kusachi, and J. Watanabe, “Nail-mounted tactile display for boundary/texture augmentation,” in Proc. Int. Conf. Adv. Comput. Entertainment Technol., 2007, pp. 292–293.
[22]
T. Maeda, R. Peiris, M. Nakatani, Y. Tanaka, and K. Minamizawa, “Wearable haptic augmentation system using skin vibration sensor,” in Proc. Virtual Reality Int. Conf., 2016, Art. no.
[23]
S. Asano, S. Okamoto, and Y. Yamada, “Vibrotactile stimulation to increase and decrease texture roughness,” IEEE Trans. Human-Mach. Syst., vol. 45, no. 3, pp. 393–398, Jun. 2015.
[24]
X. De Tinguy, C. Pacchierotti, M. Marchal, and A. Lécuyer, “Enhancing the stiffness perception of tangible objects in mixed reality using wearable haptics,” in Proc. IEEE Conf. Virtual Reality 3D User Interfaces, 2018, pp. 81–90.
[25]
C. Pacchierotti, G. Salvietti, I. Hussain, L. Meli, and D. Prattichizzo, “The hRing: A wearable haptic device to avoid occlusions in hand tracking,” in Proc. IEEE Haptics Symp., 2016, pp. 134–139.
[26]
A. B. Vallbo, et al., “Properties of cutaneous mechanoreceptors in the human hand related to touch sensation,” Hum Neurobiol, vol. 3, no. 1, pp. 3–14, 1984.
[27]
W. M. B. Tiest and A. M. Kappers, “Cues for haptic perception of compliance,” IEEE Trans. Haptics, vol. 2, no. 4, pp. 189–199, Oct.–Dec. 2009.
[28]
H. Culbertson, J. M. Walker, and A. M. Okamura, “Modeling and design of asymmetric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement,” in Proc. IEEE Haptics Symp., 2016, pp. 27–33.
[29]
W. R. Provancher and N. D. Sylvester, “Fingerpad skin stretch increases the perception of virtual friction,” IEEE Trans. Haptics, vol. 2, no. 4, pp. 212–223, Oct.–Dec. 2009.

Cited By

View all

Index Terms

  1. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image IEEE Transactions on Haptics
          IEEE Transactions on Haptics  Volume 13, Issue 1
          Jan.-March 2020
          255 pages

          Publisher

          IEEE Computer Society Press

          Washington, DC, United States

          Publication History

          Published: 01 January 2020

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 06 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media