skip to main content
research-article

Fluid-Structure Interaction Based on HPC Multicode Coupling

Published: 01 January 2018 Publication History

Abstract

The fluid-structure interaction (FSI) problem has received great attention in the last few years, mainly because it is present in many physical systems, industrial applications, and almost every biological system. In the parallel computational field, outstanding advances have been achieved for the individual components of the problem, allowing, for instance, simulations around complex geometries at very high Reynolds numbers or simulations of the contraction of a beating heart. However, it is not an easy task to combine the advances of both fields, given that they have followed development paths in a rather independent way, and also because physical and numerical instabilities arise when dealing with two highly nonlinear partial differential equations. Nonetheless, in the last few years great advances in the coupled FSI field have been achieved, recognizing the most challenging problems to tackle and enabling a new generation of numerical simulations in aerodynamics, biological systems, and complex industrial devices. Keeping in mind that efficient parallel codes for the individual components already exist, this paper presents a framework to build a massively parallel FSI solver in a multicode coupling partitioned approach, with strong focus in the parallel implementation aspects and the parallel performance of the resulting application. The problem is casted in an algebraic form, and the main points of interest are the parallel environment needed to be able to transfer data among the codes, the location of the exchange surface, and the exchange of information among the parallel applications. The proposed framework has been implemented in the HPC multiphysics code Alya, and the multicode coupling is carried out running separated instances of this code. Two coupling algorithms with different acceleration schemes are revised, and three representative cases of different areas of interest showing the reach of the proposed framework are solved. Good agreement with literature and experiments is obtained. In addition to the numerical validation of the FSI solver, an assessment of the parallel performance of the proposed multicode strategy is done. In particular, a special distribution of the fluid code and solid code MPI processes on the supercomputer nodes based on computing cores overloading is investigated. Finally, a strong scalability test, running up to a 30 million elements case using 1280 MPI processes, is done.

References

[1]
M. Avila, A. Folch, G. Houzeaux, B. Eguzkitza, L. Prieto, and D. Cabezón, A parallel CFD model for wind farms, Procedia Comput. Sci., 18 (2013), pp. 2157--2166.
[2]
A. T. Barker and X.-C. Cai, Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, J. Comput. Phys., 229 (2010), pp. 642--659.
[3]
Y. Bazilevs, J. Gohean, T. Hughes, R. Moser, and R. Zhang, Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3534--3550.
[4]
Y. Bazilevs, K. Takizawa, and T. E. Tezduyar, Front matter, in Computational Fluid-Structure Interaction: Methods and Applications, John Wiley & Sons, Chichester, UK, 2013, https://doi.org/10.1002/9781118483565.fmatter.
[5]
H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, and B. Uekermann, preCICE--a fully parallel library for multi-physics surface coupling, Comput. & Fluids, 141 (2016), pp. 250--258.
[6]
H. Calmet, A. M. Gambaruto, A. J. Bates, M. Vázquez, G. Houzeaux, and D. J. Doorly, Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation, Comput. Biol. Med., 69 (2016), pp. 166--180.
[7]
E. Casoni, A. Jérusalem, C. Samaniego, B. Eguzkitza, P. LaFortune, D. Tjahjanto, X. Sáez, G. Houzeaux, and M. Vázquez, Alya: Computational solid mechanics for supercomputers, Arch. Comput. Methods Eng., 22 (2015), pp. 557--576.
[8]
P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4506--4527.
[9]
O. Colomés, S. Badia, R. Codina, and J. Principe, Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Comput. Methods Appl. Mech. Engrg., 285 (2015), pp. 32--63.
[10]
W. Dettmer and D. Perić, A computational framework for fluid-structure interaction: Finite element formulation and applications, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 5754--5779.
[11]
B. Eguzkitza, G. Houzeaux, R. Aubry, H. Owen, and M. Vázquez, A parallel coupling strategy for the chimera and domain decomposition methods in computational mechanics, Comput. & Fluids, 80 (2013), pp. 128--141.
[12]
O. Estruch, O. Lehmkuhl, R. Borrell, C. Segarra, and A. Oliva, A parallel radial basis function interpolation method for unstructured dynamic meshes, Comput. & Fluids, 80 (2013), pp. 44--54, https://doi.org/10.1016/j.compfluid.2012.06.015.
[13]
S. Étienne, A. Garon, and D. Pelletier, Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow, J. Comput. Phys., 228 (2009), pp. 2313--2333.
[14]
Extrae, Barcelona Supercomputing Center, https://tools.bsc.es/extrae, 2017.
[15]
C. Farhat and M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Engrg., 182 (2000), pp. 499--515.
[16]
C. Farhat, M. Lesoinne, and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Engrg., 157 (1998), pp. 95--114.
[17]
M. A. F. Fernández and J.-F. Gerbeau, Algorithms for Fluid-Structure Interaction Problems, Springer Milan, Milano, Italy, 2009, pp. 307--346, https://doi.org/10.1007/978-88-470-1152-6_9.
[18]
C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flow, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1278--1293.
[19]
M. Garcia, J. Labarta, and J. Corbalan, Hints to improve automatic load balancing with LeWI for hybrid applications, J. Parallel Distrib. Comput., 74 (2014), pp. 2781--2794, https://doi.org/10.1016/j.jpdc.2014.05.004.
[20]
B. Gatzhammer, Efficient and Flexible Partitioned Simulation of Fluid-Structure Interactions, Ph.D. thesis, Technische Universität München, Institut für Informatik, Garching bei München, Germany, 2014.
[21]
M. Gee, U. Küttler, and W. Wall, Truly monolithic algebraic multigrid for fluid-structure interaction, Internat. J. Numer. Methods Engrg., 85 (2011), pp. 987--1016.
[22]
S. Gövert, D. Mira, M. Zavala-Ake, J. Kok, M. Vázquez, and G. Houzeaux, Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach, Int. J. Heat Mass Transf., 107 (2017), pp. 882--894, https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.122.
[23]
M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1--23.
[24]
G. Houzeaux, R. Aubry, and M. Vázquez, Extension of fractional step techniques for incompressible flows: The preconditioned orthomin(1) for the pressure Schur complement, Comput. & Fluids, 44 (2011), pp. 297--313.
[25]
G. Houzeaux, J. C. Cajas, M. Discacciati, B. Eguzkitza, A. Gargallo-Peiró, M. Rivero, and M. Vázquez, Domain decomposition methods for domain composition purpose: Chimera, overset, gluing and sliding mesh methods, Arch. Comput. Methods Eng., 24 (2017), pp. 1033--1070.
[26]
G. Houzeaux and J. Principe, A variational subgrid scale model for transient incompressible flows, Int. J. Comput. Fluid Dyn., 22 (2008), pp. 135--152.
[27]
B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid-structure interaction using space-time finite elements, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 2087--2104.
[28]
M. Joosten, W. G. Dettmer, and D. Perić, Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction, Internat. J. Numer. Methods Engrg., 78 (2009), pp. 757--778.
[29]
U. Küttler and W. A. Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43 (2008), pp. 61--72.
[30]
M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. Methods Appl. Mech. Engrg., 134 (1996), pp. 71--90.
[31]
A. G. Malan and O. F. Oxtoby, An accelerated, fully-coupled, parallel \textup3D hybrid finite-volume fluid-structure-interaction scheme, Comput. Methods Appl. Mech. Engrg., 253 (2013), pp. 426--438.
[32]
J. Martorell, R. Pons, L. Dux-Santoy, J. F. Rodríguez-Palomares, J. J. Molins, and A. Evangelista, 4D-MRI coupled to fluid dynamics simulations to improve patient management, Técnicas Endovasculares, XVIII (2015), pp. 25--30.
[33]
A. Masud, Effects of mesh motion on the stability and convergence of ALE based formulations for moving boundary flows, Comput. Mech., 38 (2006), pp. 430--439.
[34]
D. Mira, M. Zavala-Ake, M. Avila, H. Owen, J. C. Cajas, M. Vazquez, and G. Houzeaux, Heat transfer effects on a fully premixed methane impinging flame, Flow Turbul. Combust., 97 (2016), pp. 339--361.
[35]
P. Moireau, N. Xiao, M. Astorino, C. Figueroa, D. Chapelle, C. Taylor, and J.-F. Gerbeau, External tissue support and fluid? Structure simulation in blood flows, Biomech. Model. Mechanobiol., 11 (2012), pp. 1--18.
[36]
Paraver, Barcelona Supercomputing Center, https://tools.bsc.es/paraver, 2017.
[37]
T. Richter, Fluid-Structure Interactions, Lect. Notes Comput. Sci. Eng. 118, Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-63970-3.
[38]
T. E. Tezduyar, Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces, Comput. & Fluids, 36 (2007), pp. 191--206.
[39]
T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 2002--2027.
[40]
S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in Fluid-Structure Interaction, Lect. Notes Comput. Sci. Eng. 53, H.-J. Bungartz and M. Schäfer, eds., Springer, Berlin, 2006, pp. 371--385.
[41]
B. Uekermann, J. C. Cajas, B. Gatzhammer, M. M. G. Houzeaux, and M. Vázquez, Towards partitioned fluid-structure interaction on massively parallel systems, in Proceedings of WCCM XI/ECCM V/ECFD VI, 2015.
[42]
M. Vázquez, R. Arís, J. Aguado-Sierra, G. Houzeaux, A. Santiago, M. López, P. Córdoba, M. Rivero, and J. C. Cajas, Alya Red CCM: HPC-based cardiac computational modelling, in Selected Topics of Computational and Experimental Fluid Mechanics, Springer, Cham, 2015, pp. 189--207.
[43]
M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Arís, D. Mira, H. Calmet, F. Cucchietti, H. Owen, A. Taha, E. D. Burness, J. M. Cela, and M. Valero, Alya: Multiphysics engineering simulation towards exascale, J. Comput. Sci., 14 (2016), pp. 15--27.
[44]
M. Vázquez, B. Koobus, A. Dervieux, and C. Farhat, Spatial Discretization Issues for the Energy Conservation in Compressible Flow Problems on Moving Grids, tech. report, Institut national de recherche en informatique et en automatique, Rocquencourt, France, 2003.
[45]
W. A. Wall, S. Genkinger, and E. Ramm, A strong coupling partitioned approach for fluid-structure interaction with free surfaces, Comput. & Fluids, 36 (2007), pp. 169--183.
[46]
S. Wang, B. Khoo, G. R. Liu, and G. X. Xu, An arbitrary Lagrangian-Eulerian gradient smoothing method (GSM/ALE) for interaction of fluid and a moving rigid body, Comput. & Fluids, 71 (2013), pp. 327--347.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 40, Issue 6
DOI:10.1137/sjoce3.40.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2018

Author Tags

  1. fluid-structure interaction
  2. HPC
  3. multicode coupling

Author Tags

  1. 74F10
  2. 68U20
  3. 6804

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media