skip to main content
research-article

Constructing Limited Scale-Free Topologiesover Peer-to-Peer Networks

Published: 01 April 2014 Publication History

Abstract

Overlay network topology together with peer/data organization and search algorithm are the crucial components of unstructured peer-to-peer (P2P) networks as they directly affect the efficiency of search on such networks. Scale-free (power-law) overlay network topologies are among structures that offer high performance for these networks. A key problem for these topologies is the existence of hubs, nodes with high connectivity. Yet, the peers in a typical unstructured P2P network may not be willing or able to cope with such high connectivity and its associated load. Therefore, some hard cutoffs are often imposed on the number of edges that each peer can have, restricting feasible overlays to limited or truncated scale-free networks. In this paper, we analyze the growth of such limited scale-free networks and propose two different algorithms for constructing perfect scale-free overlay network topologies at each instance of such growth. Our algorithms allow the user to define the desired scale-free exponent ( $\gamma$). They also induce low communication overhead when network grows from one size to another. Using extensive simulations, we demonstrate that these algorithms indeed generate perfect scale free networks (at each step of network growth) that provide better search efficiency in various search algorithms than the networks generated by the existing solutions.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems  Volume 25, Issue 4
April 2014
273 pages

Publisher

IEEE Press

Publication History

Published: 01 April 2014

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media