skip to main content
research-article

Detection and Visualization of Closed Streamlines in Planar Flows

Published: 01 April 2001 Publication History

Abstract

The analysis and visualization of flows is a central problem in visualization. Topology-based methods have gained increasing interest in recent years. This article describes a method for the detection of closed streamlines in flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline calculation. The algorithm checks for possible exits of a loop of crossed edges and detects structurally stable closed streamlines. These global features are not detected by conventional topology and feature detection algorithms.

References

[1]
R.H. Abraham and C.D. Shaw, Dynamics—The Geometry of Behaviour, vol. 2. Santa Cruz, Calif.: Aerial Press, 1983.
[2]
D. Bürkle M. Dellnitz O. Junge M. Rumpf and M. Spielberg, “Visualizing Complicated Dynamics,” Proc. IEEE Visualization '99 Late Breaking Hot Topics, A. Varshney, C.M. Wittenbrink, and H. Hagen, edis., pp. 33-36, 1999.
[3]
M. Dellnitz and O. Junge, “On the Approximation of Complicated Dynamical Behavior,” SIAM J. Numerical Analysis, vol. 36, no. 2, pp. 491-515, 1999.
[4]
A. Globus C. Levit and T. Lasinski, “A Tool for Visualizing the Topology of Three-Dimensional Vector Fields,” Proc. IEEE Visualization '91, G.M. Nielson and L. Rosenblum, eds., pp. 33-40, 1991.
[5]
J. Guckenheimer and P. Holmes, Dynamical Systems and Bifurcation of Vector Fields. New York: Springer, 1983.
[6]
R. Haimes, “Using Residence Time for the Extraction of Recirculation Regions,” AIAA Paper 99-3291, 1999.
[7]
J.L. Helman and L. Hesselink, “Visualizing Vector Field Topology in Fluid Flows,” IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 36-46, May 1991.
[8]
D.H. Hepting G. Derks D. Edoh and R.R. D, “Qualitative Analysis of Invariant Tori in a Dynamical System,” Proc. IEEE Visualization '95, G.M. Nielson and D. Silver, eds., pp. 342-345, 1995.
[9]
M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and LinearAlgebra. New York: Academic Press, 1974.
[10]
M. Jean, “Sur la Méthode des Sections pour la Recherche de Certaines Solutions presque Périodiques de Systèmes Forces Periodiquement,” Int'l J. Non-Linear Mechanics, vol. 15, pp. 367-376, 1980.
[11]
D.N. Kenwright, “Automatic Detection of Open and Closed Separation andAttachment Lines,” Proc. IEEE Visualization '98, pp. 151-158, D. Ebert, H. Rushmeier, and H. Hagen, eds., 1998.
[12]
H. Koçak F. Bisshop T. Banchoff and D. Laidlaw, “Topology and Mechanics with Computer Graphics,” Advances in Applied Math., vol. 7, pp. 282-308, 1986.
[13]
S. Lang, Differential and Riemannian Manifolds, third ed. New York: Springer, 1995.
[14]
Scientific Visualization, Overviews, Methodologies, and Techniques, G.M. Nielson, H. Hagen, and H. Müller, eds. Los Alamitos, Calif.: IEEE CS Press, 1997.
[15]
W. Press S. Teukolsky W. Vetterling and B. Flannery, Numerical Recipes in C. Cambridge, U.K.: Cambridge Univ. Press, 1992.
[16]
G. Scheuermann B. Hamann K.I. Joy and W. Kollmann, “Visualizing Local Vetor Field Topology,” J. Electronic Imaging, vol. 9,no. 4, 2000.
[17]
G. Scheuermann H. Krüger M. Menzel and A. Rockwood, “Visualizing Nonlinear Vector Field Topology,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 109-116, Apr.-June 1998.
[18]
J. Stoer and R. Bulirsch, Numerische Mathematik 2, third ed. Berlin: Springer, 1990.
[19]
M. van Veldhuizen, “A New Algorithm for the Numerical Approximation of an Invariant Curve,” SIAM J. Scientific and Statistical Computing, vol. 8, no. 6, pp. 951-962, 1987.
[20]
R. Wegenkittel H. Löffelmann and E. Gröller, “Visualizing the Behavior of Higher Dimensional Dynamical Systems,” Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 119-125, 1997.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics  Volume 7, Issue 2
April 2001
96 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 01 April 2001

Author Tags

  1. Vector field topology
  2. closed streamlines.
  3. limit cycles

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media