skip to main content
article

A Survey of Topology-based Methods in Visualization

Published: 01 June 2016 Publication History

Abstract

This paper presents the state of the art in the area of topology-based visualization. It describes the process and results of an extensive annotation for generating a definition and terminology for the field. The terminology enabled a typology for topological models which is used to organize research results and the state of the art. Our report discusses relations among topological models and for each model describes research results for the computation, simplification, visualization, and application. The paper identifies themes common to subfields, current frontiers, and unexplored territory in this research area.

References

[1]
<label>{AH11}¿¿</label> Auer C., Hotz I.: Complete tensor field topology on 2D triangulated manifolds embedded in 3D. Computer Graphics Forum Volume 30, Issue 3 2011, pp.831-840. 15
[2]
<label>{AR09}¿¿</label> Arge L., Revsbæk M.: I/O-efficient contour tree simplification. In Proceedingds of Algorithms and Computation: 20th International Symposium ISAAC 2009, Dong Y., Du D.-Z., Ibarra O., Eds. Springer, 2009, pp. pp.1155-1165. 5
[3]
<label>{AS92}¿¿</label> Abraham R., Shaw C.: Dynamics-the Geometry of Behavior: Global behavior 2nd edition. Addison-Wesley, 1992. 13
[4]
<label>{Ban70}¿¿</label> Banchoff T.F.: Critical points and curvature for embedded polyhedral surfaces. The American Mathematical Monthly Volume 77, Issue 5 1970, pp.475-485. 3, 7.
[5]
<label>{BBD*07}¿¿</label> Bremer P.-T., Bringa E.M., Duchaineau M.A., Gyulassy A.G., Laney D., Mascarenhas A., Pascucci V.: Topological feature extraction and tracking. Journal of Physics: Conference Series Volume 78, pp.12007.
[6]
<label>{BDF*08}¿¿</label> Biasotti S., De Floriani L., Falcidieno B., Frosini P., Giorgi D., Landi C., Papaleo L., Spagnuolo M.: Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys Volume 40, pp.42008. 1, 4.
[7]
<label>{BEHP04}¿¿</label> Bremer P.-T., Edelsbrunner H., Hamann B., Pascucci V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. Volume 10, Issue 4 2004, pp.385-396. 7, 8, 9.
[8]
<label>{BG15}¿¿</label> Biedert T., Garth C.: Contour tree depth images for large data visualization. In Eurographics Symposium on Parallel Graphics and Visualization 2015, Dachsbacher C., Navratil P., Eds., Eurographics Association, pp. pp.077-086. 6
[9]
<label>{BGG09}¿¿</label> Bajaj C., Gillette A., Goswami S.: Topology based selection and curation of level sets. In Hege et al. {HPS09}, pp. pp.45-58. 6
[10]
<label>{BGSF08}¿¿</label> Biasotti S., Giorgi D., Spagnuolo M., Falcidieno B.: Reeb graphs for shape analysis and applications. Theor. Comput. Sci. Volume 392, Issue 1 -3</pageLast>2008, pp.5-<pageLast>22. 4.
[11]
<label>{BGW*14}¿¿</label> Bhatia H., Gyulassy A., Wang H., Bremer P.-T., Pascucci V.: Robust detection of singularities in vector fields. In Bremer et al. {<link href="#cgf12933-bib-0014">BHPP14</link>}, pp. pp.3-18. 11
[12]
<label>{BH99}¿¿</label> Batra R., Hesselink L.: Feature comparisons of 3-D vector fields using earth mover's distance</otherTitle>. In <otherTitle>IEEE Visualization 1999, pp. pp.105-114. 14
[13]
<label>{BHJ16}¿¿</label> Bujack R., Hlawitschka M., Joy K.I.: Topology-inspired Galilean invariant vector field analysis. In Proceedings of the IEEE Pacific Visualization Symposium 2016, PacificVis, pp. pp.72-79. 11
[14]
<label>{BHPP14}¿¿</label> Bremer P.-T., Hotz I., Pascucci V., Peikert R. Eds.: Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer International Publishing, 2014. 18, 20, 21, 22
[15]
<label>{BJB*11}¿¿¿</label> Bhatia H., Jadhav S., Bremer P.-T., Chen G., Levine J., Nonato L., Pascucci V.: Edge maps: Representing flow with bounded error</otherTitle>. In <otherTitle>Visualization Symposium PacificVis, 2011 IEEE Pacific 2011, pp. pp.75-82. 11
[16]
<label>{BKR14}¿¿</label> Bauer U., Kerber M., Reininghaus J.: Clear and compress: Computing persistent homology in chunks. In Bremer et al. {BHPP14}, pp. pp.103-117. 3
[17]
<label>{BPB14}¿¿</label> Bhatia H., Pascucci V., Bremer P.: The natural Helmholtz-Hodge decomposition for open-boundary flow analysis. IEEE Trans. Vis. Comput. Graph. Volume 20, Issue 11 2014, pp.1566-1578. 11
[18]
<label>{BPS97}¿¿</label> Bajaj C.L., Pascucci V., Schikore D.R.: The contour spectrum</otherTitle>. In <otherTitle>Proceedings of IEEE Visualization '97 1997, pp. pp.167-172. 5
[19]
<label>{BR63}¿¿</label> Boyell R.L., Ruston H.: Hybrid techniques for real-time radar simulation. In Proceedings of the Fall Joint Computer Conference 1963, AFIPS '63 Fall, ACM, pp. pp.445-458. 3
[20]
<label>{Bub15}¿¿</label> Bubenik P.: Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research Volume 16, Issue 1 2015, pp.77-102. 10
[21]
<label>{BWT*11}¿¿</label> Bremer P.-T., Weber G., Tierny J., Pascucci V., Day M., Bell J.: Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 9 2011, pp.1307-1324. 9
[22]
<label>{CCD*15}¿¿</label> Chattopadhyay A., Carr H., Duke D., Geng Z., Saeki O.: Multivariate topology simplification</otherTitle>. <otherTitle>ArXiv e-prints 2015. arXiv:1509.04465. 16
[23]
<label>{CCDG14}¿¿</label> Chattopadhyay A., Carr H., Duke d., Geng Z.: Extracting Jacobi structures in Reeb spaces. In EuroVis - Short Papers 2014, Elmqvist N., Hlawitschka M., Kennedy J., Eds., The Eurographics Association. 16
[24]
<label>{ČD11}¿¿</label> Čomić L., De Floriani L.: Dimension-independent simplification and refinement of Morse complexes. Graphical Models Volume 73, Issue 5 2011, pp.261-285. 8
[25]
<label>{CD13}¿¿</label> Carr H., Duke D.: Joint contour nets: Computation and properties</otherTitle>. In <otherTitle>IEEE Pacific Visualization Symposium PacificVis 2013, pp. pp.161-168. 16
[26]
<label>{ČDI12}¿¿</label> Čomić L., De Floriani L., Iuricich F.: Dimension-independent multi-resolution Morse complexes. Computers & Graphics Volume 36, Issue 5 2012, pp.541-547. 9
[27]
<label>{CDS*12}¿¿</label> Chen G., Deng Q., Szymczak A., Laramee R., Zhang E.: Morse set classification and hierarchical refinement using Conley index. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 5 2012, pp.767-782. 12
[28]
<label>{CL11}¿¿</label> Correa C., Lindstrom P.: Towards robust topology of sparsely sampled data. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 12 2011, pp.1852-1861. 9
[29]
<label>{CLB11}¿¿</label> Correa C., Lindstrom P., Bremer P.-T.: Topological spines: A structure-preserving visual representation of scalar fields. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 12 2011, pp.1842-1851. 6, 8.
[30]
<label>{CLLR05}¿¿</label> Chiang Y.-J., Lenz T., Lu X., Rote G.: Simple and optimal output-sensitive construction of contour trees using monotone paths. Computational Geometry Volume 30, Issue 2 2005, pp.165-195. Special Issue on the 19th European Workshop on Computational Geometry. 4, 5.
[31]
<label>{CMLZ08}¿¿</label> Chen G., Mischaikow K., Laramee R.S., Zhang E.: Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comput. Graph. Volume 14, Issue 4 2008, pp.848-862. 12
[32]
<label>{CS09}¿¿</label> Carr H., Snoeyink J.: Representing interpolant topology for contour tree computation. In Hege et al. {HPS09}, pp. pp.59-73. 6
[33]
<label>{CSA03}¿¿</label> Carr H., Snoeyink J., Axen U.: Computing contour trees in all dimensions. Computational Geometry Volume 24, Issue 2 2003, pp.75-94. Special Issue on the Fourth CGC Workshop on Computational Geometry. 4, 5.
[34]
<label>{CSEM06}¿¿</label> Cohen-Steiner D., Edelsbrunner H., Morozov D.: Vines and vineyards by updating persistence in linear time</otherTitle>. <otherTitle>Proceedings of the twenty-second annual symposium on Computational geometry - SCG '06 2006, pp.119-126. 9
[35]
<label>{CSLA15}¿¿</label> Carr H., Sewell C.M., Lo L.-T., Ahrens J.P.: Hybrid Data-Parallel Contour Tree Computation. Tech. rep., Los Alamos National Laboratory LANL, 2015. 5
[36]
<label>{CSvdP10}¿¿</label> Carr H., Snoeyink J., van de Panne M.: Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Computational Geometry Volume 43, Issue 1 2010, pp.42-58. Special Issue on the 14th Annual Fall Workshop. 5, 6.
[37]
<label>{dBvK97}¿¿</label> de Berg M., van Kreveld M.: Trekking in the alps without freezing or getting tired. Algorithmica Volume 18, Issue 3 1997, pp.306-323. 5
[38]
<label>{DCK*12}¿¿</label> Duke D., Carr H., Knoll A., Schunck N., Nam H.A., Staszczak A.: Visualizing nuclear scission through a multifield extension of topological analysis. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 12 2012, pp.2033-2040. 16
[39]
<label>{DDMV10}¿¿</label> Danovaro E., De Floriani L., Magillo P., Vitali M.: Multiresolution Morse triangulations. In Symposium on Solid and Physical Modeling 2010, Elber G., Fischer A., Keyser J., Kim M.-S., Eds., ACM, pp. pp.183-188. 9
[40]
<label>{DFFIM15}¿¿</label> De Floriani L., Fugacci U., Iuricich F., Magillo P.: Morse complexes for shape segmentation and homological analysis: discrete models and algorithms. Computer Graphics Forum Volume 34, Issue 2 2015, pp.761-785. 1, 7.
[41]
<label>{DH94}¿¿</label> Delmarcelle T., Hesselink L.: The topology of symmetric, second-order tensor fields</otherTitle>. In <otherTitle>Proceedings of the IEEE Conference on Visualization '94 1994, VIS '94, pp. pp.140-147. 15
[42]
<label>{DHKS04}¿¿</label> Deussen O., Hansen C.D., Keim D.A., Saupe D. Eds.:. VisSym 2004, Symposium on Visualization 2004, Eurographics Association. 20, 25
[43]
<label>{dLvL99}¿¿</label> de Leeuw W.C., van Liere R.: Collapsing flow topology using area metrics</otherTitle>. In <otherTitle>IEEE Visualization 1999, pp. pp.349-354. 12
[44]
<label>{dLvL00}¿¿</label> de Leeuw W.C., van Liere R.: Multi-level topology for flow visualization. Computers & Graphics Volume 24, Issue 3 2000, pp.325-331. 12
[45]
<label>{DN13}¿¿</label> Doraiswamy H., Natarajan V.: Computing Reeb graphs as a union of contour trees. IEEE Trans. Vis. Comput. Graph. Volume 19, Issue 2 2013, pp.249-262. 5
[46]
<label>{DW12}¿¿</label> Dey T.K., Wang Y.: Reeb graphs: Approximation and persistence. Discrete & Computational Geometry Volume 49, Issue 1 2012, pp.46-73. 5
[47]
<label>{EH04}¿¿</label> Edelsbrunner H., Harer J.: Jacobi sets. In Foundations of Computational Mathematics, Cucker F., DeVore R., Olver P., Süli E., Eds. Cambridge University Press, 2004, pp. pp.37-57. 3, 9, 16.
[48]
<label>{EH08}¿¿</label> Edelsbrunner H., Harer J.: Persistent homology-a survey. Contemporary Mathematics Volume 453 2008, pp.257-282. 3
[49]
<label>{EHM*08}¿¿</label> Edelsbrunner H., Harer J., Mascarenhas A., Pascucci V., Snoeyink J.: Time-varying Reeb graphs for continuous space-time data. Computational Geometry Volume 41, Issue 3 2008, pp.149-166. 9
[50]
<label>{EHMP04}¿¿</label> Edelsbrunner H., Harer J., Mascarenhas A., Pascucci V.: Time-varying Reeb graphs for continuous space-time data. In Proceedings of the Twentieth Annual Symposium on Computational Geometry 2004, SCG '04, ACM, pp. pp.366-372. 9
[51]
<label>{EHNP03}¿¿</label> Edelsbrunner H., Harer J., Natarajan V., Pascucci V.: Morse-Smale complexes for piecewise linear 3-manifolds. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry 2003, SCG '03, ACM, pp. pp.361-370. 7
[52]
<label>{EHNP04}¿¿</label> Edelsbrunner H., Harer J., Natarajan V., Pascucci V.: Local and global comparison of continuous functions</otherTitle>. In <otherTitle>Proceedings of IEEE Visualization '04 2004, pp. pp.275-280. 16
[53]
<label>{EHP08}¿¿</label> Edelsbrunner H., Harer J., Patel A.K.: Reeb spaces of piecewise linear mappings. In Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry 2008, SCG '08, ACM, pp. pp.242-250. 16
[54]
<label>{EHZ01}¿¿</label> Edelsbrunner H., Harer J., Zomorodian A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry 2001, SCG '01, ACM, pp. pp.70-79. 7, 8, 9.
[55]
<label>{EKO07}¿¿</label> England J.P., Krauskopf B., Osinga H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Bifurcation and Chaos, International Journal of Volume 17, Issue 3 2007, pp.805-822. 11
[56]
<label>{ELZ02}¿¿</label> Edelsbrunner H., Letscher D., Zomorodian A.: Topological persistence and simplification. Discrete & Computational Geometry Volume 28, Issue 4 2002, pp.511-533. 3
[57]
<label>{EM90}¿¿</label> Edelsbrunner H., Mücke E. P.: Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics Volume 9, Issue 1 1990, pp.66-104. 4
[58]
<label>{ENS*12}¿¿</label> Etiene T., Nonato G., Scheidegger C., Tierny J., Peters T., Pascucci V., Kirby R., Silva C.: Topology verification for isosurface extraction. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 6 2012, pp.952-965. 7
[59]
<label>{FH09}¿¿</label> Fuchs R., Hauser H.: Visualization of multi-variate scientific data. Computer Graphics Forum Volume 28, Issue 6 2009, pp.1670-1690. 1
[60]
<label>{FHSW02}¿¿</label> Flamm C., Hofacker I.L., Stadler P.F., Wolfinger M.T.: Barrier trees of degenerate landscapes. International journal of research in physical chemistry and chemical physics Volume 216, Issue 2 2002, pp.155-. 4
[61]
<label>{FIDFW14}¿¿</label> Fellegara R., Iuricich F., De Floriani L., Weiss K.: Efficient computation and simplification of discrete Morse decompositions on triangulated terrains</otherTitle>. In <otherTitle>Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 2014, SIGSPATIAL '14, pp. pp.223-232. 7, 8.
[62]
<label>{FKS*10}¿¿</label> Fuchs R., Kemmler J., Schindler B., Waser J., Sadlo F., Hauser H., Peikert R.: Toward a Lagrangian vector field topology. Comput. Graph. Forum Volume 29, Issue 3 2010, pp.1163-1172. 14
[63]
<label>{For98}¿¿</label> Forman R.: Morse theory for cell complexes. Advances in mathematics Volume 134, Issue 1 1998, pp.90-145. 7, 8.
[64]
<label>{FTAT00}¿¿</label> Fujishiro I., Takeshima Y., Azuma T., Takahashi s.: Volume data mining using 3D field topology analysis. Computer Graphics and Applications, IEEE 20, Volume 5 2000, pp.46-51. 6
[65]
<label>{GBC*14}¿¿</label> Günther D., Boto R.A., Contreras-Garcia J., Piquemal J., Tierny J.: Characterizing molecular interactions in chemical systems. IEEE Trans. Vis. Comput. Graph. Volume 20, Issue 12 2014, pp.2476-2485. 8
[66]
<label>{GBHP08}¿¿</label> Guylassy A., Bremer P.-T., Hamann B., Pascucci V.: A practical approach to Morse-Smale complex computation: Scalability and generality. IEEE Trans. Vis. Comput. Graph. Volume 14, Issue 6 2008, pp.1619-1626. 7
[67]
<label>{GBP12}¿¿</label> Gyulassy A., Bremer P.-T., Pascucci V.: Computing Morse-Smale complexes with accurate geometry. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 12 2012, pp.2014-2022. 7
[68]
<label>{GBPW10}¿¿</label> Gerber S., Bremer P.-T., Pascucci V., Whitaker R.: Visual exploration of high dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. Volume 16, Issue 6 2010, pp.1271-1280. 7, 8.
[69]
<label>{GDN*07}¿¿</label> Gyulassy A., Duchaineau M., Natarajan V., Pascucci V., Bringa E., Higginbotham A., Hamann B.: Topologically clean distance fields. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 6 2007, pp.1432-1439. 8
[70]
<label>{GGL*14}¿¿</label> Gyulassy A., Günther D., Levine J.A., Tierny J., Pascucci V.: Conforming Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. Volume 20, Issue 12 2014, pp.2595-2603. 8
[71]
<label>{GGTH07}¿¿</label> Garth C., Gerhardt F., Tricoche X., Hagen H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 6 2007, pp.1464-1471. 13
[72]
<label>{GH83}¿¿</label> Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983. 10
[73]
<label>{GHP*16}¿¿</label> Guo H., He W., Peterka T., Shen H.W., Collis S.M., Helmus J.J.: Finite-time Lyapunov exponents and lagrangian coherent structures in uncertain unsteady flows. IEEE Trans. Vis. Comput. Graph. Volume 22, Issue 6 2016, pp.1672-1682. 14
[74]
<label>{GJR*14}¿¿</label> Günther D., Jacobson A., Reininghaus J., Seidel H.P., Sorkine-Hornung O., Weinkauf T.: Fast and memory-efficienty topological denoising of 2D and 3D scalar fields. IEEE Trans. Vis. Comput. Graph. Volume 20, Issue 12 2014, pp.2585-2594. 8
[75]
<label>{GKK*12}¿¿</label> Gyulassy A., Kotava N., Kim M., Hansen C.D., Hagen H., Pascucci V.: Direct feature visualization using Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 9 2012, pp.1549-1562. 8, 9.
[76]
<label>{GLL91}¿¿</label> Globus A., Levit C., Lasinski T.: A tool for visualizing the topology of three-dimensional vector fields</otherTitle>. In <otherTitle>IEEE Visualization 1991, pp. pp.33-41. 10
[77]
<label>{GLT*09}¿¿</label> Garth C., Li G.-S., Tricoche X., Hansen C.D., Hagen H.: Visualization of coherent structures in transient 2D flows. In Hege et al. {HPS09}, pp. pp.1-13. 13
[78]
<label>{GNPH07}¿¿</label> Gyulassy A., Natarajan V., Pascucci V., Hamann B.: Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 6 2007, pp.1440-1447. 7, 8.
[79]
<label>{GRSW14}¿¿</label> Günther D., Reininghaus J., Seidel H.-P., Weinkauf T.: Notes on the simplification of the Morse-Smale complex. In Bremer et al. {BHPP14}, pp. pp.135-150. 8
[80]
<label>{GST14}¿¿</label> Günther D., Salmon J., Tierny J.: Mandatory critical points of 2D uncertain scalar fields. Computer Graphics Forum Volume 33, Issue 3 2014, pp.31-40. 10
[81]
<label>{GSW12}¿¿</label> Günther D., Seidel H., Weinkauf T.: Extraction of dominant extremal structures in volumetric data using separatrix persistence. Computer Graphics Forum Volume 31, Issue 8 2012, pp.2554-2566. 8
[82]
<label>{GTS*04a}¿¿</label> Garth C., Tricoche X., Salzbrunn T., Bobach T., Scheuermann G.: Surface techniques for vortex visualization. In Deussen et al. {DHKS04}, pp. pp.155-164, 346. 11
[83]
<label>{GTS04b}¿¿</label> Garth C., Tricoche X., Scheuermann G.: Tracking of vector field singularities in unstructured 3D time-dependent datasets. In Rushmeier et al. {<link href="#cgf12933-bib-0170">RTvW04</link>}, pp. pp.329-336. 13
[84]
<label>{GWT*08}¿¿</label> Garth C., Wiebel A., Tricoche X., Joy K., Scheuermann G.: Lagrangian visualization of flow-embedded surface structures</otherTitle>. <otherTitle>Computer Graphics Forum 2008. 13
[85]
<label>{Hal02}¿¿</label> Haller G.: Lagrangian coherent structures from approximate velocity data. Physics of Fluids Volume 14, Issue 6 june 2002, pp.1851-1861. 13
[86]
<label>{HFEG15}¿¿</label> Huettenberger L., Feige N., Ebert A., Garth C.: Application of Pareto sets in quality control of series production in car manufacturing</otherTitle>. In <otherTitle>IEEE Pacific Visualization Symposium PacificVis 2015, pp. pp.135-139. 17
[87]
<label>{HG00}¿¿</label> Hauser H., Gröller E.: Thorough insights by enhanced visualization of flow topology</otherTitle>. In <otherTitle>9th International Symposium on Flow Visualization 2000. URL:"https://www.cg.tuwien.ac.at/research/publications/2000/Hauser-2000-Tho/.10"
[88]
<label>{HG15}¿¿</label> Huettenberger L., Garth C.: A comparison of Pareto sets and Jacobi sets</chapterTitle>. In <chapterTitle>Topological and Statistical Methods for Complex Data, Bennett J., Vivodtzev F., Pascucci V., Eds., Mathematics and Visualization. Springer, 2015, pp. pp.125-141. 17
[89]
<label>{HH89}¿¿</label> Helman J., Hesselink L.: Representation and display of vector field topology in fluid flow data sets. Computer Volume 22, Issue 8 1989, pp.27-36. 10
[90]
<label>{HHC*13}¿¿</label> Huettenberger L., Heine C., Carr H., Scheuermann G., Garth C.: Towards multifield scalar topology based on Pareto optimality. Computer Graphics Forum Volume 32, Issue 3 2013, pp.341-350. 16
[91]
<label>{HHG14}¿¿</label> Huettenberger L., Heine C., Garth C.: Decomposition and simplification of multivariate data using Pareto sets. IEEE Trans. Vis. Comput. Graph. Volume 20, Issue 12 2014, pp.2684-2693. 17
[92]
<label>{HHG16}¿¿</label> Huettenberger L., Heine C., Garth C.: A comparison of joint contour nets and Pareto sets. In TopoInVis Volume 2015 2016. In press. 17
[93]
<label>{HOGJ13}¿¿</label> Hummel M., Obermaier H., Garth C., Joy K.I.: Comparative visual analysis of Lagrangian transport in CFD ensembles. IEEE Trans. Vis. Comput. Graph. Volume 19, Issue 12 2013, pp.2743-2752. 14
[94]
<label>{HPS09}¿¿</label> Hege H.-C., Polthier K., Scheuermann G. Eds.: Topology-Based Methods in Visualization II. Mathematics and Visualization. Springer Berlin Heidelberg, 2009. 18, 19, 20, 21, 22, 23, 24, 25
[95]
<label>{HRP*12}¿¿</label> Harvey W., Rübel O., Pascucci V., Bremer P.-T., Wang Y.: Enhanced topology-sensitive clustering by Reeb graph shattering. In Peikert et al. {<link href="#cgf12933-bib-0150">PHCF12</link>}, pp. pp.77-90. 8
[96]
<label>{HSA*07}¿¿</label> Hlawitschka M., Scheuermann G., Anwander A., Tittgemeyer M., Hamann B.: Tensor lines in tensor fields of arbitrary order. In Advances in Visual Computing: Third International Symposium, ISVC Dec. 2007, Bebis G., Boyle R., Parvin B., Koracin D., Paragios N., Tanveer S.-M., Ju T., Liu Z., Coquillart S., Cruz-Neira C., Möller T., Malzbender T., Eds., Springer, pp. pp.341-350. 15
[97]
<label>{HSCS11}¿¿</label> Heine C., Schneider D., Carr H., Scheuermann G.: Drawing contour trees in the plane. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 11 2011, pp.1599-1611. 5, 6.
[98]
<label>{HSF*06}¿¿</label> Heine C., Scheuermann G., Flamm C., Hofacker I.L., Stadler P.F.: Visualization of barrier tree sequences. IEEE Trans. Vis. Comput. Graph. Volume 12, Issue 5 2006, pp.781-788. 9
[99]
<label>{HSW11}¿¿</label> Hlawatsch M., Sadlo F., Weiskopf D.: Hierarchical line integration. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 8 2011, pp.1148-1163. 13
[100]
<label>{HVSW11}¿¿</label> Hlawatsch M., Vollrath J., Sadlo F., Weiskopf D.: Coherent structures of characteristic curves in symmetric second order tensor fields. IEEE Transactions on Visualization and Computer Graphics Volume 17, Issue 6 2011, pp.781-794. 16
[101]
<label>{HW10}¿¿</label> Harvey W., Wang Y.: Topological landscape ensembles for visualization of scalar-valued functions. Computer Graphics Forum Volume 29, Issue 3 2010, pp.993-1002. 6
[102]
<label>{IDF14}¿¿</label> Iuricich F., De Floriani L.: A combined geometrical and topological simplification hierarchy for terrain analysis</otherTitle>. In <otherTitle>Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 2014, pp. pp.493-496. 9
[103]
<label>{IFD15}¿¿</label> Iuricich F., Fugacci U., De Floriani L.: Topologicallyconsistent simplification of discrete Morse complex. Computers & Graphics Volume 51 2015, pp.157-166. 8
[104]
<label>{JMC07}¿¿</label> Johansson G., Museth K., Carr H.: Flexible and topologically localized segmentation. In Eurographics/IEEE-VGTC Symposium on Visualization 2007, Museth K., Moeller T., Ynnerman A., Eds., The Eurographics Association, pp. pp.179-186. 6
[105]
<label>{KB07}¿¿</label> Keller P., Bertram M.: Modeling and visualization of time-varying topology transitions guided by hyper Reeb graph structures</otherTitle>. <otherTitle>CGIM '07 Proceedings of the Ninth IASTED International Conference on Computer Graphics and Imaging 2007, pp.15-20. 9
[106]
<label>{KER*14}¿¿</label> Kuhn A., Engelke W., Rössl C., Hadwiger M., Theisel H.: Time line cell tracking for the approximation of Lagrangian coherent structures with subgrid accuracy. Comput. Graph. Forum Volume 33, Issue 1 2014, pp.222-234. 13
[107]
<label>{KHL99}¿¿</label> Kenwright D.N., Henze C., Levit C.: Feature extraction of separation and attachment lines. IEEE Trans. Vis. Comput. Graph. Volume 5, Issue 2 1999, pp.135-144. 11
[108]
<label>{KHNH11}¿¿</label> Kasten J., Hotz I., Noack B.R., Hege H.-C.: on the extraction of long-living features in unsteady fluid flows. In Pascucci et al. {<link href="#cgf12933-bib-0158">PTHT11</link>}, pp. pp.115-126. 14
[109]
<label>{KKW*15}¿¿</label> Koch S., Kasten J., Wiebel A., Scheuermann G., Hlawitschka M.: 2D vector field approximation using linear neighborhoods</otherTitle>. <otherTitle>The Visual Computer 2015, pp.1-16. 12
[110]
<label>{Kle04}¿¿</label> Klemelä J.: Visualization of multivariate density estimates with level set trees. Journal of Computational and Graphical Statistics Volume 13, Issue 3 2004, pp.599-620. 4
[111]
<label>{KOD09}¿¿</label> Krauskopf B., Osinga H.M., Doedel E.J.: Visualizing global manifolds during the transition to chaos in the Lorenz system. In Hege et al. {HPS09}, pp. pp.115-126. 13
[112]
<label>{KPH*09}¿¿</label> Kasten J., Petz C., Hotz I., Noack B.R., Hege H.: Localized finite-time Lyapunov exponent for unsteady flow analysis. In Proceedings of the Vision, Modeling, and Visualization Workshop Volume 2009 2009, Magnor M.A., Rosenhahn B., Theisel H., Eds., DNB, pp. pp.265-276. 13
[113]
<label>{Kra10a}¿¿</label> Kraus M.: Visualization of uncertain contour trees. In International Conference on Information Visualization Theory and Applications: IVAPP 2010, Richard P., Braz J., Eds., Institute for Systems and Technologies of Information, Control and Communication, pp. pp.132-139. 10
[114]
<label>{Kra10b}¿¿</label> Kraus M.: Visualizing contour trees within histograms. In Computer Graphics and Imaging: Proceedings of the 11th IASTED International Conference on 2010, Sappa A.D., Ed., ACTA Press. URL: "http://www.actapress.com/Abstract.aspx?paperId=38070". 5
[115]
<label>{KRRS14}¿¿</label> Kasten J., Reininghaus J., Reich W., Scheuermann G.: Toward the extraction of saddle periodic orbits. In Bremer et al. {BHPP14}, pp. pp.55-69. 12
[116]
<label>{KRS03}¿¿</label> Kettner L., Rossignac J., Snoeyink J.: The Safari interface for visualizing time-dependent volume data using iso-surfaces and contour spectra. Computational Geometry Volume 25, Issue 1 -2</pageLast>2003, pp.97-<pageLast>116. 9
[117]
<label>{KRWT12}¿¿</label> Kuhn A., Rössl C., Weinkauf T., Theisel H.: A benchmark for evaluating FTLE computations</otherTitle>. In <otherTitle>IEEE Pacific Visualization Symposium 2012, Hauser H., Kobourov S.G., Qu H., Eds., pp. pp.121-128. 13
[118]
<label>{LCJK*09}¿¿</label> Laramee R.S., Chen G., Jankun-Kelly M., Zhang E., Thompson D.: Bringing topology-based flow visualization to the application domain. In Hege et al. {HPS09}, pp. pp.161-176. 10
[119]
<label>{LG98}¿¿</label> Löffelmann H., Gröller E.: Enhancing the visualization of characteristic structures in dynamical systems. In Visualization in Scientific Computing '98: Proceedings of the Eurographics Workshop in Blaubeuren, Germany April 20-22, Volume 1998 Vienna, 1998, Bartz D., Ed., Springer Vienna, pp. pp.59-68. 12
[120]
<label>{LHZP07}¿¿</label> Laramee R.S., Hauser H., Zhao L., Post F.H.: Topology-based flow visualization, the state of the art</chapterTitle>. In <chapterTitle>Topology-based Methods in Visualization, Hauser H., Hagen H., Theisel H., Eds., Mathematics and Visualization. Springer Berlin Heidelberg, 2007, pp. pp.1-19. 1, 10.
[121]
<label>{LJB*12}¿¿</label> Levine J.A., Jadhav S., Bhatia H., Pascucci V., Bremer P.-T.: A quantized boundary representation of 2D flows. Computer Graphics Forum Volume 31, Issue 3pt1 2012, pp.945-954. 11
[122]
<label>{LMGH15}¿¿</label> Lukasczyk J., Maciejewski R., Garth C., Hagen H.: understanding hotspots: A topological visual analytics approach. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems 2015, GIS '15, ACM, pp. pp.1-10. 9
[123]
<label>{LMW*15}¿¿</label> Liu S., Maljovec D., Wang B., Bremer P.-T., Pascucci V.: Visualizing high-dimensional data: Advances in the past decade. In Eurographics Conference on Visualization EuroVis - STARs 2015, Borgo R., Ganovelli F., Viola I., Eds., The Eurographics Association, pp. pp.127-147. 1.
[124]
<label>{LPG*14}¿¿</label> Landge A.G., Pascucci V., Gyulassy A., Bennett J.C., Kolla H., Chen J., Bremer P.-T.: In-situ feature extraction of large scale combustion simulations using segmented merge trees</otherTitle>. In <otherTitle>High Performance Computing, Networking, Storage and Analysis, SC14: International Conference for 2014, pp. pp.1020-1031. 4
[125]
<label>{LWSH04}¿¿</label> Laramee R.S., Weiskopf D., Schneider J., Hauser H.: Investigating swirl and tumble flow with a comparison of visualization techniques. In Rushmeier et al. {<link href="#cgf12933-bib-0170">RTvW04</link>}, pp. pp.51-58. 12
[126]
<label>{LYL*12}¿¿</label> Lin Z., Yeh H., Laramee R.S., Zhang E.: 2D asymmetric tensor field topology. In Peikert et al. {<link href="#cgf12933-bib-0150">PHCF12</link>}, pp. pp.191-204. 15
[127]
<label>{MBESar}¿¿</label> Machado G.M., Boblest S., Ertl T., Sadlo F.: Space-time bifurcation lines for extraction of 2D Lagrangian coherent structures. Computer Graphics Forum Volume 35, Issue 3 to appear. pp.13
[128]
<label>{MBS*04}¿¿</label> Mahrous K., Bennett J., Scheuermann G., Hamann B., Joy K.I.: Topological segmentation in three-dimensional vector fields. IEEE Trans. Vis. Comput. Graph. Volume 10, Issue 2 2004, pp.198-205. 11
[129]
<label>{MDN12}¿¿</label> Maadasamy S., Doraiswamy H., Natarajan V.: A hybrid parallel algorithm for computing and tracking level set topology</otherTitle>. In <otherTitle>High Performance Computing HiPC, 2012 19th International Conference on 2012, pp. pp.1-10. 5
[130]
<label>{MHS*96}¿¿</label> Manders E. M. M., Hoebe R., Strackee J., Vossepoel A.M., Aten J.A.: Largest contour segmentation: A tool for the localization of spots in confocal images. Cytometry Volume 23, Issue 1 1996, pp.15-21. 4
[131]
<label>{MR02}¿¿</label> Mann S., Rockwood A.P.: Computing singularities of 3D vector fields with geometric algebra</otherTitle>. In <otherTitle>IEEE Visualization 2002, pp. pp.283-289. 11
[132]
<label>{MS05}¿¿</label> Mascarenhas A., Snoeyink J.: Implementing time-varying contour trees</otherTitle>. <otherTitle>Proceedings of the twenty-first annual symposium on Computational geometry - SCG '05 2005, pp.370-371. 9
[133]
<label>{MS09}¿¿</label> Mascarenhas A., Snoeyink J.: Isocontour based visualization of time-varying scalar fields</chapterTitle>. In <chapterTitle>Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Müller T., Hamann B., Russell R.D., Eds., Mathematics and Visualization. Springer, 2009, pp. pp.41-68. 1, 9.
[134]
<label>{MW13}¿¿</label> Morozov D., Weber G.: Distributed merge trees</otherTitle>. In <otherTitle>Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 2013, PPoPP '13, pp. pp.93-102. 4
[135]
<label>{MW14a}¿¿</label> Mihai M., Westermann R.: Visualizing the stability of critical points in uncertain scalar fields. Computers & Graphics Volume 41 2014, pp.13-25. 10
[136]
<label>{MW14b}¿¿</label> Morozov D., Weber G.H.: Distributed contour trees. In Bremer et al. {BHPP14}, pp. pp.89-102. 5
[137]
<label>{MWR*16}¿¿</label> Maljovec D., Wang B., Rosen P., Alfonsi A., Pastore G., Rabiti C., Pascucci V.: Rethinking sensitivity analysis of nuclear simulations with topology</otherTitle>. In <otherTitle>2016 IEEE Pacific Visualization Symposium PacificVis 2016, pp. pp.64-71. 9
[138]
<label>{NJS*94}¿¿</label> Nielson G.M., Jung I., Srinivasan N., Sung J., Yoon J.: Tools for computing tangent curves and topological graphs. In Scientific Visualization, Overviews, Methodologies, and Techniques 1994, Nielson G.M., Hagen H., Müller H., Eds., IEEE Computer Society, pp. pp.527-562. 11
[139]
<label>{NKWH08}¿¿</label> Natarajan V., Koehl P., Wang Y., Hamann B.: Visual analysis of biomolecular surfaces</chapterTitle>. In <chapterTitle>Visualization in Medicine and Life Sciences, Linsen L., Hagen H., Hamann B., Eds., Mathematics and Visualization. Springer, 2008, pp. pp.237-255. 8
[140]
<label>{NN11}¿¿</label> Nagaraj S., Natarajan V.: Simplification of Jacobi sets. In Pascucci et al. {<link href="#cgf12933-bib-0158">PTHT11</link>}, pp. pp.91-102. 16, 17.
[141]
<label>{OGT11a}¿¿</label> Otto M., Germer T., Theisel H.: Closed stream lines in uncertain vector fields. In Spring Conference on Computer Graphics, SCCG '11 2011, Nishita T., Spencer S.N., Eds., ACM, pp. pp.87-94. URL:"http://dl.acm.org/citation.cfm?id=2461217", 14
[142]
<label>{OGT11b}¿¿</label> Otto M., Germer T., Theisel H.: Uncertain topology of 3D vector fields</otherTitle>. In <otherTitle>IEEE Pacific Visualization Symposium 2011, Battista G.D., Fekete J., Qu H., Eds., pp. pp.67-74. 14
[143]
<label>{OHW*16}¿¿</label> Oesterling P., Heine C., Weber G.H., Morozov D., Scheuermann G.: Computing and visualizing time-varying merge trees for high-dimensional data. In TopoInVis Volume 2015 2016, Springer. In press. 9
[144]
<label>{OHWS13}¿¿</label> Oesterling P., Heine C., Weber G.H., Scheuermann G.: Visualizing nD point clouds as topological landscape profiles to guide local data analysis. IEEE Trans. Vis. Comput. Graph. Volume 19, Issue 3 2013, pp.514-526. 4
[145]
<label>{OST*10}¿¿</label> Oesterling P., Scheuermann G., Teresniak S., Heyer G., Koch S., Ertl T., Weber G.: Two-stage framework for a topology-based projection and visualization of classified document collections</otherTitle>. In <otherTitle>Visual Analytics Science and Technology VAST, 2010 IEEE Symposium on 2010, pp. pp.91-98. 4, 6.
[146]
<label>{Par13}¿¿</label> Parsa S.: A deterministic Omlogm time algorithm for the Reeb graph. Discrete & Computational Geometry Volume 49, Issue 4 2013, pp.864-878. 5
[147]
<label>{PCM03}¿¿</label> Pascucci V., Cole-McLaughlin K.: Parallel computation of the topology of level sets. Algorithmica Volume 38, Issue 1 2003, pp.249-268. 5
[148]
<label>{PCMS04}¿¿</label> Pascucci V., Cole-McLaughlin K., Scorzelli G.: Multi-resolution computation and presentation of contour trees. In Proceedings of IASTED Conference on Visualization, Imaging, and Image Processing 2004, pp. pp.452-290. URL: "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8105&rank=1". 5, 6
[149]
<label>{PD10}¿¿</label> Peacock T., Dabiri J.: Introduction to focus issue: Lagrangian coherent structures. Chaos Volume 20, pp.12010. 13
[150]
<label>{PHCF12}¿¿</label> Peikert R., Hauser H., Carr H., Fuchs R. Eds.: Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization. Springer Berlin Heidelberg, 2012. 21, 22, 23, 25
[151]
<label>{PLC*11}¿¿</label> Palke D., Lin Z., Chen G., Yeh H., Vincent P., Laramee R., Zhang E.: Asymmetric tensor field visualization for surfaces. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 12 2011, pp.1979-1988. 16
[152]
<label>{PPF*11}¿¿</label> Pobitzer A., Peikert R., Fuchs R., Schindler B., Kuhn A., Theisel H., MatkoviÄ¿ K., Hauser H.: The state of the art in topology-based visualization of unsteady flow. Computer Graphics Forum Volume 30, Issue 6 2011, pp.1789-1811. 10
[153]
<label>{PPH12}¿¿</label> Petz C., Pöthkow K., Hege H.-C.: Probabilistic local features in uncertain vector fields with spatial correlation. Computer Graphics Forum Volume 31, Issue 3pt2 2012, pp.1045-1054. 14
[154]
<label>{PRJ12}¿¿</label> Potter K., Rosen P., Johnson C.R.: From quantification to visualization: A taxonomy of uncertainty visualization approaches. In Uncertainty Quantification in Scientific Computing: 10th IFIP WG 2.5 Working Conference, WoCoUQ 2011, Boulder, CO, USA, August 1-4, 2011, Revised Selected Papers Berlin, Heidelberg, 2012, Dienstfrey A.M., Boisvert R.F., Eds., Springer Berlin Heidelberg, pp. pp.226-249. 14
[155]
<label>{PS07}¿¿</label> Peikert R., Sadlo F.: Visualization methods for vortex rings and vortex breakdown bubbles. In EuroVis07: Joint Eurographics - IEEE VGTC Symposium on Visualization 2007, Museth K., Möller T., Ynnerman A., Eds., Eurographics Association, pp. pp.211-218. 11, 12.
[156]
<label>{PS09}¿¿</label> Peikert R., Sadlo F.: Flow topology beyond skeletons: Visualization of features in recirculating flow. In Hege et al. {HPS09}, pp. pp.145-160. 12
[157]
<label>{PSBM07}¿¿</label> Pascucci V., Scorzelli G., Bremer P.-T., Mascarenhas A.: Robust on-line computation of Reeb graphs: Simplicity and speed. ACM Transactions on Graphics Volume 26, pp.32007. 5
[158]
<label>{PTHT11}¿¿</label> Pascucci V., Tricoche X., Hagen H., Tierny J. Eds.: Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer Berlin Heidelberg, 2011. 21, 22, 23, 25
[159]
<label>{PVH*03}¿¿</label> Post F.H., Vrolijk B., Hauser H., Laramee R.S., Doleisch H.: The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum Volume 22, Issue 4 2003, pp.775-792. 1
[160]
<label>{Ree46}¿¿</label> Reeb G.: Sur les points singuliers d'une forme de Pfaff completement intégrable ou d'une fonction numérique. Computes Rendus de L'Académie des Séances, Paris Volume 222, pp.847-8491946. 3
[161]
<label>{RH11}¿¿</label> Reininghaus J., Hotz I.: Combinatorial 2D vector field topology extraction and simplification. In Pascucci et al. {PTHT11}, pp. pp.103-114. 11, 12.
[162]
<label>{RKG*11}¿¿</label> Reininghaus J., Kotava N., Guenther D., Kasten J., Hagen H., Hotz I.: A scale space based persistence measure for critical points in 2D scalar fields. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 12 2011, pp.2045-2052. 8
[163]
<label>{RKWH12}¿¿</label> Reininghaus J., Kasten J., Weinkauf T., Hotz I.: Efficient computation of combinatorial feature flow fields. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 9 2012, pp.1563-1573. 9
[164]
<label>{RL14}¿¿</label> Rieck B., Leitte H.: Structural analysis of multivariate point clouds using simplicial chains. Computer Graphics Forum Volume 33, Issue 8 2014, pp.28-37. 3
[165]
<label>{RL15}¿¿</label> Rieck B., Leitte H.: Persistent homology for the evaluation of dimensionality reduction schemes. Computer Graphics Forum Volume 34, Issue 3 2015, pp.431-440. 3
[166]
<label>{RML12}¿¿</label> Rieck B., Mara H., Leitte H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 12 2012, pp.2382-2391. 3
[167]
<label>{RS14}¿¿</label> Raichel B., Seshadhri C.: Avoiding the global sort: A faster contour tree algorithm</otherTitle>. <otherTitle>ArXiv e-prints 2014. arXiv:1411.2689. 5
[168]
<label>{RSH*12}¿¿</label> Reich W., Schneider D., Heine C., Wiebel A., Chen G., Scheuermann G.: Combinatorial vector field topology in three dimensions. In Peikert et al. {PHCF12}, pp. pp.47-59. 12
[169]
<label>{RT12}¿¿</label> Rössl C., Theisel H.: Streamline embedding for 3D vector field exploration. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 3 2012, pp.407-420. 12
[170]
<label>{RTvW04}¿¿</label> Rushmeier H., Turk G., van Wijk J.J. Eds.:. 15th IEEE Visualization 2004 Conference VIS 2004 2004, IEEE Computer Society. 20, 22, 24
[171]
<label>{RWS11}¿¿</label> Robins V., Wood P.J., Sheppard A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. on Pattern Analysis and Machine Intelligence Volume 33, Issue 8 2011, pp.1646-1658. 7, 8.
[172]
<label>{SB06}¿¿</label> Sohn B.-S., Bajaj C.: Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. Volume 12, Issue 1 2006, pp.14-25. 9
[173]
<label>{SB12}¿¿</label> Szymczak A., Brunhart-Lupo N.: Nearly recurrent components in 3D piecewise constant vector fields. Computer Graphics Forum Volume 31, Issue 3 2012, pp.1115-1124. 12
[174]
<label>{Sch11}¿¿</label> Schulz T.: Topological features in 2D symmetric higher-order tensor fields. Computer Graphics Forum Volume 30, Issue 3 2011, pp.841-850. 15, 16.
[175]
<label>{SCT*10}¿¿</label> Sanderson A., Chen G., Tricoche X., Pugmire D., Kruger S., Breslau J.: Analysis of recurrent patterns in toroidal magnetic fields. IEEE Trans. Vis. Comput. Graph. Volume 16, Issue 6 2010, pp.1431-1440. 12
[176]
<label>{SFRS12}¿¿</label> Schneider D., Fuhrmann J., Reich W., Scheuermann G.: A variance based FTLE-like method for unsteady uncertain vector fields. In Peikert et al. {PHCF12}, pp. pp.255-268. 14
[177]
<label>{SHCS13}¿¿</label> Schneider D., Heine C., Carr H., Scheuermann G.: interactive comparison of multifield scalar data based on largest contours. Computer Aided Geometric Design Volume 30, Issue 6 2013, pp.521-528. Foundations of Topological Analysis. 16
[178]
<label>{SHK*97}¿¿</label> Scheuermann G., Hagen H., Krüger H., Menzel M., Rockwood A.P.: Visualization of higher order singularities in vector fields</otherTitle>. In <otherTitle>IEEE Visualization 1997, pp. pp.67-74. 11
[179]
<label>{SK91}¿¿</label> Shinagawa Y., Kunii T.: Constructing a Reeb graph automatically from cross sections. Computer Graphics and Applications, IEEE Volume 11, Issue 6 1991, pp.44-51. 4, 5.
[180]
<label>{SKK91}¿¿</label> Shinagawa Y., Kunii T., Kergosien Y.: Surface coding based on Morse theory. Computer Graphics and Applications, IEEE Volume 11, Issue 5 1991, pp.66-78. 5
[181]
<label>{SKMR98}¿¿</label> Scheuermann G., Krüger H., Menzel M., Rockwood A.: Visualizing nonlinear vector field topology. IEEE Trans. Vis. Comput. Graph. Volume 4, Issue 2 1998, pp.109-116. 11
[182]
<label>{SLM05}¿¿</label> Shadden S., Lekien F., Marsden J.: Definition and properties of Lagrangian coherent structures from finit-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D Volume 212 2005, pp.271-304. 13
[183]
<label>{SMC07}¿¿</label> Singh G., Mèmoli F., Carlsson G.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Eurographics Symposium on Point-Based, Graphics 2007, Botsch M., Pajarola R., Chen B., Zwicker M., Eds., The Eurographics Association, pp. pp.91-100. 16
[184]
<label>{SMN12}¿¿</label> Shivashankar N., Maadasamy S., Natarajan V.: Parallel computation of 2D Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 10 2012, pp.1757-1770. 7
[185]
<label>{SN12}¿¿</label> Shivashankar N., Natarajan V.: Parallel computation of 3D Morse-Smale complexes. Computer Graphics Forum Volume 31, Issue 3pt1 2012, pp.965-974. 7
[186]
<label>{SP07}¿¿</label> Sadlo F., Peikert R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 6 2007, pp.1456-1463. 13
[187]
<label>{SP09}¿¿</label> Sadlo F., Peikert R.: Visualizing Lagrangian coherent structures and comparison to vector field topology. In Hege et al. {HPS09}, pp. pp.15-29. 13
[188]
<label>{SRW*16}¿¿</label> Skraba P., Rosen P., Wang B., Chen G., Bhatia H., Pascucci V.: Critical point cancellation in 3D vector fields: Robustness and discussion. IEEE Trans. Vis. Comput. Graph. Volume 22, Issue 6 2016, pp.1683-1693. 12
[189]
<label>{SRWS10}¿¿</label> Schneider D., Reich W., Wiebel A., Scheuermann G.: Topology aware stream surfaces. Computer Graphics Forum Volume 29, Issue 3 2010, pp.1153-1161. 11
[190]
<label>{SSZC94}¿¿</label> Samtaney R., Silver D., Zabusky N., Cao J.: Visualizing features and tracking their evolution. Computer Volume 27, Issue 7 1994, pp.20-27. 9
[191]
<label>{STS07}¿¿</label> Schultz T., Theisel H., Seidl H.-P.: Topological visualization of brain diffusion MRi data. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 6 2007, pp.1496-1503. 15
[192]
<label>{SW10}¿¿</label> Sadlo F., Weiskopf D.: Time-dependent 2-D vector field topology: An approach inspired by Lagrangian coherent structures. Computer Graphics Forum Volume 29, Issue 1 2010, pp.88-100. 14
[193]
<label>{SWC*08}¿¿</label> Schneider D., Wiebel A., Carr H., Hlawitschka M., Scheuermann G.: Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans. Vis. Comput. Graph. Volume 14, Issue 6 2008, pp.1475-1482. 16
[194]
<label>{SWCR15}¿¿</label> Skraba P., Wang B., Chen G., Rosen P.: Robustnessbased simplification of 2d steady and unsteady vector fields. IEEE Trans. Vis. Comput. Graph. Volume 21, Issue 8 2015, pp.930-944. 13
[195]
<label>{SZ12}¿¿</label> Szymczak A., Zhang E.: Robust Morse decompositions of piecewise constant vector fields. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 6 2012, pp.938-951. 12
[196]
<label>{Szy05}¿¿</label> Szymczak A.: Subdomain aware contour trees and contour evolution in time-dependent scalar fields</otherTitle>. In <otherTitle>Shape Modeling and Applications, 2005 International Conference 2005, pp. pp.136-144. 9
[197]
<label>{Szy11}¿¿</label> Szymczak A.: Stable Morse decompositions for piecewise constant vector fields on surfaces. Computer Graphics Forum Volume 30, Issue 3 2011, pp.851-860., 14
[198]
<label>{TFO09}¿¿</label> Takahashi S., Fujishiro I., Okada M.: Applying manifold learning to plotting approximate contour trees. IEEE Trans. Vis. Comput. Graph. Volume 15, Issue 6 2009, pp.1185-1192. 5
[199]
<label>{TGK*04}¿¿</label> Tricoche X., Garth C., Kindlmann G.L., Deines E., Scheuermann G., Rütten M., Hansen C.D.: Visualization of intricate flow structures for vortex breakdown analysis. In Rushmeier et al. {RTvW04}, pp. pp.187-194. 12
[200]
<label>{TGS11}¿¿</label> Tricoche X., Garth C., Sanderson A.R.: Visualization of topological structures in area-preserving maps. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 12 2011, pp.1765-1774. 12
[201]
<label>{THBG12}¿¿</label> Tricoche X., Hlawitschka M., Barakat S., Garth C.: Beyond topology: A Lagrangian metaphor to visualize the structure of 3D tensor fields. In New Developments in the Visualization and Processing of Tensor Fields, Laidlaw D.H., Vilanova A., Eds. Springer, 2012, pp. pp.93-110. 15, 16.
[202]
<label>{TIS*95}¿¿</label> Takahashi S., Ikeda T., Shinagawa Y., Kunii T.L., Ueda M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Computer Graphics Forum Volume 14, Issue 3 1995, pp.181-192. 5
[203]
<label>{TN11}¿¿</label> Thomas D.M., Natarajan V.: Symmetry in scalar field topology. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 12 2011, pp.2035-2044. 5, 6.
[204]
<label>{TN13}¿¿</label> Thomas D.M., Natarajan V.: Detecting symmetry in scalar fields using augmented extremum graphs. IEEE Trans. Vis. Comput. Graph. Volume 19, Issue 12 2013, pp.2663-2672. 9
[205]
<label>{TRS03a}¿¿</label> Theisel H., Rössl C., Seidel H.: Combining topological simplification and topology preserving compression for 2D vector fields</otherTitle>. In <otherTitle>11th Pacific Conference on Computer Graphics and Applications PG 2003 2003, pp. pp.419-423. 12
[206]
<label>{TRS03b}¿¿</label> Theisel H., Rössl C., Seidel H.: Using feature flow fields for topological comparison of vector fields. In Proceedings of the Vision, Modeling, and Visualization Conference 2003 VMV 2003 2003, Ertl T., Ed., Aka GmbH, pp. pp.521-528. 14
[207]
<label>{TS03}¿¿</label> Theisel H., Seidel H.-P.: Feature flow fields. In Proc. Symposium on Data Visualisation Volume 2003 2003, ViSSYM '03, Eurographics Association, pp. pp.141-148. URL:"http://wwwisg.cs.uni-magdeburg.de/visual/files/publications/Archive/Theisel_2003_VisSym.pdf". 13
[208]
<label>{TSH00}¿¿</label> Tricoche X., Scheuermann G., Hagen H.: A topology simplification method for 2D vector fields</otherTitle>. In <otherTitle>IEEE Visualization 2000, pp. pp.359-366. 12
[209]
<label>{TSH01a}¿¿</label> Tricoche X., Scheuermann G., Hagen H.: Continuous topology simplification of planar vector fields. In IEEE Visualization Volume 2001 2001, Ertl T., Joy K.I., Varshney A., Eds., pp. pp.159-166. 12
[210]
<label>{TSH01b}¿¿</label> Tricoche X., Scheuermann G., Hagen H.: Tensor topology tracking: A visualization method for time-dependent 2D symmetric tensor fields. Computer Graphics Forum Volume 20, Issue 3 2001, pp.461-470. 15
[211]
<label>{TSHC01}¿¿</label> Tricoche X., Scheuermann G., Hagen H., Clauss S.: Vector and tensor field topology simplification on irregular grids</chapterTitle>. In <chapterTitle>Proceedings of the 2001 Joint Eurographics and IEEE TCVG Symposium on Visualization 2001, Ebert D.S., Favre J.M., Peikert R., Eds., VisSym 2001, Eurographics Association, pp. pp.107-116. 12, 15.
[212]
<label>{TTF04}¿¿</label> Takahashi S., Takeshima Y., Fujishiro I.: Topological volume skeletonization and its application to transfer function design. Graphical Models Volume 66, Issue 1 2004, pp.24-49. 6
[213]
<label>{TWHS03}¿¿</label> Theisel H., Weinkauf T., Hege H., Seidel H.: Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields</otherTitle>. In <otherTitle>14th IEEE Visualization 2003 Conference VIS 2003 2003, Turk G., van Wijk J.J., Moorhead II R.J., Eds., pp. pp.225-232. 11
[214]
<label>{TWHS04}¿¿</label> Theisel H., Weinkauf T., Hege H.-C., Seidel H.-P.: Grid-independent detection of closed stream lines in 2D vector fields</otherTitle>. In <otherTitle>Proc. Vision, Modeling and Visualization 2004, pp. pp.421-428. 12
[215]
<label>{TWHS05}¿¿</label> Theisel H., Weinkauf T., Hege H., Seidel H.: Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Trans. Vis. Comput. Graph. Volume 11, Issue 4 2005, pp.383-394. 13
[216]
<label>{TWSH02}¿¿</label> Tricoche X., Wischgoll T., Scheuermann G., Hagen H.: Topology tracking for the visualization of time-dependent two-dimensional flows. Computers & Graphics Volume 26, Issue 2 2002, pp.249-257. 13
[217]
<label>{UMW*12}¿¿</label> Ushizima D., Morozov D., Weber G., Bianchi A., Sethian J., Bethel W.: Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Graph. Volume 18, Issue 12 2012, pp.2041-2050. 5
[218]
<label>{ÜSE13}¿¿</label> Üffinger M., Sadlo F., Ertl T.: A time-dependent vector field topology based on streak surfaces. IEEE Trans. Vis. Comput. Graph. Volume 19, Issue 3 2013, pp.379-392. 14
[219]
<label>{vKvOB*97}¿¿</label> van Kreveld M., van Oostrum R., Bajaj C., Pascucci V., Schikore D.: Contour trees and small seed sets for isosurface traversal. In Proceedings of the Thirteenth Annual Symposium on Computational Geometry 1997, SCG '97, ACM, pp. pp.212-220. 6
[220]
<label>{VMH*13}¿¿</label> Volke S., Middendorf M., Hlawitschka M., Kasten J., Zeckzer D., Scheuermann G.: dPSO-vis: Topology-based visualization of discrete particle swarm optimization. Computer Graphics Forum Volume 32, Issue 3pt3 2013, pp.351-360. 4
[221]
<label>{WBD*11}¿¿</label> Weber G., Bremer P.-T., Day M., Bell J., Pascucci V.: Feature tracking using Reeb graphs. In Pascucci et al. {PTHT11}, pp. pp.241-253. 5
[222]
<label>{WBP07}¿¿</label> Weber G., Bremer P.-T., Pascucci V.: Topological landscapes: A terrain metaphor for scientific data. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 6 2007, pp.1416-1423. 5, 6.
[223]
<label>{WBP12}¿¿</label> Weber G.H., Bremer P.-T., Pascucci V.: Topological cacti: Visualizing contour-based statistics. In Peikert et al. {PHCF12}, pp. pp.63-76. 6
[224]
<label>{WCBP12}¿¿</label> Widanagamaachchi W., Christensen C., Bremer P.-T., Pascucci V.: Interactive exploration of large-scale time-varying data using dynamic tracking graphs</otherTitle>. In <otherTitle>Large Data Analysis and Visualization LDAV, 2012 IEEE Symposium on 2012, pp. pp.9-17. 9
[225]
<label>{WDC*07}¿¿</label> Weber G.H., Dillard S.E., Carr H., Pascucci V., Hamann B.: Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 2 2007, pp.330-341. 6
[226]
<label>{WGS07}¿¿</label> Wiebel A., Garth C., Scheuermann G.: Computation of localized flow for steady and unsteady vector fields and its applications. IEEE Trans. Vis. Comput. Graph. Volume 13, Issue 4 2007, pp.641-651. 11
[227]
&lt;label&gt;{WGS10}¿¿&lt;/label&gt; Weinkauf T., Gingold Y., Sorkine O.: Topology-based smoothing of 2D scalar fields with C<sup>1</sup>-continuity. Computer Graphics Forum Volume 29, Issue 3 2010, pp.1221-1230. 8
[228]
&lt;label&gt;{WIFDF13}¿¿&lt;/label&gt; Weiss K., Iuricich F., Fellegara R., De Floriani L.: A primal/dual representation for discrete Morse complexes on tetrahedral meshes. Computer Graphics Forum Volume 32, Issue 3pt3 2013, pp.361-370. 7
[229]
&lt;label&gt;{WRKS10}¿¿&lt;/label&gt; Wiebel A., Reich W., Koch S., Scheuermann G.: Vector field topology in the context of separation and attachment of flows&lt;/otherTitle&gt;. In &lt;otherTitle&gt;Foundations of Topological Analysis Workshop 2010. co-located with IEEE VisWeek 2010. 11
[230]
&lt;label&gt;{WRS*13}¿¿&lt;/label&gt; Wang B., Rosen P., Skraba P., Bhatia H., Pascucci V.: Visualizing robustness of critical points for 2D time-varying vector fields. Computer Graphics Forum Volume 32, Issue 3pt2 2013, pp.221-230. 13
[231]
&lt;label&gt;{WS01}¿¿&lt;/label&gt; Wischgoll T., Scheuermann G.: Detection and visualization of closed streamlines in planar flows. IEEE Trans. Vis. Comput. Graph. Volume 7, Issue 2 2001, pp.165-172. 12
[232]
&lt;label&gt;{WS02}¿¿&lt;/label&gt; Wischgoll T., Scheuermann G.: Locating closed streamlines in 3D vector fields. In Proceedings of the 2002 Joint Eurographics and IEEE TCVG Symposium on Visualization, VisSym Volume 2002 2002, Ebert D.S., Brunet P., Navazo I., Eds., Eurographics Association, pp. pp.227-232. 12
[233]
&lt;label&gt;{WSH01}¿¿&lt;/label&gt; Wischgoll T., Scheuermann G., Hagen H.: Tracking closed streamlines in time dependent planar flows. In Proceedings of the Vision Modeling and Visualization Conference 2001 VMV-01 2001, Ertl T., Girod B., Niemann H., Seidel H., Eds., Aka GmbH, pp. pp.447-454. 13
[234]
&lt;label&gt;{WTGP11}¿¿&lt;/label&gt; Weinkauf T., Theisel H., Gelder A.V., Pang A.: Stable feature flow fields. IEEE Trans. Vis. Comput. Graph. Volume 17, Issue 6 2011, pp.770-780. 13
[235]
&lt;label&gt;{WTHS04a}¿¿&lt;/label&gt; Weinkauf T., Theisel H., Hege H., Seidel H.: Boundary switch connectors for topological visualization of complex 3D vector fields. In Deussen et al. {DHKS04}, pp. pp.183-192. 11
[236]
&lt;label&gt;{WTHS04b}¿¿&lt;/label&gt; Weinkauf T., Theisel H., Hege H.-C., Seidel H.-P.: Topological construction and visualization of higher order 3d vector fields. Computer Graphics Forum Volume 23, Issue 3 2004, pp.469-478. 11
[237]
&lt;label&gt;{WTS*05}¿¿&lt;/label&gt; Weinkauf T., Theisel H., Shi K., Hege H.-C., Seidel H.-P.: Extracting higher order critical points and topological simplification of 3D vector fields. In Proceedings IEEE Visualization Volume 2005 2005, pp. pp.559-566. 12
[238]
&lt;label&gt;{WTS09}¿¿&lt;/label&gt; Wiebel A., Tricoche X., Scheuermann G.: Extraction of separation manifolds using topological structures in flow cross sections. In Hege et al. {HPS09}, pp. pp.31-43. 12
[239]
&lt;label&gt;{WWL16}¿¿&lt;/label&gt; Wang W., Wang W., Li S.: From numerics to combinatorics: a survey of topological methods for vector field visualization&lt;/otherTitle&gt;. &lt;otherTitle&gt;Journal of Visualization 2016, pp.1-26. 1, 10.
[240]
&lt;label&gt;{WZ13}¿¿&lt;/label&gt; Wu K., Zhang S.: A contour tree based visualization for exploring data with uncertainty. International Journal for Uncertainty Quantification Volume 3, Issue 3 2013, pp.203-223. 10
[241]
&lt;label&gt;{YKP05}¿¿&lt;/label&gt; Ye X., Kao D., Pang A.: Strategy for seeding 3D streamlines&lt;/otherTitle&gt;. In &lt;otherTitle&gt;16th IEEE Visualization Conference VIS 2005 2005, pp. pp.60-. 12
[242]
&lt;label&gt;{ZAM15}¿¿&lt;/label&gt; Zhang W., Agarwal P.K., Mukherjee S.: Contour trees of uncertain terrains. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems 2015, GIS '15, ACM, pp. pp.43:1-10. 10
[243]
&lt;label&gt;{ZP04}¿¿&lt;/label&gt; Zheng X., Pang A.: Topological lines in 3D tensor fields&lt;/otherTitle&gt;. In &lt;otherTitle&gt;Proceedings of the IEEE Conference on Visualization '04 2004, ViS '04, pp. pp.313-320. 15
[244]
&lt;label&gt;{ZPP05}¿¿&lt;/label&gt; Zheng X., Parlett B., Pang A.: Topological lines in 3D tensor fields and discriminant Hessian factorization. IEEE Trans. Vis. Comput. Graph. Volume 11, Issue 4 2005, pp.395-407. 15

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Graphics Forum
Computer Graphics Forum  Volume 35, Issue 3
June 2016
728 pages
ISSN:0167-7055
EISSN:1467-8659
Issue’s Table of Contents

Publisher

The Eurographs Association & John Wiley & Sons, Ltd.

Chichester, United Kingdom

Publication History

Published: 01 June 2016

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media