skip to main content
research-article

Domain-specific summarization of Life-Science e-experiments from provenance traces

Published: 01 December 2014 Publication History

Abstract

Translational research in Life-Science nowadays leverages e-Science platforms to analyze and produce huge amounts of data. With the unprecedented growth of Life-Science data repositories, identifying relevant data for analysis becomes increasingly difficult. The instrumentation of e-Science platforms with provenance tracking techniques provides useful information from a data analysis process design or debugging perspective. However raw provenance traces are too massive and too generic to facilitate the scientific interpretation of data. In this paper, we propose an integrated approach in which Life-Science knowledge is (i) captured through domain ontologies and linked to Life-Science data analysis tools, and (ii) propagated through rules to produced data, in order to constitute human-tractable experiment summaries. Our approach has been implemented in the Virtual Imaging Platform (VIP) and experimental results show the feasibility of producing few domain-specific statements which opens new data sharing and repurposing opportunities in line with Linked Data initiatives.

References

[1]
C. Bizer, T. Heath, T. Berners-Lee, Linked data-the story so far, Int. J. Semant. Web Inf. Syst., 5 (2009) 1-22.
[2]
P. Fox, J.A. Hendler, Semantic eScience: encoding meaning in next-generation digitally enhanced science, in: The Fourth Paradigm, Microsoft Research, 2009, pp. 147-152.
[3]
C. Goble, R. Stevens, State of the nation in data integration for bioinformatics, J. Biomed. Inform., 41 (2008) 687-693.
[4]
C.A. Goble, D.D. Roure, The impact of workflow tools on data-centric research, in: The Fourth Paradigm, Microsoft Research, 2009, pp. 137-145.
[5]
T. Hey, A. Trefethen, Cyberinfrastructure for e-Science, Science, 308 (2005) 817-821.
[6]
T. Glatard, C. Lartizien, B. Gibaud, R. Ferreira Da Silva, G. Forestier, F. Cervenansky, M. Alessandrini, H. Benoit-Cattin, O. Bernard, S. Camarasu-Pop, N. Cerezo, P. Clarysse, A. Gaignard, P. Hugonnard, H. Liebgott, S. Marache, A. Marion, J. Montagnat, J. Tabary, D. Friboulet, A virtual imaging platform for multi-modality medical image simulation, IEEE Trans. Med. Imaging (TMI), 32 (2013) 110-118.
[7]
A. Gilliam, S. Acton, Echocardiographic simulation for validation of automated segmentation methods, in: IEEE International Conference on Image Processing, 2007. ICIP 2007, vol. 5, 2007, pp. V-529-V-532. http://dx.doi.org/10.1109/ICIP.2007.4379882.
[8]
M. Prastawa, E. Bullitt, G. Gerig, Simulation of brain tumors in MR images for evaluation of segmentation efficacy, Med. Image Anal., 13 (2009) 297-311.
[9]
G. Wagenknecht, H.-J. Kaiser, T. Obladen, O. Sabri, U. Buell, Simulation of 3D MRI brain images for quantitative evaluation of image segmentation algorithms, 2000, pp. 1074-1085. http://dx.doi.org/10.1117/12.387612.
[10]
B. Gibaud, G. Forestier, H. Benoit-Cattin, F. Cervenansky, P. Clarysse, D. Friboulet, A. Gaignard, P. Hugonnard, C. Lartizien, H. Liebgott, J. Montagnat, J. Tabary, T. Glatard, OntoVIP: an ontology for the annotation of object models used for medical image simulation, in: 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology, HISB, 2012, p. 110. http://dx.doi.org/10.1109/HISB.2012.35.
[11]
G. Forestier, A. Marion, H. Benoit-Cattin, P. Clarysse, D. Friboulet, T. Glatard, P. Hugonnard, C. Lartizien, H. Liebgott, J. Tabary, B. Gibaud, Sharing object models for multi-modality medical image simulation: a semantic approach, in: 2011 24th International Symposium on Computer-Based Medical Systems, CBMS, 2011, pp. 1-6. http://dx.doi.org/10.1109/CBMS.2011.5999167.
[12]
A. McLennan, A. Reilhac, M. Brady, SORTEO: Monte Carlo-based simulator with list-mode capabilities, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009, 2009, pp. 3751-3754. http://dx.doi.org/10.1109/IEMBS.2009.5334536.
[13]
L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, J.V. den Bussche, The Open Provenance Model core specification (v1.1), Future Gener. Comput. Syst., 27 (2011) 743-756.
[14]
D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D.L. Mcguinness, E. Sirin, N. Srinivasan, Bringing semantics to Web services with OWL-S, World Wide Web, 10 (2007) 243-277.
[15]
C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, WonderWeb Deliverable D18. The WonderWeb Library of Foundational Ontologies and the DOLCE ontology, December 2003.
[16]
C. Rosse, J.L.V. Mejino, The foundational model of anatomy ontology, in: Computational Biology, vol. 6, Springer, London, 2008, pp. 59-117.
[17]
S. Kundu, M. Itkin, D.A. Gervais, V.N. Krishnamurthy, M.J. Wallace, J.F. Cardella, D.L. Rubin, C.P. Langlotz, The IR Radlex Project: an interventional radiology lexicon-a collaborative project of the Radiological Society of North America and the Society of Interventional Radiology, J. Vasc. Interv. Radiol., 20 (2009) S275-S277.
[18]
P. Schofield, J. Sundberg, B. Sundberg, C. McKerlie, G.V. Gkoutos, The mouse pathology ontology, MPATH; structure and applications, J. Biomed. Semant., 4 (2013) 1-8.
[19]
L. Temal, M. Dojat, G. Kassel, B. Gibaud, Towards an ontology for sharing medical images and regions of interest in neuroimaging, J. Biomed. Inform., 41 (2008) 766-778.
[20]
B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt, F. Michel, A. Gaignard, J. Montagnat, NeuroLOG: sharing neuroimaging data using an ontology-based federated approach, in: AMIA Symposium, 2011, pp. 472-480.
[21]
D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, D. Fensel, WWW: WSMO, WSML, and WSMX in a nutshell, 2006, pp. 516-522. http://dx.doi.org/10.1007/11836025_49.
[22]
M. Gruninger, R. Hull, S. McIlraith, A short overview of flows: a first-order logic ontology of Web services, IEEE Data Eng. Bull., 31 (2008) 3-7.
[23]
J. Farrell, H. Lausen, Semantic annotations for WSDL and XML schema, August 2007. http://www.w3.org/tr/sawsdl'online.
[24]
T. Vitvar, J. Kopecky, J. Viskova, D. Fensel, WSMO-lite annotations for Web services, in: 5th European Semantic Web Conference, ESWC2008, 2008, pp. 674-689.
[25]
A. Gaignard, J. Montagnat, B. Wali, B. Gibaud, Characterizing semantic service parameters with role concepts to infer domain-specific knowledge at runtime, in: International Conference on Knowledge Engineering and Ontology Development, KEOD 2011, Paris, France, 2011.
[26]
J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos, K. Wolstencroft, S. Aleksejevs, R. Stevens, S. Pettifer, R. Lopez, C.A. Goble, BioCatalogue: a universal catalogue of Web services for the life sciences, Nucleic Acids Res., 38 (2010) W689-W694.
[27]
T. Glatard, J. Montagnat, D. Lingrand, X. Pennec, Flexible and efficient workflow deployment of data-intensive applications on grids with MOTEUR, Int. J. High Perform. Comput. Appl. (IJHPCA), 22 (2008) 347-360.
[28]
T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik, J. Zhao, PROV-O: the PROV ontology, W3C Recommendation, April 2013. http://www.w3.org/TR/prov-o.
[29]
S. Madougou, S. Shahand, M. Santcroos, B. van Schaik, A. Benabdelkader, A. van Kampen, S. Olabarriaga, Characterizing workflow-based activity on a production e-infrastructure using provenance data, Future Gener. Comput. Syst., 29 (2013) 1931-1942.
[30]
J. Kim, E. Deelman, Y. Gil, G. Mehta, V. Ratnakar, Provenance trails in the wings/pegasus system, Concurr. Comput.: Pract. Exper., 20 (2008) 587-597.
[31]
P. Missier, S. Sahoo, J. Zhao, C. Goble, A. Sheth, Janus: from workflows to semantic provenance and linked open data, in: IPAW-10, 2010.
[32]
S.S. Sahoo, A. Sheth, C. Henson, Semantic provenance for escience: managing the deluge of scientific data, IEEE Internet Comput., 12 (2008) 46-54.
[33]
S.S. Sahoo, A. Sheth, Provenir ontology: towards a framework for escience provenance management, in: Microsoft eScience Workshop, 2009.
[34]
P. Grenon, B. Smith, SNAP and SPAN: towards dynamic spatial ontology, Spatial Cogn. Comput., 4 (2004) 69-103.
[35]
P. Alper, K. Belhajjame, C.A. Goble, P. Karagoz, Enhancing and abstracting scientific workflow provenance for data publishing, in: Proceedings of the Joint EDBT/ICDT 2013 Workshops, ACM, New York, NY, USA, 2013, pp. 313-318.
[36]
A.P. Sheth, K. Gomadam, J. Lathem, SA-REST: semantically interoperable and easier-to-use services and mashups, IEEE Internet Comput., 11 (2007) 91-94.
[37]
O.F.F. Filho, M.A.G.V. Ferreira, Semantic Web services: a RESTful approach, in: IADIS International Conference WWWInternet 2009, IADIS, 2009, pp. 169-180.
[38]
N. Cerezo, J. Montagnat, Scientific workflow reuse through conceptual workflows, in: 6th Workshop on Workflows in Support of Large-Scale Science, ACM, Seattle, WA, USA, 2011.
[39]
D. Garijo, O. Corcho, Y. Gil, Detecting common scientific workflow fragments using templates and execution provenance, in: Seventh ACM International Conference on Conference on Knowledge Capture, Banff, Canada, 2013.
[40]
X. Zhang, G. Cheng, Y. Qu, Ontology summarization based on RDF sentence graph, in: Proceedings of the 16th International Conference on World Wide Web, ACM, New York, NY, USA, 2007, pp. 707-716.
[41]
E. Beisswanger, S. Schulz, H. Stenzhorn, U. Hahn, BioTop: an upper domain ontology for the life sciences: a description of its current structure, contents and interfaces to OBO ontologies, Appl. Ontol., 3 (2008) 205-212.
[42]
R. Brinkman, M. Courtot, D. Derom, J. Fostel, Y. He, P. Lord, J. Malone, H. Parkinson, B. Peters, P. Rocca-Serra, A. Ruttenberg, S.-A. Sansone, L. Soldatova, C. Stoeckert, J. Turner, J. Zheng, Modeling biomedical experimental processes with OBI, J. Biomed. Semant., 1 (2010) S7.
[43]
D. Garijo, Y. Gil, Augmenting PROV with plans in P-PLAN: scientific processes as linked data, 2012.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Web Semantics: Science, Services and Agents on the World Wide Web
Web Semantics: Science, Services and Agents on the World Wide Web  Volume 29, Issue C
December 2014
67 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 December 2014

Author Tags

  1. E-Science
  2. Linked data
  3. Provenance
  4. Workflows

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media