skip to main content
research-article

API-centric Linked Data integration

Published: 01 December 2014 Publication History

Abstract

Data integration is a key challenge faced in pharmacology where there are numerous heterogeneous databases spanning multiple domains (e.g.źchemistry and biology). To address this challenge, the Open PHACTS consortium has developed the Open PHACTS Discovery Platform that leverages Linked Data to provide integrated access to pharmacology databases. Between its launch in April 2013 and March 2014, the platform has been accessed over 13.5źmillion times and has multiple applications that integrate with it. In this work, we discuss how Application Programming Interfaces can extend the classical Linked Data Application Architecture to facilitate data integration. Additionally, we show how the Open PHACTS Discovery Platform implements this extended architecture.

References

[1]
P.A. Bernstein, L.M. Haas, Information integration in the enterprise, Commun. ACM, 51 (2008) 72-79.
[2]
C. Goble, R. Stevens, State of the nation in data integration for bioinformatics, J. Biomed. Inform., 41 (2008) 687-693.
[3]
A.Y. Halevy, M.J. Franklin, D. Maier, Principles of dataspace systems, in: Proceedings of the Twenty-Fifth Symposium on Principles of Database Systems, PODS 2006, ACM, New York, NY, USA, 2006, pp. 1-9.
[4]
C. Bizer, Interlinking scientific data on a global scale, Data Science Journal, 12 (2013).
[5]
T. Heath, C. Bizer, Linked Data: Evolving the Web into a Global Data Space, in: Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1, Morgan & Claypool, 2011.
[6]
A.J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E.L. Willighagen, C.T. Evelo, N. Blomberg, G. Ecker, C. Goble, B. Mons, Open PHACTS: semantic interoperability for drug discovery, Drug Discov. Today, 17 (2012) 1188-1198.
[7]
A.J. Gray, P. Groth, A. Loizou, S. Askjaer, C. Brenninkmeijer, K. Burger, C. Chichester, C.T. Evelo, C. Goble, L. Harland, et al., Applying linked data approaches to pharmacology: architectural decisions and implementation, Semantic Web.
[8]
K. Azzaoui, E. Jacoby, S. Senger, E.C. Rodrguez, M. Loza, B. Zdrazil, M. Pinto, A.J. Williams, V. de la Torre, J. Mestres, M. Pastor, O. Taboureau, M. Rarey, C. Chichester, S. Pettifer, N. Blomberg, L. Harland, B. Williams-Jones, G.F. Ecker, Scientific competency questions as the basis for semantically enriched open pharmacological space development, Drug Discov. Today, 18 (2013) 843-852.
[9]
P. Ziegler, K.R. Dittrich, Three decades of data integration-all problems solved?, in: IFIP Congress Topical Sessions, Kluwer, 2004, pp. 3-12.
[10]
A. Schultz, A. Matteini, R. Isele, P.N. Mendes, C. Bizer, C. Becker, LDIF-a framework for large-scale linked data integration, in: 21st International World Wide Web Conference, WWW 2012, Developers Track, Lyon, France, 2012.
[11]
A. Loizou, P.T. Groth, On the formulation of performant sparql queries, CoRR arxiv:abs/1304.0567.
[12]
P. Jain, P. Hitzler, P.Z. Yeh, K. Verma, A.P. Sheth, Linked data is merely more data, in: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, AAAI, 2010.
[13]
D. Baorto, L. Li, J.J. Cimino, Practical experience with the maintenance and auditing of a large medical ontology, J. Biomed. Inform., 42 (2009) 494-503.
[14]
C.Y.A. Brenninkmeijer, C. Goble, A.J.G. Gray, P. Groth, A. Loizou, S. Pettifer, Including co-referent uris in a sparql query, in: Fourth International Workshop on Consuming Linked Data, COLD2013, 2013.
[15]
E.K. Neumann, E. Miller, J. Wilbanks, What the semantic web could do for the life sciences, Drug Discov. Today: BIOSILICO, 2 (2004) 228-236.
[16]
M. Samwald, A. Coulet, I. Huerga, R.L. Powers, J.S. Luciano, R.R. Freimuth, F. Whipple, E. Pichler, E. Prud'hommeaux, M. Dumontier, M.S. Marshall, Semantically enabling pharmacogenomic data for the realization of personalized medicine, Pharmacogenomics, 13 (2012) 201-212.
[17]
F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, J. Morissette, Bio2RDF: towards a mashup to build bioinformatics knowledge systems, J. Biomed. Inform., 41 (2008) 706-716.
[18]
A. Ruttenberg, J.A. Rees, M. Samwald, M.S. Marshall, Life sciences on the Semantic Web: the Neurocommons and beyond, Briefings Bioinform., 10 (2009) 193-204.
[19]
M. Samwald, A. Jentzsch, C. Bouton, C. Kallesoe, E. Willighagen, J. Hajagos, M. Marshall, E. Prud'hommeaux, O. Hassanzadeh, E. Pichler, S. Stephens, Linked open drug data for pharmaceutical research and development, J. Cheminform., 3 (2011) 19+.
[20]
V. Momtchev, Linked life data: knowledge extraction and semantic data integration in the pharmaceutical domain, in: larKC Pharma Workshop at High Performance Computing Center Stuttgart, HLRS, Stuttgart, Germany, 4, 2011.
[21]
B. Chen, X. Dong, D. Jiao, H. Wang, Q. Zhu, Y. Ding, D. Wild, Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data, BMC Bioinform., 11 (2010) 255.
[22]
J.G. Frey, C.L. Bird, Cheminformatics and the semantic web: adding value with linked data and enhanced provenance, Wiley Interdiscip. Rev. Comput. Mol. Sci., 3 (2013) 465-481.
[23]
A.Y. Halevy, A. Rajaraman, J.J. Ordille, Data integration: the teenage years, in: Proceedings of 32nd International Conference on Very Large Data Bases, VLDB, ACM, New York, NY, USA, 2006, pp. 9-16.
[24]
M. Lenzerini, Data integration: a theoretical perspective, in: Proceedings of 21st ACM Symposium on Principles of Database Systems, PODS 2002, ACM, New York, NY, USA, 2002, pp. 233-246.
[25]
S. Speiser, A. Harth, Integrating linked data and services with linked data services, in: The Semantic Web: Research and Applications, Springer, 2011, pp. 170-184.
[26]
M. Taheriyan, C.A. Knoblock, P. Szekely, J.L. Ambite, Rapidly integrating services into the linked data cloud, in: The Semantic Web-ISWC 2012, Springer, 2012, pp. 559-574.

Cited By

View all
  1. API-centric Linked Data integration

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Web Semantics: Science, Services and Agents on the World Wide Web
    Web Semantics: Science, Services and Agents on the World Wide Web  Volume 29, Issue C
    December 2014
    67 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 December 2014

    Author Tags

    1. API
    2. Data integration
    3. Data spaces
    4. Linked Data
    5. Pharmacology

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media