skip to main content
research-article

Monitoring leaf area index of the sown mixture pasture through UAV multispectral image and texture characteristics

Published: 01 November 2023 Publication History

Highlights

Combination of vegetation indices, morphological characteristics and ecological factors improves the accuracy of leaf area index estimation.
Texture information and ecological factors exhibit a close relationship with vegetation growth.
Random forest algorithm demonstrates superior prediction capabilities.

Abstract

Leaf area index (LAI) is an important phenotypic trait closely related to photosynthesis, respiration, and water utilization. In recent years, unmanned aerial vehicles (UAVs) multispectral capabilities enable the acquisition of spectral information from visible light to near infrared, facilitating vegetation growth monitoring. This study aims to explore the methodology of combining vegetation indices, color indices, texture information, and ecological factors based on UAV multispectral images to enhance the accuracy of the sown mixture pasture LAI estimation. A field experiment involving 13 mixed sowing combinations of alfalfa (Medicago sativa L.), tall fescue (Festuca elata Keng ex E. Alexeev) and plantain (Plantaga lanceolata L.) was conducted out. Multiple linear regression, Bagging algorithm, support vector machine (SVM), random forest algorithm (RF), KNN algorithm, and back propagation neural network (BP) were used to construct the LAI prediction model. The results showed that combining vegetation index (VI) + color index (CI) + normalized difference texture index (NDTI), and ecological factors (EF) could enhance the accuracy of LAI estimation. The sensitive characteristic combinations for alfalfa, tall fescue, and plantain were found to be NDRE (Normalized difference red-edge index) + NGBDI (Normalized green–blue difference index) + (B) MEA-(G) HOM (Blue band Mean - Green band Homogeneity) + DTR (Daily temperature difference), MSR (Modified simple ratio) + NGRDI (Normalized green–red difference index) + (G) COR-(R) VAR (Green band Correlation – Red band Variance) + DTR (Daily temperature difference)), and MSR (Modified simple ratio) + ExG (Excess green) + (G) SEM-(G) MEA (Green band Second-order moment – Green band Mean) + DTR (Daily temperature difference), respectively. RF exhibited superior prediction capability, further enhancing the accuracy of forage LAI prediction. The alfalfa, tall fescue, and plantain obtained coefficient of determination (R 2) of 0.83, 0.79 and 0.79, root mean squared error (RMSE) of 0.50, 0.58 and 0.70, and mean absolute error (MAE) of 0.36, 0.45 and 0.55, respectively. These findings provide valuable insights for the estimation of leaf area index of the sown mixture pasture through UAV multispectral images and texture characteristics.

References

[1]
A.M. Ali, I. Savin, A. Poddubskiy, M. Abouelghar, N. Saleh, K. Abutaleb, M. El-Shirbeny, P. Dokukin, Integrated method for rice cultivation monitoring using Sentinel-2 data and Leaf Area Index, Egypt. J. Remote Sens. Space Sci. 24 (3) (2021) 431–441,.
[2]
S. Baar, Y. Kobayashi, T. Horie, K. Sato, H. Suto, S. Watanabe, Non-destructive leaf area index estimation via guided optical imaging for large scale greenhouse environments, Comput. Electron. Agric. 197 (2022),.
[3]
Z.S. Cao, Y.D. Li, J.B. Huang, C. Ye, B.F. Sun, S.F. Shu, Y. Zhu, Y. He, Monitoring rice leaf area index based on unmanned aerial vehicle (UAV) digital images, Chin. J. Rice Sci. 36 (03) (2022) 308–317,.
[4]
Q. Cao, Y. Miao, J. Shen, W. Yu, F. Yuan, S. Cheng, S. Huang, H. Wang, W. Yang, F. Liu, Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor, Precis. Agric. 17 (2) (2016) 136–154,.
[5]
J. Cerny, P. Haninec, R. Pokorny, Leaf area index estimated by direct, semi-direct, and indirect methods in European beech and sycamore maple stands, J. For. Res. 31 (3) (2020) 827–836,.
[6]
T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev. 7 (3) (2014) 1247–1250,.
[7]
Chen, Q., Zheng, B., Chenu, K., Hu, P., Chapman, S.C., 2022. Unsupervised plot-scale LAI phenotyping via UAV based imaging, modelling, and machine learning. Plant Phenomics. 2022. http://doi.org/10.34133/2022/9768253.
[8]
J. Dash, P.J. Curran, The MERIS terrestrial chlorophyll index, Int. J. Remote Sens. 25 (23) (2004) 5403–5413,.
[9]
B. Datt, A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using eucalyptus leaves, J. Plant Physiol. 154 (1) (1999) 30–36,.
[10]
L. Feng, S. Chen, C. Zhang, Y. Zhang, Y. He, A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping, Comput. Electron. Agric. 182 (2021),.
[11]
Z. Fu, S. Yu, J. Zhang, H. Xi, Y. Gao, R. Lu, H. Zheng, Y. Zhu, W. Cao, X. Liu, Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat, Eur. J. Agron. 132 (2022),.
[12]
O. Gahrouei, H. Mcnairn, M. Hosseini, S. Homayouni, Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches, Can. J. Remote. Sens. 46 (1) (2020) 84–99,.
[13]
A.A. Gitelson, Y.J. Kaufman, R. Stark, D. Rundquist, Novel algorithms for remote estimation of vegetation fraction, Remote Sens. Environ. 80 (1) (2002) 76–87,.
[14]
A.O. Goncalves, M.D. Figueiredo, E.H. Silva, L.G. Gasparotto, J.M. Rosa, S. Carmo, I.M. Fattori Junior, F.R. Marin, Improving indirect measurements of the lea area index using canopy height, Pesquisa Agropecuaria Brasileira. 55 (2020),.
[15]
Y. Gong, K. Yang, Z. Lin, S. Fang, X. Wu, R. Zhu, Y. Peng, Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV)imaging for different rice cultivars throughout the entire growing season, Plant Methods 17 (1) (2021),.
[16]
Gou, W., Li, P., Xiao, B., Zhang, R., Dong, C, Li, D., Shi, S., Bai, S., 2020. Research status on grass-legume mixture. Journal of Grassland and Forage Science. 3 16-23. http://doi.org/10. 3969 /j. issn. 2096 - 3971. 2020. 03. 003.
[17]
M. Goude, U. Nilsson, E. Holmstrom, Comparing direct and indirect leaf area measurements for Scots pine and Norway spruce plantations in Sweden, Eur. J. For. Res. 138 (6) (2019) 1033–1047,.
[18]
Hong, K.Z., Rashid, M.S.A., M. A.M.S., Siti, K. B., 2021. Support vector machine in precision agriculture: a review. Computers and Electronics in Agriculture. 191 106546. .
[19]
O. Ilniyaz, A. Kurban, Q. Du, Leaf area index estimation of Pergola-Trained Vineyards in arid regions based on UAV RGB and multi spectral data using machine learning methods, Remote Sens. (Basel) 14 (2) (2022),.
[20]
O. Ilniyaz, Q. Du, H. Shen, W. He, L. Feng, H. Azadi, A. Kurban, X. Chen, Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images, Comput. Electron. Agric. 207 (2023),.
[21]
W. Jiang, T. Yang, F. Hou, Multiple mowing improves the yield and nutritional quality of plantain on the Loess Plateau, Pratacultural Science. 38 (02) (2021) 251–260,.
[22]
H. Jin, A. Li, W. Xu, Z. Xiao, J. Jiang, H. Xue, Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors, ISPRS J. Photogramm. Remote Sens. 154 (2019) 176–188,.
[23]
C.F. Jordan, Derivation of leaf-area index from quality of light on the forest floor, Ecology 50 (4) (1969) 663–666,.
[24]
Juliane, B., Kang, Y., Helge, A., Andreas, B., Simon, B., Janis, B., L.G.M., Georg, B., 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Observ. Geoinformation. 39 79-87. http://doi.org/10.1016/j.jag.2015.02.012.
[25]
Y. Kang, F. Gao, M. Anderson, W. Kustas, H. Nieto, K. Knipper, Y. Yang, W. White, J. Alfieri, A. Torres-Rua, M.M. Alsina, A. Karnieli, Evaluation of satellite leaf area index in California vineyards for improving water use estimation, Irrig. Sci. 40 (4–5) (2022) 531–551,.
[26]
G. Kaplan, O. Rozenstein, Spaceborne estimation of Leaf Area Index in cotton, tomato, and wheat using Sentinel-2, Land. 10 (2021) 505,.
[27]
B. Khelvi, C. Marco, E. Anton, P.L. Javier, J. Tommaso, M. Mirco, G. Claudia, M. Franco, C. Roberto, P. Cinzia, R. Micol, Effects of varying solar-view geometry and canopy structure on solar-induced chlorophyll fluorescence and PRI, Int. J. Appl. Earth Observ. Geoinform. 89 (2019),.
[28]
W. Kong, W. Huang, L. Ma, B. Chen, C. Li, L. Tang, Estimation of leaf area index at the late growth stage of crops using unmanned aerial vehicle hyperspectral images, Aerospace Information Research Institute (China). 11856 (2021) 118560X–X,.
[29]
G. Li, W. Chen, X. Zhang, Z. Yang, Z. Wang, P. Bi, Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018, Environ. Sci. Pollut. Res. 29 (50) (2022) 75322–75337,.
[30]
Z. Li, Z. Li, D. Fairbairn, N. Li, B. Xu, H. Feng, G. Yang, Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral, Comput. Electron. Agric. 162174–182 (2019),.
[31]
H. Li, Z. Liu, X. Zhang, D. Chen, Y. Chen, A positive correlation between seed cotton yield and high-efficiency leaf area index indirectly seeded short-season cotton after wheat, Field Crop Res 285 (2022),.
[32]
S. Li, F. Yuan, S.T. Ata-Ui-Karim, H. Zheng, T. Cheng, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, Combining color indices and textures of UAV-based digital imagery for rice LAI estimation, Remote Sens. (Basel) 11 (15) (2019),.
[33]
S. Li, F. Yuan, S.T. Ata-Ui-Karim, H. Zheng, T. Cheng, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, Combining color indices and textures of UAV-based digital imagery for rice LAI estimation, Remote Sens. (Basel) 11 (15) (2019) 1763,.
[34]
T. Li, Z. Zhu, J. Cui, J. Chen, X. Shi, X. Zhao, M. Jiang, Y. Zhang, W. Wang, H. Wang, Monitoring of leaf nitrogen content of winter wheat using multi-angle hyperspectral data, Int. J. Remote Sens. 42 (12) (2021) 4676–4696,.
[35]
L. Liang, D. Geng, J. Yan, S. Qiu, L. Di, S. Wang, L. Xu, L. Wang, J. Kang, L. Li, Estimating crop LAI using spectral feature extraction and the hybrid inversion method, Remote Sens. (Basel) 12 (21) (2020),.
[36]
S. Liu, X. Jin, C. Nie, S. Wang, X. Yu, M. Cheng, M. Shao, Z. Wang, N. Tuohuti, Y. Bai, Y. Liu, Estimating leaf area index using unmanned aerial vehicle data: shallow VS. deep machine learning algorithms, Plant Physiol. 187 (3) (2021) 1551–1576,.
[37]
Z. Liu, B. Li, G. Jin, Scale-dependent changes in the contributions of biotic and abiotic factors to leaf area index in a natural forest in northeast China, For. Ecol. Manage. 479 (2021),.
[38]
S. Liu, W. Zeng, L. Wu, G. Lei, H. Chen, T. Gaiser, A.K. Srivastava, Simulating the leaf area index of rice from multispectral images, Remote Sens. (Basel) 13 (18) (2021),.
[39]
S. Lou, Productivity and evaluation of sown grassland-sheep grazing system in Hexi oasis, Lan Zhou University, 2021.
[40]
Lu, K., Meng, Q., Sun, Y., Sun, Z., Zhang, L., 2018. Estimating leaf area index of wheat at the booting stage us sing GF-2 data: A case study of Lang fang City, Hebei Province. Remote Sensing for Natural Resources. 30 (01), 196-202. http://doi.org/ 10.6046 /gtzyyg.2018.01.27.
[41]
J. Ma, L. Wang, P. Chen, Comparing different methods for wheat LAI inversion based on hyperspectral data, Agriculture-Basel. 12 (9) (2022),.
[42]
H. Mao, J. Meng, F. Ji, Q. Zhang, H. Fang, Comparison of machine learning regression algorithms for cotton leaf area index retrieval using sentinel-2 spectral bands, Appl. Sci.-Basel 9 (7) (2019),.
[43]
Meng, D., Zhao, J., Lan, Y., Yan, C., Yang, D., Wen, Y., 2020. SPAD inversion model of corn canopy based on UAV visible light image. Transactions of the Chinese Society for Agricultural Machinery. 51 (S2), 366-374. http://doi.org/ 10.6041 /j.issn.1000-1298.2020.S2.043.
[44]
Niu, Q., Feng, H., Yang, G., Li, C., Yang, H., Xu, B., Zhao, Y., 2018. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images. Transactions of the Chinese Society of Agricultural Engineering. 34 (05), 73-82.http://doi.org/ 10.11975/j.issn.1002-6819.2018.05.010.
[45]
D.J. Ozer, Correlation and the coefficient of determination, Psychol. Bull. 97 (2) (1985) 307–315,.
[46]
G.G. Parker, Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies, For. Ecol. Manage. 477 (2020),.
[47]
R.L. Pearson, L.D. Miller, Remote mapping of standing crop biomass for estimation of productivity of the shortgrass Prairie, Remote Sens. Environ., VIII. 1355 (1972),.
[48]
Prananda, A.R.A., Kamal, M., Kusuma, D.W., 2020. The effect of using different vegetation indices for mangrove leaf area index modelling. IOP Conference Series Earth and Environmental Science.500 (1), 012006. http://doi.org/ 10.1088/1755-1315/500/1/012006.
[49]
T. Purevdorj, R. Tateishi, T. Ishiyama, Y. Honda, Relationships between percent vegetation cover and vegetation indices, Int. J. Remote Sens. 19 (18) (1998) 3519–3535,.
[50]
H. Qi, B. Zhu, Z. Wu, Y. Liang, J. Li, L. Wang, T. Chen, Y. Lan, L. Zhang, Estimation of peanut leaf area index from unmanned aerial vehicle multispectral images, Sensors-Basel. 20 (23) (2020) 6732,.
[51]
L. Qiao, D. Gao, R. Zhao, W. Tang, L. An, M. Li, H. Sun, Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery, Comput. Electron. Agric. 192 (2022),.
[52]
K. Qiao, W. Zhu, Z. Xie, Application conditions and impact factors for various vegetation indices in constructing the LAI seasonal trajectory over different vegetation types, Ecol. Ind. 112 (2020) 106153,.
[53]
Y. Qu, Z. Wang, J. Shang, J. Liu, J. Zou, Estimation of leaf area index using inclined smartphone camera, Comput. Electron. Agric. 191 (2021),.
[54]
C. Rogers, J. Chen, H. Croft, A. Gonsamo, X. Luo, P. Bartlett, R.M. Staebler, Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology, Agric. For. Meteorol. 304 (2021),.
[55]
G. Rondeaux, M. Steven, F. Baret, Optimization of soil-adjusted vegetation indices, Remote Sens. Environ. 55 (2) (1996) 95–107,.
[56]
P. Rosso, C. Nendel, N. Gilardi, C. Udroiu, F. Chlebowski, Processing of remote sensing information to retrieve leaf area index in barley: a comparison of methods, Precis. Agric. 23 (4) (2022) 1449–1472,.
[57]
Z. Sha, Y. Wang, Y. Bai, Y. Zhao, H. Jin, Y. Na, X. Meng, Comparison of leaf area index inversion for grassland vegetation through remotely sensed spectra by unmanned aerial vehicle and field-based spectroradiometer, J. Plant Ecol. 12 (3) (2019) 395–408,.
[58]
B. Shen, L. Ding, L. Ma, Z. Li, A. Pulatov, Z. Kulenbekov, J. Chen, S. Mambetova, L. Hou, D. Xu, X. Wang, X. Xin, Modeling the leaf area index of inner Mongolia grassland based on machine learning regression algorithms incorporating empirical knowledge, Remote Sens. (Basel) 14 (17) (2022) 4196,.
[59]
P. Shi, Y. Wang, J. Xu, Y. Zhao, B. Yang, Z. Yuan, Q. Sun, Rice nitrogen nutrition estimation with RGB images and machine learning methods, Comput. Electron. Agric. 180 (2020),.
[60]
N. Shin, A. Kotani, T. Sato, A. Sugimoto, T.C. Maximov, A. Nogovitcyn, Y. Miyamoto, H. Kobayashi, S. Tei, Direct measurement of leaf area index in a deciduous needle-leaf forest, eastern Siberia, Polar Sci. (2020),.
[61]
R.P. Sishodia, R.L. Ray, S.K. Singh, Applications of remote sensing in precision agriculture: a review, Remote Sens. (Basel) 12 (19) (2020) 3136,.
[62]
G. Sun, Y. Li, X. Wang, G. Hu, Y. Zhang, Image segmentation algorithm for greenhouse cucumber canopy under various natural lighting conditions, Int. J. Agric. Biol. Eng. 9 (3) (2016) 9,.
[63]
D. Sun, Y. Xu, H. Cen, Optical sensors: deciphering plant phenomics in breeding factories, Trends Plant Sci. 27 (2) (2022) 209–210,.
[64]
Z. Tang, J. Guo, Y. Xiang, X. Lu, Q. Wang, H. Wang, M. Cheng, H. Wang, X. Wang, J. An, A. Abdelghany, Z. Li, F. Zhang, Estimation of leaf area index and above-ground biomass of winter wheat based on optimal spectral index, Agronomy-Basel. 12 (7) (2022),.
[65]
Tian, M., Ban, S., Chang, Q., Ma, W., Yin, Z., Wang, L., 2016. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer. Transactions of the Chinese Society for Agricultural Machinery. 47 (11), 285-293. http://doi.org/ 10.6041 /j.issn.1000-1298.2016.11.039.
[66]
T. Tian, D. Wang, Y. Zeng, Y. Zhang, Q. Huang, Progress on fine classification of crops based on unmanned aerial vehicle remote sensing, China Agric. Inform. 32 (02) (2020) 1–12,.
[67]
L. Wan, J. Zhu, X. Du, J. Zhang, X. Han, W. Zhou, X. Li, J. Liu, F. Liang, Y. He, H. Cen, A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles, J. Exp. Bot. 72 (13) (2021) 4691–4707,.
[68]
M. Wang, J. Chen, S. Wang, Reconstructing the seasonality and trend in global leaf area index during 2001–2017 for prognostic modeling, J. Geophys. Res.-Biogeo Sci. 125 (9) (2020),.
[69]
L. Wang, J. Xu, J. He, B. Li, X. Yang, L. Wang, Y. Guo, Estimating leaf area index and yield of maize based on remote sensing by unmanned aerial vehicle, J. Maize Sci. 28 (06) (2020) 88–93,.
[70]
C. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Res. 30 (1) (2005) 79–82,.
[71]
S. Wu, L. Deng, L. Guo, Y. Wu, Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery, Plant Methods 18 (1) (2022),.
[72]
J. Xu, L.J. Quackenbush, T.A. Volk, J. Im, Forest and crop leaf area index estimation using remote sensing: research trends and future directions, Remote Sens. (Basel) 12 (18) (2020),.
[73]
T. Yamaguchi, Y. Tanaka, Y. Imachi, M. Yamashita, K. Katsura, Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice, Remote Sens. (Basel) 13 (1) (2021),.
[74]
J. Zhang, T. Cheng, W. Guo, X. Xu, H. Qiao, Y. Xie, X. Ma, Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods, Plant Methods 17 (1) (2021),.
[75]
D. Zhang, J. Liu, W. Ni, G. Sun, Z. Zhang, Q. Liu, Q. Wang, Estimation of forest leaf area index using height and canopy cover information extracted from unmanned aerial vehicle stereo imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (2) (2019) 471–481,.
[76]
J. Zhang, X. Qiu, Y. Wu, Y. Zhu, Q. Cao, X. Liu, W. Cao, Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods, Comput. Electron. Agric. 185 (2021),.
[77]
Y. Zhang, N. Ta, S. Guo, Q. Chen, L. Zhao, F. Li, Q. Chang, Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard, Remote Sens. (Basel) 14 (5) (2022),.
[78]
X. Zhang, K. Zhang, Y. Sun, Y. Zhao, H. Zhuang, W. Ban, Y. Chen, E. Fu, S. Chen, J. Liu, Y. Hao, Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation, Remote Sens. (Basel) 14 (2) (2022),.
[79]
Zhao, Y., Hou, P., Jiang, J., Jiang, Y, Zhang, B., Bai, J., Xu, H., 2021. Progress in quantitative inversion of vegetation ecological remote sensing parameters. National Remote Sensing Bulletin. 25 (11), 2173-2197. http://doi.org/10. 11834/jrs.20210402.
[80]
C. Zhou, Y. Gong, S. Fang, K. Yang, Y. Peng, X. Wu, R. Zhu, Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index, Front. Plant Sci. 13957870 (2022),.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computers and Electronics in Agriculture
Computers and Electronics in Agriculture  Volume 214, Issue C
Nov 2023
1060 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 November 2023

Author Tags

  1. UAVs monitoring
  2. Leaf area index
  3. Multispectral
  4. Texture characteristics
  5. Mixture pasture

Author Tags

  1. ANN
  2. AveT
  3. B
  4. BP
  5. CI
  6. CON
  7. COR
  8. DIS
  9. DVI
  10. EF
  11. ENT
  12. EVI
  13. ExG
  14. ExGR
  15. ExR
  16. FE
  17. G
  18. GLCM
  19. GNDVI
  20. HOM
  21. LAI
  22. MAE
  23. MaxT
  24. MinT
  25. MExG
  26. ME
  27. MEA
  28. MSAVI
  29. MSR
  30. NDRE
  31. NDTI
  32. NDVI
  33. NGBDI
  34. NIR
  35. PL
  36. R2
  37. R
  38. RE
  39. RF
  40. RGB
  41. RMSE
  42. RVI
  43. SAVI
  44. SEM
  45. SVM
  46. SVR
  47. UAV
  48. VAR
  49. VDVI
  50. VI

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media