skip to main content
article

Combining association rule mining and network analysis for pharmacosurveillance

Published: 01 May 2016 Publication History

Abstract

Retailers routinely use association mining to investigate trends in the use of their products. In the medical world, association mining is mostly used to identify associations between symptoms and diseases, or between drugs and adverse events. In comparison, there is a relative paucity of work that focuses on relationships between drugs exclusively. In this work, we use the Medical expenditure panel survey to examine relationships between drugs in the United States. In addition to examining the rules generated by association mining, we introduce the notion of a target drug network and demonstrate via different drugs that it can offer additional medical insight. For example, we were able to find drugs that are commonly taken together despite containing the same active compound. Future work can expand on the concept of target drug network, for example, by annotating the networks with the compounds and intended uses of each drug, to yield additional insight for pharmacosurveillance as well as pharmaceutical companies.

References

[1]
Accu-Check (2015) Accu-check softclix lancing device. https://www.accu-chek.com/us/lancing-devices/softclix.html. Accessed 5 May 2015
[2]
Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, SIGMOD '93, pp 207---216
[3]
Agrawal R, Srikant R, et al. (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th international conference very large data bases, VLDB, vol 1215, pp 487---499
[4]
Akçura MT, Srinivasan K (2005) Research note: customer intimacy and cross-selling strategy. Manag Sci 51(6):1007---1012
[5]
Bastien M, Poirier P, Lemieux I, Despres J (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56(4):369---381
[6]
Bereznicki BJ, Peterson GM, Jackson SL, Walters EH, Fitzmaurice KD, Gee PR (2008) Data-mining of medication records to improve asthma management. MJA 189(1):21---25
[7]
Bhatia A, Mago V, Singh R (2014) Use of soft computing techniques in medical decision making: A survey. In: Proceedings of the 2014 international conference on advances in computing, communications and informatics (ICACCI), pp 1131---1137
[8]
Blanchard J, Guillet F, Gras R, Briand H (2005) Using information-theoretic measures to assess association rule interestingness. In: Proceedings of the fifth IEEE international conference on Data mining ICDM 2005. IEEE Computer Society Press, Los Alamitos, pp 66---73
[9]
Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Rec 26(2):255---264
[10]
Butts CT (2014) sna package. https://cran.r-project.org/web/packages/sna/index.html. Accessed 20 Apr 2015
[11]
Cami A, Arnold A, Manzi S, Reis B (2011) Predicting adverse drug events using pharmacological network models. Sci Trans Med 3(114):114---127
[12]
Cavique L (2004) Graph-based structures for the market baskets analysis. Inv Op 24(2):233---46
[13]
Chan E, Zhan C, Homer CJ (2002) Health care use and costs for children with attention-deficit/hyperactivity disorder. Arch Pediatr Adolesc Med 156:504---511
[14]
Chen T, Chou L, Hwang S (2003) Application of a data-mining technique to analyze coprescription patterns for antacids in taiwan. Clin Ther 25(9):2453---2463
[15]
Cheng Y, Tang K, Shen R, Hu Y (2005) Market basket analysis in a multiple store environment. Decis Support Syst 40(2):339---354
[16]
Cios K, Swiniarski R, Pedrycz W, Kurgan L (2007) Unsupervised learning: association rules. In: Kecman V (ed) Data mining. Springer, US, pp 289---306
[17]
Cohen JW, Cohen SB, Banthin JS (2009) The medical expenditure panel survey: a national information resource to support healthcare cost research and inform policy and practice. Med Care 47(1):S44---S50
[18]
Data MHS (2011) Meps hc-059a: 2011 prescribed medicines file. http://meps.ahrq.gov/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-059A. Accessed 20 Apr 2015
[19]
Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N, Habbas Z (2015) Gpu-based bees swarm optimization for association rules mining. J Supercomput 71(4):1318---1344
[20]
Doddi S, Marathe A, Ravi S, Torney David C, S. (2001) Discovery of association rules in medical data. Inform Health Soc Care 26(1):25---33
[21]
Drasic L, Giabbanelli P (2015) Exploring the interactions between physical well-being, and obesity. Can J Diabetes 39:S12---S13
[22]
Food and drug administration (2008) Draft guidance on albuterol sulfate. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050575s037550597s044050725s025050726s019lbl.pdf. Accessed 20 Apr 2015
[23]
Fu H (2008) Cluster analysis and association analysis for the same data. In: Proceedings of the 7th WSEAS international conference on artificial intelligence, knowledge engineering and data bases (AIKED'08), pp 576---581
[24]
Giabbanelli P, Crutzen R (2014) Creating groups with similar expected behavioural response in randomized controlled trials: a fuzzy cognitive map approach. BMC Med Res Methodol 14(1):130
[25]
Giabbanelli P, Jackson P, Finegood D (2014) Modelling the joint effect of social determinants and peers on obesity among canadian adults. Theor Simul Complex Soc Syst 52:145---160
[26]
Giabbanelli P, Peters J (2011) Complex networks and epidemics. Tech Sci Inform 30:181---212
[27]
Giabbanelli PJ (2013) A novel framework for complex networks and chronic diseases. Springer, UK, pp 207---215
[28]
Giabbanelli PJ, Crutzen R (2013) An agent-based social network model of binge drinking among dutch adults. J Artif Soc Soc Simul 16(2):10
[29]
GlaxoSmithKline: augmentin (amoxicillin/clavulanate potassium) prescribing information (2008). http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050575s037550597s044050725s025050726s019lbl.pdf. Accessed 20 Apr 2015
[30]
Gregori-Puigjane E, Mestres J (2008) A ligand-based approach to mining the chemogenomic space of drugs. Comb Chem High Throughput Screen 11:669---676
[31]
Hahsler M, Buchta C, Gruen B, Hornik K, Borgelt C (2015) arules package. http://cran.r-project.org/web/packages/arules/arules.pdf. Accessed 20 Apr 2015
[32]
Harrison T, Ansell J (2002) Customer retention in the insurance industry: using survival analysis to predict cross-selling opportunities. J Financ Serv Mark 6(3):229---239
[33]
Hauser DC, Young DA, Braitman LE (2010) Adapting the bundles approach to reduce medication errors in pharmacy practice. J Clin Outcomes Manag 17(3):125---131
[34]
Ilayaraja M, Meyyappan T (2013) Mining medical data to identify frequent diseases using apriori algorithm. In: Proceedings of the 2013 international conference on pattern recognition, informatics and mobile engineering
[35]
Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK (2014) Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA 312(24):2668---2675
[36]
Jarrar YF, Neely A (2002) Cross-selling in the financial sector: Customer profitability is key. J Target Meas Anal Mark 10(3):282---296
[37]
Jin H, Chen J, Kelman C, He H, McAullay D, O'Keefe CM (2006) Mining unexpeted associations for signalling potential adverse drug reactions from administrative health databases. In: Proceedings of the 2006 Pacific-Asia conference on knowledge discovery and data mining, pp 867---876
[38]
Kim HK, Kim JK, Chen QY (2012) A product network analysis for extending the market basket analysis. Expert Syst Appl 39(8):7403---7410
[39]
Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM (JACM) 46(5):604---632
[40]
Lahiri SW (2012) Management of type 2 diabetes: what is the next step after metformin? Clin Diabetes 30(2):72---75
[41]
Law AW, Reed SD, Sundy JS, Schulman KA (2003) Direct costs of allergic rhinitis in the united states: estimates from the 1996 medical expenditure panel survey. J Allergy Clin Immunol 111:296---300
[42]
Lee HS, Bae T, Lee JH, Kim DG, Oh YS, Jang Y, Kim JT, Lee JJ, Innocenti A, Supuran CT, Chen L, Rho K, Kim S (2012) Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC Syst Biol 6(1):1---10
[43]
Liao TW (2005) Clustering of time series data---a survey. Pattern Recognit 38(11):1857---1874
[44]
Liu C, Mago VK (2012) Cross disciplinary biometric systems. Springer, Berlin
[45]
Machlin SR, Soni A (2013) Health care expenditures for adults with multiple treated chronic conditions: estimates from the medical expenditure panel survey, 2009. Prev Chronic Dis 10:120---172
[46]
Mago VK, Woolrych R, Sixsmith A (2012) Understanding fall events in long term care using fuzzy cognitive map. Gerontechnology 11(2):343
[47]
Mayer-Davis E, D'Agostino R, Karter A, Haffner S, Rewers M, Saad M, Bergman R (1998) Intensity and amount of physical activity in relation to insuli sensitivty: the insulin resistance atherosclerosis study. J Am Med Assoc 279(9):669---674
[48]
MedicinePlus (2010) Amoxicillin. http://www.nlm.nih.gov/medlineplus/druginfo/meds/a685001.html. Accessed 28 Apr 2015
[49]
Medscape reference (2015) WebMD.: prozac, sarafem (fluoxetine) dosing, indications, interactions, adverse effects, and more. http://reference.medscape.com/drug/prozac-sarafem-fluoxetine-342955. Accessed 28 Apr 2015
[50]
Mottillo S, Filion K, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin E, Eisenberg M (2010) The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol 56(14):1130---1132
[51]
Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG, Muller R, Robson B, Apte C, Weiss S, Rigoutsos I, Platt D, Cohen S, Knaus WA (2006) Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med 36:1351---1377
[52]
Orentlicher D (2010) Prescription data mining and the protection of patients' interests. J Law Med Ethics 38(1):74---84
[53]
Raeder T, Chawla N (2009) Modeling a store's product space as a social network. In: Proceedings of the 2009 international conference on advances in social network analysis and mining, pp 164---169
[54]
Soysal O, Gupta E, Donepudi H (2015) A sparse memory allocation data structure for sequential and parallel association rule mining. J Supercomput 72(2):347---370
[55]
Tan PN, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02. ACM, USA, pp 32---41
[56]
Tan SC, San Lau JP (2014) Time series clustering: a superior alternative for market basket analysis. In: Proceedings of the first international conference on advanced data and information engineering (DaEng-2013). Springer, Berlin, pp 241---248
[57]
U.S. national library of medicine: Dextromethorphan (2011). http://www.nlm.nih.gov/medlineplus/druginfo/meds/a682492.html. Accessed 20 Apr 2015
[58]
World Health Organization: international drug monitoring: the role of national centres. Tech Report Ser 498 (1972)
[59]
Xue M, Zhang S, Cai C, Yu X, Shan L, Liu X, Zhang W, Li H (2013) Predicting the drug safety for traditional chinese medicine through a comparitive analysis of withdrawn drugs using pharmacological network. Evid Based Complement Altern Med 2013:1---11
[60]
Yang H, Yang CC (2015) Using health-consumer-contributed data to detect adverse drug reactions by association mining with temporal analysis. ACM Trans Intell Syst Technol 6(4):1---55 (27)
[61]
Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang JF, Hua L (2012) Data mining in healthcare and biomedicine: a survey of the literature. J Med Syst 36:2431---2448
[62]
Zhang F, Zhang Y, Bakos J (2013) Accelerating frequent itemset mining on graphics processing units. J Supercomput 66(1):94---117
[63]
Zhu C, Wu C, Jegga AG (2015) Network biology methods for drug repositioning. In: Sakharkar KR, Sakharkar MK, Chandra R (eds) Post-Genomic Approaches in Drug and Vaccine Development. River Publishers, Aalborg, pp 115---132

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The Journal of Supercomputing
The Journal of Supercomputing  Volume 72, Issue 5
May 2016
380 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 May 2016

Author Tags

  1. Association mining
  2. Market basket analysis
  3. Pharmacosurveillance

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media