skip to main content
10.1007/978-3-642-40994-3_26guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The Top-k frequent closed itemset mining using Top-k SAT problem

Published: 23 September 2013 Publication History

Abstract

In this paper, we introduce a new problem, called Top-k SAT, that consists in enumerating the Top-k models of a propositional formula. A Top-k model is defined as a model with less than k models preferred to it with respect to a preference relation. We show that Top-k SAT generalizes two well-known problems: the partial Max-SAT problem and the problem of computing minimal models. Moreover, we propose a general algorithm for Top-k SAT. Then, we give the first application of our declarative framework in data mining, namely, the problem of enumerating the Top-k frequent closed itemsets of length at least min (FCIMkmin). Finally, to show the nice declarative aspects of our framework, we encode several other variants of FCIMkmin into the Top-k SAT problem.

References

[1]
Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: ACM SIGMOD International Conference on Management of Data, pp. 207-216. ACM Press, Baltimore (1993)
[2]
Tiwari, A., Gupta, R., Agrawal, D.: A survey on frequent pattern mining: Current status and challenging issues. Inform. Technol. J 9, 1278-1293 (2010)
[3]
Fu, A.W.-C., Kwong, R.W.-W., Tang, J.: Mining N-most Interesting Itemsets. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 59-67. Springer, Heidelberg (2000)
[4]
Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns without minimum support. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), pp. 211-218. IEEE Computer Society (2002)
[5]
Ke, Y., Cheng, J., Yu, J.X.: Top-k correlative graph mining. In: Proceedings of the SIAM International Conference on Data Mining (SDM 2009), pp. 1038-1049 (2009)
[6]
Valari, E., Kontaki, M., Papadopoulos, A.N.: Discovery of top-k dense subgraphs in dynamic graph collections. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 213-230. Springer, Heidelberg (2012)
[7]
Lam, H.T., Calders, T.: Mining top-k frequent items in a data stream with flexible sliding windows. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2010), pp. 283-292 (2010)
[8]
Lam, H.T., Calders, T., Pham, N.: Online discovery of top-k similar motifs in time series data. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM 2011, pp. 1004-1015 (2011)
[9]
Shoham, Y.: Reasoning about change: time and causation from the standpoint of artificial intelligence. MIT Press, Cambridge (1988)
[10]
Meseguer, P., Rossi, F., Schiex, T.: 9. In: Soft Constraints. Elsevier (2006)
[11]
Boutilier, C., Brafman, R.I., Domshlak, C., Poole, D.L., Hoos, H.H.: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. Journal of Artificial Intelligence Research (JAIR) 21, 135-191 (2004)
[12]
Walsh, T.: Representing and reasoning with preferences. AI Magazine 28(4), 59-70 (2007)
[13]
Brafman, R.I., Domshlak, C.: Preference Handling - An Introductory Tutorial. AI Magazine 30(1), 58-86 (2009)
[14]
Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artificial Intelligence 175(7-8), 1037-1052 (2011)
[15]
Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485-515 (2010)
[16]
Castell, T., Cayrol, C., Cayrol, M., Berre, D.L.: Using the davis and putnam procedure for an efficient computation of preferred models. In: ECAI, pp. 350-354 (1996)
[17]
Wang, J., Han, J., Lu, Y., Tzvetkov, P.: TFP: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Transactions on Knowledge Data Engineering 17(5), 652-664 (2005)
[18]
Tseitin, G.: On the complexity of derivations in the propositional calculus. In: Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115-125 (1968)
[19]
Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252-265. Springer, Heidelberg (2006)
[20]
Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Information Processing Letters (1996)
[21]
Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108-122. Springer, Heidelberg (2003)
[22]
Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827-831. Springer, Heidelberg (2005)
[23]
Cadoli, M.: On the complexity of model finding for nonmonotonic propositional logics. In: 4th Italian Conference on Theoretical Computer Science, pp. 125-139 (1992)
[24]
Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204-212 (2008)
[25]
Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming perspective. Artificial Intelligence 175(12-13), 1951-1983 (2011)
[26]
Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1-4), 1-26 (2006)

Cited By

View all
  1. The Top-k frequent closed itemset mining using Top-k SAT problem

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    ECMLPKDD'13: Proceedings of the 2013th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III
    September 2013
    685 pages
    ISBN:9783642409936
    • Editors:
    • Hendrik Blockeel,
    • Kristian Kersting,
    • Siegfried Nijssen,
    • Filip Železný

    Sponsors

    • XRCE: Xerox Research Centre Europe
    • Winton Capital Management: Winton Capital Management
    • Cisco Systems
    • Yahoo! Labs
    • CSKI: Czech Society for Cybernetics and Informatics

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 23 September 2013

    Author Tags

    1. data mining
    2. itemset mining
    3. satisfiability

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media