skip to main content
10.3233/978-1-61499-672-9-913guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article
Free access

On the computation of top-k extensions in abstract argumentation frameworks

Published: 29 August 2016 Publication History

Abstract

Formal argumentation has received a lot of attention during the last two decades, since abstract argumentation framework provides the basis for various reasoning problems in Artificial Intelligence. Unfortunately, the exponential number of its possible semantics extensions makes some reasoning problems intractable in this framework. In this paper, we investigate the pivotal issue of efficient computation of acceptable arguments called extensions according to a given semantics. In particular, we address this aspect by applying a strategy of how to use preferences at the semantics level in order to determine what are "desirable" outcomes of the argumentation process. Then, we present a new approach for computing the Top-k extensions of an abstract argumentation framework, according to a user-specified preference relation. Indeed, an extension is a Top-k extension for a given semantics if it admits less than k extensions preferred to it with respect to a preference relation. Our experiments on various datasets demonstrate the effectiveness and scalability of our approach and the accuracy of the proposed enumeration method.

References

[1]
Leila Amgoud and Jonathan Ben-Naim, 'Ranking-based semantics for argumentation frameworks', in Proc. of the 7th SUM Conference, pp. 134-147, (2013).
[2]
Leila Amgoud and Henri Prade, 'Using arguments for making and explaining decisions', Artificial Intelligence, 173(3-4), 413-436, (2009).
[3]
Leila Amgoud and Srdjan Vesic, 'Repairing preference-based argumentation frameworks', in Proc. of the 21th IJCAI Conference, pp. 665-670, (2009).
[4]
Leila Amgoud and Srdjan Vesic, 'A new approach for preference-based argumentation frameworks', Annals of Mathematics and Artificial Intelligence, 63(2), 149-183, (2011).
[5]
Leila Amgoud and Srdjan Vesic, 'Rich preference-based argumentation frameworks', International Journal Approximate Reasoning, 55(2), 585-606, (2014).
[6]
Pietro Baroni and Massimiliano Giacomin, 'On principle-based evaluation of extension-based argumentation semantics', Artificial Intelligence, 171(10-15), 675-700, (2007).
[7]
Trevor J. M. Bench-Capon, 'Persuasion in practical argument using value-based argumentation frameworks', Journal of Logic and Computation, 13(3), 429-448, (2003).
[8]
Stefano Bistarelli and Francesco Santini, 'Conarg: A constraint-based computational framework for argumentation systems', in Proc. of the 23rd ICTAI Conference, pp. 605-612, (2011).
[9]
Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni, 'An abstract, argumentation-theoretic approach to default reasoning', Artificial Intelligence, 93, 63-101, (1997).
[10]
Ronen I. Brafman, Carmel Domshlak, Solomon Eyal Shimony, and Y. Silver, 'Preferences over sets', in Proc. of the 21rd AAAI Conference, pp. 1101-1106, (2006).
[11]
Gerhard Brewka, Miroslaw Truszczynski, and Stefan Woltran, 'Representing preferences among sets', in Proc. of the 24th AAAI Conference, (2010).
[12]
Martin W. A. Caminada and Dov M. Gabbay, 'A logical account of formal argumentation', Studia Logica, 93(2-3), 109-145, (2009).
[13]
Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro Vallati, 'Computing preferred extensions in abstract argumentation: A sat-based approach', in Proc. of the 2nd TAFA Workshop, pp. 176-193, (2013).
[14]
Federico Cerutti, Ilias Tachmazidis, Mauro Vallati, Sotirios Batsakis, Massimiliano Giacomin, and Grigoris Antoniou, 'Exploiting parallelism for hard problems in abstract argumentation', in Proc. of the 29th AAAI Conference, pp. 1475-1481, (2015).
[15]
Günther Charwat and Wolfgang Dvorák, 'dynPARTIX 2.0 - dynamic programming argumentation reasoning tool', in Proc. of the 3nd COMMA Conference, pp. 507-508, (2012).
[16]
Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni, 'On the computational complexity of assumption-based argumentation for default reasoning', Artificial Intelligence, 141(1/2), 57-78, (2002).
[17]
Phan Minh Dung, 'On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games', Artificial Intelligence, 77(2), 321-358, (1995).
[18]
Paul E. Dunne and Michael Wooldridge, 'Complexity of abstract argumentation', Argumentation in AI, Springer, 186, 85-104, (2009).
[19]
Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran, 'Complexity-sensitive decision procedures for abstract argumentation', Artificial Intelligence, 206, 53-78, (2014).
[20]
Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran, 'ASPARTIX: implementing argumentation frameworks using answer-set programming', in Proc. of the 24th ICLP Conference, pp. 734-738, (2008).
[21]
Davide Grossi and Sanjay Modgil, 'On the graded acceptability of arguments', in Proc. of the 24th IJCAI Conference, pp. 868-874, (2015).
[22]
Anthony Hunter, 'A probabilistic approach to modelling uncertain logical arguments', International Journal of Approximate Reasoning, 54(1), 47-81, (2013).
[23]
Anthony Hunter, 'Modelling the persuadee in asymmetric argumentation dialogues for persuasion', in Proc. of the 24th IJCAI Conference, pp. 3055-3061, (2015).
[24]
Saïd Jabbour, Lakhdar Sais, and Yakoub Salhi, 'The Top-k frequent closed itemset mining using Top-k SAT problem', in Proc. of the 24th ECML/PKDD Conference, pp. 403-418, (2013).
[25]
Wolfgang Dvorák Matti Jrvisalo, Johannes Peter Wallner, and Stefan Woltran, 'CEGARTIX: a sat-based argumentation system', in Proc. of the 3nd POS Workshop, (2012).
[26]
Souhila Kaci, 'Refined preference-based argumentation frameworks', in Proc. of the 2nd COMMA Conference, pp. 299-310, (2010).
[27]
Souhila Kaci and Leendert W. N. van der Torre, 'Preference-based argumentation: Arguments supporting multiple values', Int. J. Approx. Reasoning, 48(3), 730-751, (2008).
[28]
Sébastien Konieczny, Pierre Marquis, and Srdjan Vesic, 'On supported inference and extension selection in abstract argumentation frameworks', in Proc. of the 13th ECSQARU Conference, pp. 49-59, (2015).
[29]
Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly, 'Coquiaas: A constraint-based quick abstract argumentation solver', in Proc. of the 27th ICTAI Conference, pp. 928-935, (2015).
[30]
Paul-Amaury Matt and Francesca Toni, 'A game-theoretic measure of argument strength for abstract argumentation', in Proc. of the 11th JELIA Conference, pp. 285-297, (2008).
[31]
Sanjay Modgil, 'Reasoning about preferences in argumentation frameworks', Artificial Intelligence, (2009).
[32]
Sanjay Modgil and Henry Prakken, 'A general account of argumentation with preferences', Artificial Intelligence, 195, 361-397, (2013).
[33]
Henry Prakken, 'Formal systems for persuasion dialogue', Knowledge Engineering Review, 21(2), 163-188, (2006).
[34]
Henry Prakken and Giovanni Sartor, 'Argument-based extended logic programming with defeasible priorities', Journal of Applied Non-Classical Logics, 7(1), 25-75, (1997).
[35]
Iyad Rahwan and Kate Larson, 'Pareto optimality in abstract argumentation', in Proc. of the 23nd AAAI Conference, pp. 150-155, (2008).
[36]
Iyad Rahwan and Guillermo R. Simari, 'Argumentation in artificial intelligence', Springer, (2009).
[37]
Tjitze Rienstra, Matthias Thimm, and Nir Oren, 'Opponent models with uncertainty for strategic argumentation.', in Proc. of the 23rd IJCAI Conference, pp. 322-338, (2013).
[38]
Avi Rosenfeld, Inon Zuckerman, Erel S. Halevi, Osnat Drein, and Sarit Kraus, 'Negochat: A chat-based negotiation agent', in Proc. of the 13th AAMAS Conference, pp. 525-532, (2014).
[39]
Guillermo Ricardo Simari and Ronald Prescott Loui, 'A mathematical treatment of defeasible reasoning and its implementation', Artificial Intelligence, 53(2-3), 125-157, (1992).
[40]
Nouredine Tamani and Madalina Croitoru, 'A quantitative preference-based structured argumentation system for decision support', in Proc. of the 23nd FUZZ-IEEE Conference, pp. 1408-1415, (2014).
[41]
Matthias Thimm, 'Tweety: A comprehensive collection of java libraries for logical aspects of artificial intelligence and knowledge representation', in Proc. of the 16th KR Conference, (2014).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECAI'16: Proceedings of the Twenty-second European Conference on Artificial Intelligence
August 2016
1860 pages
ISBN:9781614996712

Sponsors

  • ETINN: Essence ITN Network
  • Vrije Universiteit Amsterdam: Vrije Universiteit Amsterdam, Netherlands
  • PricewaterhouseCoopers: PricewaterhouseCoopers
  • TANDFGROUP: Taylor & Francis Group

Publisher

IOS Press

Netherlands

Publication History

Published: 29 August 2016

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 66
    Total Downloads
  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)2
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media