skip to main content
article

Unmanned Aircraft Capture and Control Via GPS Spoofing

Published: 01 July 2014 Publication History

Abstract

The theory and practice of unmanned aerial vehicle UAV capture and control via Global Positioning System GPS signal spoofing are analyzed and demonstrated. The goal of this work is to explore UAV vulnerability to deceptive GPS signals. Specifically, this paper 1 establishes the necessary conditions for UAV capture via GPS spoofing, and 2 explores the spoofer's range of possible post-capture control over the UAV. A UAV is considered captured when a spoofer gains the ability to eventually specify the UAV's position and velocity estimates. During post-capture control, the spoofer manipulates the true state of the UAV, potentially resulting in the UAV flying far from its flight plan without raising alarms. Both overt and covert spoofing strategies are considered, as distinguished by the spoofer's attempts to evade detection by the target GPS receiver and by the target navigation system's state estimator, which is presumed to have access to non-GPS navigation sensor data. GPS receiver tracking loops are analyzed and tested to assess the spoofer's capability for covert capture of a mobile target. The coupled dynamics of a UAV and spoofer are analyzed and simulated to explore practical post-capture control scenarios. A field test demonstrates capture and rudimentary control of a rotorcraft UAV, which results in unrecoverable navigation errors that cause the UAV to crash.

References

[1]
Akos, D. M. 2012. Who's afraid of the spoofer? GPS/GNSS spoofing detection via automatic gain control AGC. NAVIGATION, Journal of the Institute of Navigation, Volume 59 Issue 4, pp.281-290.
[2]
Bachrach, A., Prentice, S., He, R., &Roy, N. 2011. RANGE-robust autonomous navigation in GPS-denied environments. Journal of Field Robotics, Volume 28 Issue 5, pp.644-666.
[3]
Bar-Shalom, Y., Li, X. R., &Kirubarajan, T. 2001. Estimation with applications to tracking and navigation. New York: John Wiley and Sons.
[4]
Bernstein, G. M., Liberman, M., &Lichtenberg, A. J. 1989. Nonlinear dynamics of a digital phase locked loop. IEEE Transactions on Communications, Volume 37 Issue 10, pp.1062-1070.
[5]
Braasch, M. S. &Van Dierendonck, A. 1999. GPS receiver architectures and measurements. Proceedings of the IEEE, Volume 87 Issue 1, pp.48-87.
[6]
Broumandan, A., Jafarnia-Jahromi, A., Dehgahanian, V., Nielsen, J., &Lachapelle, G. 2012. GNSS spoofing detection in handheld receivers based on signal spatial correlation. In Proceedings of the IEEE/ION PLANS Meeting, Myrtle Beach, SC. Institute of Navigation.
[7]
Brown, R. G. 1996. Global positioning system: Theory and applications: Receiver Autonomous Integrity Monitoring vol. Volume 2, chap. 5, pp. pp.143-168. Washington, D.C. : American Institute of Aeronautics and Astronautics.
[8]
Castle, R. O., Klein, G., &Murray, D. W. 2011. Wide-area augmented reality using camera tracking and mapping in multiple regions. Computer Vision and Image Understanding, Volume 115 Issue 6, pp.854-867.
[9]
Chowdhary, G., Johnson, E. N., Magree, D., Wu, A., &Shein, A. 2013. GPS-denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraft. Journal of Field Robotics, Volume 30 Issue 3, pp.415-437.
[10]
Christophersen, H. B., Pickell, R. W., Neidhoefer, J. C., Koller, A. A., Kannan, S. K., &Johnson, E. N. 2006. A compact guidance, navigation, and control system for unmanned aerial vehicles. Journal of Aerospace Computing, Information, and Communication, Volume 3 Issue 5, pp.187-213.
[11]
De Lorenzo, D. S., Gautier, J., Rife, J., Enge, P., &Akos, D. 2005. Adaptive array processing for GPS interference rejection. In Proceedings of the ION GNSS Meeting, Long Beach, CA. Institute of Navigation.
[12]
Dehghanian, V., Nielsen, J., &Lachapelle, G. 2012. GNSS spoofing detection based on receiver C/No estimates. In Proceedings of the ION GNSS Meeting, Nashville, TN. Institute of Navigation.
[13]
Durrant-Whyte, H., &Bailey, T. 2006. Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, Volume 13 Issue 2, pp.99-110.
[14]
European Union2010. European GNSS Galileo open service signal in space interface control document. Technical report, European Union. "http://ec.europa.eu/enterprise/policies/satnav/galileo/open-service/".
[15]
Fadali, M. S., &Visioli, A. 2013. Digital control engineering: Analysis and design. Academic Press.
[16]
Flenniken IV, W. S., Wall, J. H., &Bevly, D. M. 2005. Characterization of various IMU error sources and the effect on navigation performance. In Proceedings of the ION ITM, Long Beach, CA. Institute of Navigation.
[17]
Garratt, M. A., &Chahl, J. S. 2008. Vision-based terrain following for an unmanned rotorcraft. Journal of Field Robotics, Volume 25 Issue 4-5, pp.284-301.
[18]
Global Positioning System Directorate2012. Systems engineering and integration Interface Specification IS-GPS-200G. Technical report, Global Positioning System Directorate. "http://www.gps.gov/technical/icwg/".
[19]
Gupta, S. 1975. Phase-locked loops. Proceedings of the IEEE, Volume 63 Issue 2, pp.291-306.
[20]
Hermann, R., &Krener, A. 1977. Nonlinear controllability and observability. IEEE Transactions on Automatic Control, Volume 22 Issue 5, pp.728-740.
[21]
Humphreys, T. E. 2013. Detection strategy for cryptographic GNSS anti-spoofing. IEEE Transactions on Aerospace and Electronic Systems, Volume 49 Issue 2, pp.1073-1090.
[22]
Humphreys, T. E., Bhatti, J. A., Shepard, D. P., &Wesson, K. D. 2012. The Texas Spoofing Test Battery: Toward a standard for evaluating GNSS signal authentication techniques. In Proceedings of the ION GNSS Meeting, Nashville, TN. Institute of Navigation.
[23]
Humphreys, T. E., Ledvina, B. M., Psiaki, M. L., O'Hanlon, B. W., &Kintner, P. M.Jr. 2008. Assessing the spoofing threat: Development of a portable GPS civilian spoofer. In Proceedings of the ION GNSS Meeting, Savannah, GA. Institute of Navigation.
[24]
Humphreys, T. E., Psiaki, M. L., &Kintner, P. M. Jr 2010. Modeling the effects of ionospheric scintillation on GPS carrier phase tracking. IEEE Transactions on Aerospace and Electronic Systems, Volume 46 Issue 4, pp.1624-1637.
[25]
Kendoul, F. 2012. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. Journal of Field Robotics, Volume 29 Issue 2, pp.315-378.
[26]
Kim, J., &Sukkarieh, S. 2003. A baro-altimeter augmented INS/GPS navigation system for an uninhabited aerial vehicle. In International Symposium on Satellite Navigation Technology, Melbourne, Australia. Australian Global Positioning Systems Society.
[27]
Ledvina, B. M., Bencze, W. J., Galusha, B., &Miller, I. 2010. An in-line anti-spoofing module for legacy civil GPS receivers. In Proceedings of the ION ITM, San Diego, CA. Institute of Navigation.
[28]
Lee, J., &Un, C. 1982. Performance analysis of digital tanlock loop. IEEE Transactions on Communications, Volume 30 Issue 10, pp.2398-2411.
[29]
Lindsey, W., &Chie, C. M. 1981. A survey of digital phase-locked loops. Proceedings of the IEEE, Volume 69 Issue 4, pp.410-431.
[30]
Lo, S., De Lorenzo, D. S., Enge, P., Akos, D., &Bradley, P. 2009. Signal authentication. Inside GNSS, Volume 0 Issue 0, pp.30-39.
[31]
Misra, P., &Enge, P. 2012. Global positioning system: Signals, measurements, and performance, revised 2nd ed. Lincoln, MA: Ganga-Jumana Press.
[32]
Montgomery, P. Y., Humphreys, T. E., &Ledvina, B. M. 2009. A multi-antenna defense: Receiver-autonomous GPS spoofing detection. Inside GNSS, Volume 4 Issue 2, pp.40-46.
[33]
Nuetzi, G., Weiss, S., Scaramuzza, D., &Siegwart, R. 2011. Fusion of IMU and vision for absolute scale estimation in monocular SLAM. Journal of Intelligent & Robotic Systems, Volume 61 Issue 1, pp.287-299.
[34]
O'Hanlon, B. W., Psiaki, M. L., Bhatti, J. A., &Humphreys, T. E. 2012. Real-time spoofing detection using correlation between two civil GPS receiver. In Proceedings of the ION GNSS Meeting, Nashville, TN. Institute of Navigation.
[35]
O'Hanlon, B. W., Psiaki, M. L., Powell, S. P., Bhatti, J. A., Humphreys, T. E., Crowley, G., &Bust, G. S. 2011. CASES: A smart, compact GPS software receiver for space weather monitoring. In Proceedings of the ION GNSS Meeting, Portland, OR. Institute of Navigation.
[36]
Psiaki, M. L., O'Hanlon, B. W., Bhatti, J. A., &Humphreys, T. E. 2011. Civilian GPS spoofing detection based on dual-receiver correlation of military signals. In Proceedings of the ION GNSS Meeting, Portland, OR. Institute of Navigation.
[37]
Psiaki, M. L., O'Hanlon, B. W., Bhatti, J. A., Shepard, D. P., &Humphreys, T. E. 2013. GPS spoofing detection via dual-receiver correlation of military signals. IEEE Transactions on Aerospace and Electronic Systems, Volume 49 Issue 4, pp.2250-2267.
[38]
Rao, B. R., Rosario, E. N., &Davis, R. J. 2006. Radiation pattern analysis of aircraft mounted GPS antennas and verification through scale model testing. In Proceedings of the IEEE/ION PLANS Meeting, San Diego, CA. Institute of Navigation.
[39]
Sarkar, B., &Chattopadhyay, S. 1994. A new look into the acquisition properties of a second-order digital phase locked loop. IEEE Transactions on Communications, Volume 42 Issue 5, pp.2087-2091.
[40]
Shepard, D. P., Bhatti, J. A., Humphreys, T. E., &Fansler, A. A. 2012a. Evaluation of smart grid and civilian UAV vulnerability to GPS spoofing attacks. In Proceedings of the ION GNSS Meeting, Nashville, TN. Institute of Navigation.
[41]
Shepard, D. P., &Humphreys, T. E. 2011. Characterization of receiver response to a spoofing attack. In Proceedings of the ION GNSS Meeting, Portland, OR. Institute of Navigation.
[42]
Shepard, D. P., Humphreys, T. E., &Fansler, A. A. 2012b. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. International Journal of Critical Infrastructure Protection, Volume 5 Issue 3-4, pp.146-153.
[43]
Spilker, J. J.Jr. 1996. Global positioning system: Theory and applications: GPS signal structure and theoretical performance chap. 3, pp. pp.57-119. Washington, D.C. : American Institute of Aeronautics and Astronautics.
[44]
Stephens, S. A., &Thomas, J. B. 1995. Controlled-root formulation for digital phase-locked loops. IEEE Transactions on Aerospace and Electronic Systems, Volume 31 Issue 1, pp.78-95.
[45]
Tippenhauer, N. O., Pöpper, C., Rasmussen, K. B., &Capkun, S. 2011. On the requirements for successful GPS spoofing attacks. In Proceedings of the ACM Conference on Computer and Communications Security pp. pp.75-86, Chicago, IL. Association for Computing Machinery.
[46]
Van Dierendonck, A. J. 1996. Global positioning system: Theory and applications: GPS Receivers chap. 8, pp. pp.329-407. Washington, D.C. : American Institute of Aeronautics and Astronautics.
[47]
Ward, P. W. 1994. GPS receiver RF interference monitoring, mitigation, and analysis techniques. NAVIGATION, Journal of the Institute of Navigation, Volume 41 Issue 4, pp.367-391.
[48]
Warner, J. S., &Johnston, R. G. 2003. A simple demonstration that the global positioning system GPS is vulnerable to spoofing. Journal of Security Administration, Volume 25, pp.19-28 2002.
[49]
Weiss, S., Scaramuzza, D., &Siegwart, R. 2011. Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics, Volume 28 Issue 6, pp.854-874.
[50]
Wendel, J., Meister, O., Schlaile, C., &Trommer, G. F. 2006. An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter. Aerospace Science and Technology, Volume 10 Issue 6, pp.527-533.
[51]
Wesson, K. D., Evans, B. L., &Humphreys, T. 2013. A combined symmetric difference and power monitoring GNSS anti-spoofing technique. In Proceedings of the IEEE Global Conference on Signal and Information Processing, Austin, TX. Institute of Electrical and Electronics Engineers.
[52]
Wesson, K. D., Rothlisberger, M., &Humphreys, T. E. 2012. Practical cryptographic civil GPS signal authentication. NAVIGATION, Journal of the Institute of Navigation, Volume 59 Issue 3, pp.177-193.
[53]
Wesson, K. D., Shepard, D. P., Bhatti, J. A., &Humphreys, T. E. 2011. An evaluation of the vestigial signal defense for civil GPS anti-spoofing. In Proceedings of the ION GNSS Meeting, Portland, OR. Institute of Navigation.
[54]
Zhuang, W. 1996. Performance analysis of GPS carrier phase observable. IEEE Transactions on Aerospace and Electronic Systems, Volume 32 Issue 2, pp.754-767.

Cited By

View all

Comments

Information & Contributors

Information

Published In

cover image Journal of Field Robotics
Journal of Field Robotics  Volume 31, Issue 4
July 2014
235 pages
ISSN:1556-4959
EISSN:1556-4967
Issue’s Table of Contents

Publisher

John Wiley and Sons Ltd.

United Kingdom

Publication History

Published: 01 July 2014

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media