幸运数
外观
幸運數是經由類似埃拉托斯特尼篩法的演算法後留下的整數集合,是在1955年波蘭數學家烏拉姆提出。
由一組由1開始的數列為例:
1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,...
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,...
然後把數列中的第個數字(設該數字為)的倍數对应的數刪除,即把所有第个数刪除,例如上述例子中,第數字是,所以刪去所有第個數:
1, 3, 7, 9, 13, 15, 19, 21, 25,...
新數列的第項(每次都加上)為,因此將新數列的第個數刪除:
1, 3, 7, 9, 13, 15, 21, 25,...
若一直重複上述的步驟,最後剩下的數就是幸運數 A000959:
幸運數有部分特性和質數相同,例如幸運數的分佈情形也可用素數定理來分析,而哥德巴赫猜想與孿生質數猜想也有以幸運數為基準的版本。
幸運數有無限多個。但目前不確定是否存在無限個幸運質數(lucky prime):
- 3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, ...
这是一篇關於数论的小作品。您可以通过编辑或修订扩充其内容。 |