網狀結構(英語:reticular formation)又稱網狀系統[2],是在中樞神經系統中,一系列介於脊髓上端到丘腦之間,由白質和灰質交織形成的彌散性神經網絡。其涉及延髓中央、腦橋被蓋、中腦、下丘腦等多個部位,大部分位於腦幹內。

網狀結構
橋腦上部的冠狀面(網狀結構被標註在左側)[1] (Formatio reticularis labeled at left.)
關於橄欖體中部的對延髓進行的截面(網狀結構灰質與網狀結構白質被標註在左側)
基本資訊
位置腦幹、下丘腦等
標識字符
拉丁文formatio reticularis
MeSHD012154
NeuroNames英語NeuroNames1223
NeuroLex英語NeuroLex IDnlx_143558
TA98A14.1.00.021、​A14.1.05.403、​A14.1.06.327
TA25367
FMAFMA:77719
格雷氏p.784
神經解剖學術語英語Anatomical terms of neuroanatomy

網狀結構內除了有多個界限清楚且功能明確的神經細胞核團、神經纖維束外,另有散在分佈的神經元群及縱橫交錯的神經纖維,它們共同形成一組複雜網絡。網狀結構內的神經細胞形狀也很複雜,大小不等,軸突較長,側枝較多。其功能涉及覺醒/睡眠循環,以及肌肉張力、心臟反射,並可以過濾進入的刺激以區分無關的背景刺激;因此網狀結構對於高等生物控制一些身體基本功能是必須的,並且是腦部系統發生學上最老的部分之一。

網狀結構的神經元,特別是上升網狀激活系統的神經元,在維持行為喚醒意識方面發揮着至關重要的作用。網狀結構的總體功能是調節和前運動,涉及軀體運動控制、心血管控制、疼痛調節、睡眠和意識以及習慣化。調節功能主要存在於網狀結構的喙部,而運動前功能則位於更多尾部區域的神經元中。

網狀結構分為三列:中縫核(中縫核)、巨細胞網狀核(內側區)和小細胞網狀核(外側區)。中縫核是合成神經遞質血清素的地方,在情緒調節中起着重要作用。巨細胞核參與運動協調。小細胞核調節呼氣

網狀結構對於控制高等生物的一些基本功能至關重要,並且是系統發育上最古老的大腦部分之一。

腦幹網狀系統是一系列位於腦幹內互相連結的神經核。腦幹內除了有多個界限清楚且功能明確的神經細胞核團、神經纖維束外,其餘散在分佈的神經元群加上縱橫交錯的神經纖維,位於腦幹核心的一組複雜網絡,即為腦幹網狀結構。

結構

編輯
 
腦橋下部的橫截面顯示標記為 #9 的腦橋網狀結構

人類的網狀結構由近 100 個腦核組成,並包含許多前腦腦幹小腦等區域的投射。網狀丘腦投射纖維、瀰漫性丘腦皮質投射、上行膽鹼能投射、下行非膽鹼能投射和下行網狀脊髓投射。網狀結構還包含兩個主要的神經子系統,即上升網狀激活系統和下降網狀脊髓束,它們介導不同的認知和生理過程。它在矢狀面冠狀面均已被功能性劈裂。

傳統上,網狀核分為三列:

  • 在中柱 - 中縫核
  • 在中間柱 - 巨細胞核(因為細胞尺寸較大)
  • 在側柱中 - 細細胞核(因為細胞尺寸較小)

最初的功能分化是尾側和喙側的劃分。這是基於這樣的觀察:吻側網狀結構的損傷會引起貓腦的睡眠過度。相反,網狀結構尾部的病變會導致貓失眠。這項研究得出了尾部抑制網狀結構的頭端部分的想法。

矢狀劃分揭示了更多形態學差異。中縫核在網狀結構的中間形成一個脊,並且直接到其外圍,有一個稱為內側網狀結構的部分。內側射頻較大,具有長的上升和下降纖維,並被外側網狀結構包圍。外側射頻靠近腦神經的運動核,主要介導其功能。

內側和外側網狀結構

編輯

內側網狀結構和外側網狀結構是邊界不明確的兩列核,它們將投射穿過髓質並進入中腦。細胞核可以根據功能、細胞類型以及傳出傳入神經的投射來區分。從中腦頭端向尾部移動,在腦橋頭端和中腦的位置,內側 RF 變得不那麼突出,而外側 RF 變得更加突出。

存在於內側網狀結構兩側的是其外側表親,在延髓頭端和腦橋尾部尤其明顯。腦神經從這個區域發出,包括非常重要的迷走神經。外側射頻以其神經節腦神經周圍的中間神經元區域而聞名,這些神經元用於調節其特有的反射和功能。

功能

編輯

網狀結構由 100 多個小型神經網絡組成,具有多種功能,包括:

  1. 軀體運動控制——一些運動神經元將軸突發送到網狀形成核,產生脊髓的網狀脊髓束。這些束的作用是維持音調、平衡和姿勢 – 尤其是在身體動作時。網狀結構還將眼睛和耳朵的信號傳遞給小腦,以便小腦可以在運動協調中整合視覺、聽覺和前庭刺激。其他運動核包括凝視中心(使眼睛能夠跟蹤和注視物體)和中央模式發生器(產生呼吸和吞咽的節律信號)。
  2. 心血管控制——網狀結構包括延髓的心臟和血管運動中心。
  3. 疼痛調節——網狀結構是下半身疼痛信號到達大腦皮層的一種方式。它也是下行鎮痛通路的起源。這些通路中的神經纖維在脊髓中發揮作用,阻止某些疼痛信號向大腦的傳遞。
  4. 睡眠和意識——網狀結構對丘腦和大腦皮層有投射,使其能夠對哪些感覺信號到達大腦並引起我們的意識注意施加一定的控制。它在警覺和睡眠等意識狀態中發揮着核心作用。網狀結構損傷可導致不可逆的昏迷
  5. 習慣化——這是大腦學會忽略重複的、無意義的刺激,同時對他人保持敏感的過程。一個很好的例子是,一個人可以在大城市的喧鬧交通中睡覺,但會因警報聲或嬰兒哭聲而立即被吵醒。調節大腦皮層活動的網狀形成核是上行網狀激活系統的一部分。

主要子系統

編輯

上行網狀激活系統

編輯
 
上升網狀激活系統。網狀結構在中心附近標記。

上行網狀激活系統(ARAS)也稱網狀激活系統(RAS),是脊椎動物大腦中一組相互連接的核團,負責調節覺醒睡眠-覺醒轉換。 ARAS是網狀結構的一部分,主要由丘腦中的各種核團和一些多巴胺能、去甲腎上腺素能血清素能、組胺能、膽鹼能和穀氨酸能腦核團組成。

ARAS 的結構

編輯

ARAS 由多個神經迴路組成,通過穿過丘腦丘腦的不同通路將後中腦和前腦橋的背側部分連接到大腦皮層[3] [4] [5] ARAS 是不同核團的集合——上腦幹、腦橋、延髓和下丘腦後部每側都有 20 多個核團。這些神經元釋放的神經遞質包括多巴胺去甲腎上腺素血清素組胺乙酰膽鹼穀氨酸[3] [6] [4] [5]它們通過直接軸突投射和丘腦中繼的間接投射來施加皮質影響。 [4] [5] [7]

丘腦通路主要由腦橋被蓋中的膽鹼能神經元組成,而下丘腦通路主要由釋放單胺神經遞質(即多巴胺、去甲腎上腺素、血清素和組胺)的神經元組成。 [3] [6] ARAS 中釋放穀氨酸的神經元相對於單胺能和膽鹼能神經元的發現要晚得多。 [8] ARAS 的穀氨酸能成分包括下丘腦的一個核和多個腦幹核。 [4] [8] [9]下丘腦外側食慾素神經元支配上行網狀激活系統的每個組成部分並協調整個系統內的活動。 [5] [10] [11]

上行網狀激活系統的關鍵組成部分
細胞核類型 介導覺醒的相應核 來源
多巴胺能 細胞核 [3] [6] [4] [5]
去甲腎上腺素能 細胞核
  • 藍斑
  • 相關去甲腎上腺素能腦幹核
[3] [6] [5]
血清素能 細胞核
  • 中縫背核
  • 中縫核
[3] [6] [5]
組胺能 細胞核
  • 結節乳頭核
[3] [6] [12]
膽鹼能 細胞核
  • 前腦膽鹼能核
  • 橋腦被蓋核:外側背核和橋腳被蓋核
[3] [4] [5] [8]
穀氨酸能 細胞核
  • 腦幹核:臂旁核、前藍核、橋腳被蓋核
  • 下丘腦核團:乳頭上核
[4] [5] [8] [9] [12] [13]
丘腦 細胞核
  • 丘腦網狀核
  • 層內核,包括中心正中核
[3] [4] [14]

ARAS 由進化上古老的大腦區域組成,這些區域對於動物的生存至關重要,並在逆境期間受到保護,例如在托塞爾反射(又名「動物催眠」)的抑制時期。 [A] [16]上行網狀激活系統,將神經調節投射發送到皮層 - 主要連接到前額葉皮層[17]與皮質運動區域的連接似乎較低。 [17]

ARAS 的職能

編輯
意識
編輯

上行網狀激活系統是意識狀態的重要促成因素。 [7]上升系統被認為有助於以皮質和行為喚醒為特徵的覺醒。 [18]

調節睡眠-覺醒轉換
編輯

ARAS 的主要功能是修改和增強丘腦和皮質功能,從而導致腦電圖(EEG) 不同步。 [B] [20] [21]清醒和睡眠期間大腦的電活動存在明顯差異:低電壓快速突發腦電波(EEG 去同步)與清醒和快速眼動睡眠(電生理學上相似)相關);在非快速眼動睡眠期間會發現高壓慢波。一般來說,當丘腦中繼神經元處於突發模式時,腦電圖是同步的,而當它們處於強直模式時,腦電圖是不同步的。 [21]刺激 ARAS 通過抑制慢皮質波(0.3-1 Hz), δ波(1–4 Hz)和主軸波振盪(11–14 Hz)並通過提升伽瑪波段(20–40 Hz)振盪。 [10]

從深度睡眠狀態到清醒狀態的生理變化是可逆的,並由 ARAS 介導。 [22]下丘腦的腹外側視前核(VLPO) 抑制負責清醒狀態的神經迴路,VLPO 激活有助於睡眠開始。 [23]在睡眠期間,ARAS 中的神經元的放電率會低得多;相反,他們在清醒狀態下的活動水平會更高。 [24]為了使大腦能夠睡眠,必須通過抑制 ARAS 來減少到達皮質的上行傳入活動。 [22]

注意力
編輯

ARAS 還有助於調節從放鬆的清醒狀態到高度注意力狀態的轉變。 [14]在需要提高警覺性和注意力的任務期間,中腦網狀結構(MRF)和丘腦層內核的區域血流量增加(可能表明神經元活動增加)。

ARAS 的臨床意義

編輯

腦幹ARAS 核團的腫塊病變可導致意識水平的嚴重改變(例如昏迷)。 [25]中腦網狀結構的雙側損傷可能導致昏迷或死亡。 [26]

直接電刺激 ARAS 會在貓中產生疼痛反應,並引發人類對疼痛的口頭報告。[來源請求]</link>[需要引用]貓的上行網狀結構激活會導致瞳孔散大[27]這可能是由於長期疼痛引起的。這些結果表明 ARAS 迴路與生理疼痛通路之間存在某種關係。 [27]

病理學
編輯

ARAS 的一些病理可能歸因於年齡,因為隨着年齡的增長,ARAS 的反應性似乎普遍下降。 [28]電耦合[C]的變化被認為可以解釋 ARAS 活動的一些變化:如果耦合下調,則高頻同步(伽馬帶)也會相應減少。相反,上調的電耦合會增加快節奏的同步,從而導致覺醒和快速眼動睡眠驅動力的增加。 [30]具體來說,ARAS 的破壞與以下疾病有關:

  • 發作性睡病:沿橋腳(PPT/PPN)/背側被蓋(LDT) 核的病變與發作性睡病有關。 [31] PPN 輸出顯着下調,食慾素肽減少,導致白天過度嗜睡,這是這種疾病的特徵。 [10]
  • 進行性核上性麻痹(PSP) :一氧化二氮信號傳導功能障礙與 PSP 的發生有關。 [32]
  • 帕金森病:快速眼動睡眠障礙在帕金森病中很常見。它主要是一種多巴胺能疾病,但膽鹼能核也被耗盡。 ARAS 的退化在疾病過程的早期就開始了。 [31]
發育影響
編輯

有幾個潛在因素可能會對上行網狀激活系統的發育產生不利影響:

  • 早產[33]無論出生體重或妊娠周數如何,早產都會對整個發育過程中的前注意(覺醒和睡眠-覺醒異常)、注意(反應時間和感覺門控)和皮質機制產生持續的有害影響。
  • 懷孕期間吸煙: [34]眾所周知,產前接觸香煙煙霧會導致人類持久的覺醒、注意力和認知缺陷。這種暴露可誘導橋腳核(PPN) 細胞上α4β2 煙鹼受體的上調,導致強直活性、靜息膜電位和超極化激活的陽離子電流增加。 PPN 神經元內在膜特性的這些主要干擾導致覺醒和感覺門控缺陷水平增加(表現為對重複聽覺刺激的習慣程度減少)。據推測,這些生理變化可能會加劇以後生活中的注意力失調

網狀脊髓下降束

編輯
 
脊髓束 - 網狀脊髓束以紅色標記,靠近圖中左側中心

網狀脊髓束,也稱為下降或前網狀脊髓束,是錐體外系運動束,從網狀結構下降[35]分為兩條束,作用於供應軀幹和近端肢體屈肌和伸肌的運動神經元。網狀脊髓束主要參與運動和姿勢控制,儘管它們也具有其他功能。 [36]下降網狀脊髓束是通往脊髓的肌肉骨骼活動的四個主要皮質通路之一。網狀脊髓束與其他三個通路一起協調運動控制,包括精細的操作。 [35]這四個通路可以分為兩個主要系統通路——內側系統和外側系統。內側系統包括網狀脊髓通路和前庭脊髓通路,該系統提供姿勢控制。皮質脊髓束和紅核脊髓束通路屬於側向系統,提供對運動的精細控制。 [35]

內側束和外側束

編輯

該下降束分為兩部分,內側(或腦橋)和外側(或髓質)網狀脊髓束(MRST 和 LRST)。

  • 內側網狀脊髓束負責興奮反重力伸肌。該束的纖維源自尾部橋腦網狀核和口腔橋腦網狀核,並投射到脊髓的第七層和第八層。
  • 外側網狀脊髓束負責抑制興奮性軸向伸肌的運動。它還負責自動呼吸。該束的纖維來自髓質網狀結構,大部分來自巨細胞核,並沿側柱前部的脊髓長度下降。該束大部分終止於第七層,一些纖維終止於脊髓的第九層。

向相反方向傳遞資訊的上升感覺束被稱為脊髓網狀束。

網狀脊髓束的功能

編輯
  1. 整合來自運動系統的資訊以協調運動和姿勢的自動運動
  2. 促進和抑制隨意運動;影響肌張力
  3. 調節自主神經功能
  4. 調節疼痛衝動
  5. 影響丘腦外側膝狀核的血流。 [37]

網狀脊髓束的臨床意義

編輯

網狀脊髓束提供了下丘腦控制交感胸腰椎流出和副交感骶骨流出的通路。[來源請求]</link>[需要引用]

兩個主要的下行系統將信號從腦幹和小腦傳送到脊髓,可以觸發平衡和定向的自動姿勢反應:來自前庭核的前庭脊髓束和來自腦橋和延髓的網狀脊髓束。這些束的損傷會導致嚴重的共濟失調姿勢不穩定[38]

腦幹的物理或血管損傷,斷開紅核(中腦)和前庭核(腦橋)的連接,可能會導致去大腦強直,其神經系統症狀是肌張力增加和牽張反射過度活躍。為了應對令人震驚或痛苦的刺激,手臂和腿都會伸展並向內轉動。其原因是外側前庭脊髓束和網狀脊髓束的強直活動刺激伸肌運動神經元,而不受紅核脊髓束的抑制。 [39]

紅核水平以上的腦幹損傷可能會導致皮質僵硬。當受到驚嚇或疼痛的刺激時,手臂會彎曲,腿會伸展。原因是紅核通過紅核脊髓束抵消了來自外側前庭脊髓束和網狀脊髓束的伸肌運動神經元的興奮。由於紅核脊髓束僅延伸至頸脊髓,因此它主要通過興奮屈肌和抑制伸肌來作用於手臂,而不是腿部。 [39]

歷史

編輯

「網狀結構」一詞是由Otto Deiters在 19 世紀末創造的,與Ramon y Cajal神經元學說不謀而合。艾倫·霍布森(Allan Hobson)在他的《重新審視網狀結構》一書中指出,這個名字是神經科學中聚合場論衰落時代的詞源遺蹟。 「網狀結構」一詞的意思是「網狀結構」,乍一看就是網狀結構的樣子。它被描述為要麼太複雜而無法研究,要麼是大腦的未分化部分,根本沒有組織。埃里克·坎德爾(Eric Kandel)將網狀結構描述為以與脊髓中間灰質類似的方式組織。這種混亂、鬆散且複雜的組織形式使得許多研究人員無法進一步研究大腦的這一特定區域。[來源請求]</link>[需要引用]這些細胞缺乏清晰的神經節邊界,但具有清晰的功能組織和不同的細胞類型。除了泛泛而談之外,「網狀結構」一詞已很少使用。現代科學家通常指的是構成網狀結構的單個核。[來源請求]</link>

Moruzzi和Magoun於 1949 年首次研究了調節大腦睡眠-覺醒機制的神經成分。生理學家提出,大腦深處的某些結構控制着精神的覺醒和警覺性。 [20]人們曾認為,覺醒僅取決於大腦皮層傳入(感覺)刺激的直接接收。

由於直接對大腦進行電刺激可以模擬皮層電中繼,馬古恩利用這一原理在貓腦幹的兩個不同區域上演示了如何從睡眠中醒來。他首先刺激了上升的軀體和聽覺路徑;第二,一系列「從下腦幹的網狀結構通過中腦被蓋、底丘腦下丘腦到達內囊的上行中繼」。 [40]後者特別令人感興趣,因為這一系列中繼不對應於任何已知的覺醒信號轉導解剖通路,並被創造為上升網狀激活系統(ARAS)。

接下來,通過在中腦前部的內側外側部分放置損傷來評估這個新發現的中繼系統的重要性。 ARAS 中腦中斷的貓進入深度睡眠並顯示出相應的腦電波。以另一種方式,上行聽覺和軀體通路受到類似干擾的貓表現出正常的睡眠和覺醒,並且可以通過物理刺激喚醒。因為這些外部刺激在到達皮層的途中會被中斷所阻礙,這表明上行傳輸必須通過新發現的 ARAS。

最後,馬貢記錄了腦幹內側部分的電位,發現聽覺刺激直接激發了網狀激活系統的部分區域。此外,坐骨神經的單次電擊刺激也激活了內側網狀結構、下丘腦丘腦。 ARAS 的興奮不依賴於通過小腦迴路的進一步信號傳播,因為在去小腦和去皮後獲得了相同的結果。研究人員提出,中腦網狀結構周圍的一列細胞接收來自腦幹所有上升束的輸入,並將這些傳入信號傳遞到皮質,從而調節覺醒。 [40] [22]

參見

編輯
  • 藍斑
  • 橋腳核
  • 腦橋內側網狀結構
  • 中腦網狀結構

參考

編輯
  1. ^ Gray, Henry. FIG. 701: Henry Gray (1825-1861). Anatomy of the Human Body. 1918.. Bartleby.com. [2019-09-12]. (原始內容存檔於2018-04-21). 
  2. ^ 存档副本. [2024-01-31]. (原始內容存檔於2024-01-31). 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Iwańczuk W, Guźniczak P. Neurophysiological foundations of sleep, arousal, awareness and consciousness phenomena. Part 1. Anaesthesiol Intensive Ther. 2015, 47 (2): 162–167. PMID 25940332. doi:10.5603/AIT.2015.0015. The ascending reticular activating system (ARAS) is responsible for a sustained wakefulness state. It receives information from sensory receptors of various modalities, transmitted through spinoreticular pathways and cranial nerves (trigeminal nerve – polymodal pathways, olfactory nerve, optic nerve and vestibulocochlear nerve – monomodal pathways). These pathways reach the thalamus directly or indirectly via the medial column of reticular formation nuclei (magnocellular nuclei and reticular nuclei of pontine tegmentum). The reticular activating system begins in the dorsal part of the posterior midbrain and anterior pons, continues into the diencephalon, and then divides into two parts reaching the thalamus and hypothalamus, which then project into the cerebral cortex (Fig. 1). The thalamic projection is dominated by cholinergic neurons originating from the pedunculopontine tegmental nucleus of pons and midbrain (PPT) and laterodorsal tegmental nucleus of pons and midbrain (LDT) nuclei [17, 18]. The hypothalamic projection involves noradrenergic neurons of the locus coeruleus (LC) and serotoninergic neurons of the dorsal and median raphe nuclei (DR), which pass through the lateral hypothalamus and reach axons of the histaminergic tubero-mamillary nucleus (TMN), together forming a pathway extending into the forebrain, cortex and hippocampus. Cortical arousal also takes advantage of dopaminergic neurons of the substantia nigra (SN), ventral tegmenti area (VTA) and the periaqueductal grey area (PAG). Fewer cholinergic neurons of the pons and midbrain send projections to the forebrain along the ventral pathway, bypassing the thalamus [19, 20]. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Brudzynski SM. The ascending mesolimbic cholinergic system – a specific division of the reticular activating system involved in the initiation of negative emotional states. Journal of Molecular Neuroscience. July 2014, 53 (3): 436–445. PMID 24272957. S2CID 14615039. doi:10.1007/s12031-013-0179-1. Understanding of arousing and wakefulness-maintaining functions of the ARAS has been further complicated by neurochemical discoveries of numerous groups of neurons with the ascending pathways originating within the brainstem reticular core, including pontomesencephalic nuclei, which synthesize different transmitters and release them in vast areas of the brain and in the entire neocortex (for review, see Jones 2003; Lin et al. 2011). They included glutamatergic, cholinergic, noradrenergic, dopaminergic, serotonergic, histaminergic, and orexinergic systems (for review, see Lin et al. 2011). ... The ARAS represented diffuse, nonspecific pathways that, working through the midline and intralaminar thalamic nuclei, could change activity of the entire neocortex, and thus, this system was suggested initially as a general arousal system to natural stimuli and the critical system underlying wakefulness (Moruzzi and Magoun 1949; Lindsley et al. 1949; Starzl et al. 1951, see stippled area in Fig. 1). ... It was found in a recent study in the rat that the state of wakefulness is mostly maintained by the ascending glutamatergic projection from the parabrachial nucleus and precoeruleus regions to the basal forebrain and then relayed to the cerebral cortex (Fuller et al. 2011). ... Anatomical studies have shown two main pathways involved in arousal and originating from the areas with cholinergic cell groups, one through the thalamus and the other, traveling ventrally through the hypothalamus and preoptic area, and reciprocally connected with the limbic system (Nauta and Kuypers 1958; Siegel 2004). ... As counted in the cholinergic connections to the thalamic reticular nucleus ... 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. The Psychiatric Clinics of North America. December 2015, 38 (4): 615–644. PMC 4660253 . PMID 26600100. doi:10.1016/j.psc.2015.07.002. This ascending reticular activating system (ARAS) is comprised of cholinergic laterodorsal and pedunculopontine tegmentum (LDT/PPT), noradrenergic locus coeruleus (LC), serotonergic (5-HT) Raphe nuclei and dopaminergic ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray projections that stimulate the cortex directly and indirectly via the thalamus, hypothalamus and BF.6, 12-18 These aminergic and catecholaminergic populations have numerous interconnections and parallel projections which likely impart functional redundancy and resilience to the system.6, 13, 19 ... More recently, the medullary parafacial zone (PZ) adjacent to the facial nerve was identified as a sleep-promoting center on the basis of anatomical, electrophysiological and chemo- and optogenetic studies.23, 24 GABAergic PZ neurons inhibit glutamatergic parabrachial (PB) neurons that project to the BF,25 thereby promoting NREM sleep at the expense of wakefulness and REM sleep. ... The Hcrt neurons project widely throughout the brain and spinal cord92, 96, 99, 100 including major projections to wake-promoting cell groups such as the HA cells of the TM,101 the 5-HT cells of the dorsal Raphe nuclei (DRN),101 the noradrenergic cells of the LC,102 and cholinergic cells in the LDT, PPT, and BF.101, 103 ... Hcrt directly excites cellular systems involved in waking and arousal including the LC,102, 106, 107 DRN,108, 109 TM,110-112 LDT,113, 114 cholinergic BF,115 and both dopamine (DA) and non-DA neurons in the VTA.116, 117 
  6. ^ 6.0 6.1 6.2 6.3 6.4 6.5 Malenka RC, Nestler EJ, Hyman SE. Chapter 12: Sleep and Arousal 2nd. New York: McGraw-Hill Medical. 2009: 295. ISBN 978-0071481274. The RAS is a complex structure consisting of several different circuits including the four monoaminergic pathways ... The norepinephrine pathway originates from the locus ceruleus (LC) and related brainstem nuclei; the serotonergic neurons originate from the raphe nuclei within the brainstem as well; the dopaminergic neurons originate in ventral tegmental area (VTA); and the histaminergic pathway originates from neurons in the tuberomammillary nucleus (TMN) of the posterior hypothalamus. As discussed in Chapter 6, these neurons project widely throughout the brain from restricted collections of cell bodies. Norepinephrine, serotonin, dopamine, and histamine have complex modulatory functions and, in general, promote wakefulness. The PT in the brain stem is also an important component of the ARAS. Activity of PT cholinergic neurons (REM-on cells) promotes REM sleep. During waking, REM-on cells are inhibited by a subset of ARAS norepinephrine and serotonin neurons called REM-off cells. 
  7. ^ 7.0 7.1 Squire L. Fundamental neuroscience 4th. Amsterdam: Elsevier/Academic Press. 2013: 1095. ISBN 978-0123858702. 
  8. ^ 8.0 8.1 8.2 8.3 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Current Opinion in Neurobiology. June 2017, 44: 186–192. PMC 5531075 . PMID 28577468. doi:10.1016/j.conb.2017.03.021. Parabrachial and pedunculopontine glutamatergic arousal system
    Retrograde tracers from the BF have consistently identified one brainstem site of input that is not part of the classical monoaminergic ascending arousal system: glutamatergic neurons in the parabrachial and pedunculopontine nucleus ... Juxtacellular recordings from pedunculopontine neurons have found that nearly all cholinergic neurons in this region, as well as many glutamatergic and GABAergic neurons, are most active during wake and REM sleep [25], although some of the latter neurons were maximally active during either wake or REM, but not both. ... [Parabrachial and pedunculopontine glutamatergic neurons] provide heavy innervation to the lateral hypothalamus, central nucleus of the amygdala, and BF
     
  9. ^ 9.0 9.1 Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SG, Vujovic N, Arrigoni E, Saper CB, Fuller PM. Supramammillary glutamate neurons are a key node of the arousal system. Nature Communications. November 2017, 8 (1): 1405. Bibcode:2017NatCo...8.1405P. PMC 5680228 . PMID 29123082. doi:10.1038/s41467-017-01004-6. Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated. 
  10. ^ 10.0 10.1 10.2 Burlet S, Tyler CJ, Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J. Neurosci. April 2002, 22 (7): 2862–2872. PMC 6758338 . PMID 11923451. doi:10.1523/JNEUROSCI.22-07-02862.2002. 
  11. ^ Malenka RC, Nestler EJ, Hyman SE. Chapter 12: Sleep and Arousal 2nd. New York: McGraw-Hill Medical. 2009: 295. ISBN 978-0071481274. Orexin neurons are located in the lateral hypothalamus. They are organized in a widely projecting manner, much like the monoamines (Chapter 6), and innervate all of the components of the ARAS. They excite the REM-off monoaminergic neurons during wakefulness and the PT cholinergic neurons during REM sleep. They are inhibited by the VLPO neurons during NREM sleep. 
  12. ^ 12.0 12.1 Cherasse Y, Urade Y. Dietary Zinc Acts as a Sleep Modulator. International Journal of Molecular Sciences. November 2017, 18 (11): 2334. PMC 5713303 . PMID 29113075. doi:10.3390/ijms18112334 . The regulation of sleep and wakefulness involves many regions and cellular subtypes in the brain. Indeed, the ascending arousal system promotes wakefulness through a network composed of the monaminergic neurons in the locus coeruleus (LC), histaminergic neurons in the tuberomammilary nucleus (TMN), glutamatergic neurons in the parabrachial nucleus (PB) ... 
  13. ^ Fuller PM, Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. The Journal of Comparative Neurology. April 2011, 519 (5): 933–956. PMC 3119596 . PMID 21280045. doi:10.1002/cne.22559. 
  14. ^ 14.0 14.1 Kinomura S, Larsson J, Gulyás B, Roland PE. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. January 1996, 271 (5248): 512–515. Bibcode:1996Sci...271..512K. PMID 8560267. S2CID 43015539. doi:10.1126/science.271.5248.512. This corresponds to the centro-median and centralis lateralis nuclei of the intralaminar group 
  15. ^ VandenBos, Gary R (編). animal hypnosis. APA dictionary of psychology 2nd (Washington, DC: American Psychological Association). 2015: 57. ISBN 978-1433819445. doi:10.1037/14646-000. a state of motor nonresponsiveness in nonhuman animals, produced by stroking, salient stimuli, or physical restraint. It is called 「hypnosis」 because of a claimed resemblance to human hypnosis and trance 
  16. ^ Svorad D. Reticular activating system of brain stem and animal hypnosis. Science. January 1957, 125 (3239): 156. Bibcode:1957Sci...125..156S. PMID 13390978. doi:10.1126/science.125.3239.156. 
  17. ^ 17.0 17.1 Jang SH, Kwon HG. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study. Neurosci. Lett. October 2015, 606: 200–203. PMID 26363340. S2CID 37083435. doi:10.1016/j.neulet.2015.09.004. 
  18. ^ Jones, BE. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Annals of the New York Academy of Sciences. 2008, 1129 (1): 26–34. Bibcode:2008NYASA1129...26J. PMID 18591466. S2CID 16682827. doi:10.1196/annals.1417.026. 
  19. ^ Purves et al (2018b),Box 28A – Electroencephalography, pp. 647–649
  20. ^ 20.0 20.1 Steriade, M. Arousal: Revisiting the reticular activating system. Science. 1996, 272 (5259): 225–226. Bibcode:1996Sci...272..225S. PMID 8602506. S2CID 39331177. doi:10.1126/science.272.5259.225. 
  21. ^ 21.0 21.1 Reiner, P. B. Are mesopontine cholinergic neurons either necessary or sufficient components of the ascending reticular activating system?. Seminars in Neuroscience. 1995, 7 (5): 355–359. S2CID 5575547. doi:10.1006/smns.1995.0038. 
  22. ^ 22.0 22.1 22.2 Evans, B.M. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?. Neurophysiologie Clinique. 2003, 33 (1): 1–10. PMID 12711127. S2CID 26159370. doi:10.1016/s0987-7053(03)00002-9. 
  23. ^ Purves et al (2018b)
  24. ^ Mohan Kumar V, Mallick BN, Chhina GS, Singh B. Influence of ascending reticular activating system on preoptic neuronal activity. Exp. Neurol. October 1984, 86 (1): 40–52. PMID 6479280. S2CID 28688574. doi:10.1016/0014-4886(84)90065-7. 
  25. ^ Tindall SC. https://www.ncbi.nlm.nih.gov/books/NBK380/#A1740 |chapterurl=缺少標題 (幫助). Chapter 57: Level of Consciousness. Butterworth Publishers. 1990 [2008-07-04]. ISBN 978-0409900774. (原始內容存檔於2009-01-29). 
  26. ^ Nolte (編). chpt 11 5th. : 262–290. 
  27. ^ 27.0 27.1 Ruth RE, Rosenfeld JP. Tonic reticular activating system: relationship to aversive brain stimulation effects. Exp. Neurol. October 1977, 57 (1): 41–56. PMID 196879. S2CID 45019057. doi:10.1016/0014-4886(77)90043-7. 
  28. ^ Robinson, D. The technical, neurological and psychological significance of 'alpha', 'delta' and 'theta' waves confounded in EEG evoked potentials: a study of peak latencies. Clinical Neurophysiology. 1999, 110 (8): 1427–1434. PMID 10454278. S2CID 38882496. doi:10.1016/S1388-2457(99)00078-4. 
  29. ^ Lawrence, Eleanor (編). electrical coupling. Henderson's dictionary of biology 13th (Pearson Education Limited). 2005: 195. ISBN 978-0131273849. 
  30. ^ Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A. Electrical coupling: novel mechanism for sleep-wake control. Sleep. 2007, 30 (11): 1405–1414. PMC 2082101 . PMID 18041475. doi:10.1093/sleep/30.11.1405. 
  31. ^ 31.0 31.1 Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. December 2008, 6 (4): 367–378. PMC 2701283 . PMID 19587857. doi:10.2174/157015908787386050. 
  32. ^ Vincent, S. R. The ascending reticular activating system - from aminergic neurons to nitric oxide. Journal of Chemical Neuroanatomy. 2000, 18 (1–2): 23–30. PMID 10708916. S2CID 36236217. doi:10.1016/S0891-0618(99)00048-4. 
  33. ^ Hall RW, Huitt TW, Thapa R, Williams DK, Anand KJ, Garcia-Rill E. Long-term deficits of preterm birth: evidence for arousal and attentional disturbances. Clin Neurophysiol. June 2008, 119 (6): 1281–1291. PMC 2670248 . PMID 18372212. doi:10.1016/j.clinph.2007.12.021. 
  34. ^ Garcia-Rill E, Buchanan R, McKeon K, Skinner RD, Wallace T. Smoking during pregnancy: postnatal effects on arousal and attentional brain systems. Neurotoxicology. September 2007, 28 (5): 915–923. PMC 3320145 . PMID 17368773. doi:10.1016/j.neuro.2007.01.007. 
  35. ^ 35.0 35.1 35.2 Squire L. Fundamental neuroscience 4th. Amsterdam: Elsevier/Academic Press. 2013: 631–632. ISBN 978-0123858702. 
  36. ^ FitzGerald MT, Gruener G, Mtui E. Clinical Neuroanatomy and Neuroscience. Philadelphia: Saunders Elsevier. 2012: 192. ISBN 978-0702037382. 
  37. ^ Brownstone, Robert M.; Chopek, Jeremy W. Reticulospinal Systems for Tuning Motor Commands. Frontiers in Neural Circuits. 2018, 12: 30. ISSN 1662-5110. PMC 5915564 . PMID 29720934. doi:10.3389/fncir.2018.00030 . 
  38. ^ Pearson, Keir G; Gordon, James E. Kandel , 編. Chapter 41 / Posture 5th. United States: McGraw-Hill. 2013. The Brain Stem and Cerebellum Integrate Sensory Signals for Posture, p. 954. ISBN 978-0071390118.  Editors list列表中的|first2=缺少|last2= (幫助); Editors list列表中的|first4=缺少|last4= (幫助)
  39. ^ 39.0 39.1 Michael-Titus et al (2010b)
  40. ^ 40.0 40.1 Magoun HW. An ascending reticular activating system in the brain stem. AMA Arch Neurol Psychiatry. February 1952, 67 (2): 145–154; discussion 167–171. PMID 14893989. doi:10.1001/archneurpsyc.1952.02320140013002. 

其他參考資料

編輯

 

外部連結

編輯


引用錯誤:頁面中存在<ref group="upper-alpha">標籤或{{efn-ua}}模板,但沒有找到相應的<references group="upper-alpha" />標籤或{{notelist-ua}}模板