This is a good article. Click here for more information.
Page semi-protected

유리

Glass
유리 건물 정면

유리비결정성, 종종 투명비정질 고체이며, 유리창, 식기, 광학 에 실용적이고 기술적, 장식적으로 널리 사용됩니다.유리는 용융된 형태의 빠른 냉각(담금질)에 의해 형성되는 경우가 가장 많습니다. 화산 유리와 같은 일부 유리는 자연적으로 발생합니다.가장 친숙하고 역사적으로 가장 오래된 유형의 제조된 유리는 모래의 주요 성분인 화합물 실리카(이산화 규소 또는 석영)에 기초한 "실리케이트 안경"입니다. 70%의 실리카를 함유한 소다 석회 유리는 제조된 유리의 약 90%를 차지합니다.일반적으로 사용되는 유리라는 용어는 이러한 유형의 재료만을 지칭하는 데 사용되지만, 실리카가 없는 안경은 현대 통신 기술에 적합한 특성을 가지고 있는 경우가 많습니다.술잔이나 안경과 같은 어떤 물건들은 너무 흔하게 규산염 기반의 유리로 만들어져서 단순히 소재의 이름으로 불린다.

매몰된 규산염 유리는 깨지기 쉽지만, 교란되지 않으면 매우 오랫동안 보존될 수 있으며, 유리 파편의 예는 초기 유리 제조 문화에서 많이 찾아볼 수 있습니다.고고학적 증거는 유리 제조가 적어도 기원전 3,600년 전 메소포타미아, 이집트 또는 시리아로 거슬러 올라간다는 것을 암시한다.가장 먼저 알려진 유리 물체는 구슬이었는데, 아마도 금속 가공이나 팬시언스 생산 중에 우연히 만들어졌을 것이다.어떤 형태로든 쉽게 성형할 수 있기 때문에, 유리는 전통적으로 그릇, 꽃병, , 항아리, 술잔과 같은 용기에 사용되어 왔다.그것의 가장 단단한 형태로서, 그것은 또한 종이 무게와 대리석에도 사용되어 왔다.유리는 금속염을 첨가하여 착색하거나 에나멜 유리로 도장하여 인쇄할 수 있습니다.유리의 굴절, 반사투과 특성은 유리를 광학 렌즈, 프리즘광전자 재료 제조에 적합합니다.압출된 유리섬유는 통신망에서의 광섬유로서, 공기를 가두기 위해 유리양털로 매팅했을 때의 단열재 또는 유리섬유 강화 플라스틱(섬유유리)에 응용된다.

현미경 구조

2차원 유리 실리카2(SiO)의 비정질 구조.실리콘(Si) 원자 주위에 산소(O) 원자의 사면체 배열에 관해 국소적인 순서가 존재하지만 장기 순서는 존재하지 않는다.
현미경적으로, 단결정은 거의 완벽한 주기적 배열의 원자를 가지고 있다; 다결정은 많은 미세한 결정으로 구성되어 있다; 그리고 유리와 같은 비정질 고체는 현미경적으로도 주기적 배열이 없다.

유리(또는 유리성 고체)의 표준 정의는 빠른 용해 [1][2][3][4]담금질에 의해 형성된 고체입니다.그러나 "유리"라는 용어는 액체 [4][5]상태를 향해 가열될 때 유리 천이를 보이는 모든 비결정(아모르퍼스) 고체를 설명하기 위해 더 넓은 의미로 정의되는 경우가 많습니다.

유리는 비정질 고체이다.유리의 원자 규모 구조는 과냉각 액체의 구조 특성을 공유하지만, 유리는 [6][7][8]고체의 모든 기계적 특성을 나타낸다.다른 비정질 고형체와 마찬가지로 유리의 원자구조는 결정성 고형체에서 볼 수 있는 장기 주기성이 결여되어 있다.화학적 결합 제약으로 인해, 안경은 국소 원자 [9]다면체와 관련하여 높은 수준의 단거리 순서를 가집니다.유리가 장기간에 걸쳐 상당히 많이 흐른다는 개념은 경험적 연구나 이론적 분석에 의해 뒷받침되지 않는다(고체의 점도 참조).실온 유리 흐름의 실험실 측정 결과 10-10Pas18 [5][10]정도의17 물질 점도와 일치하는 움직임이 나타난다.

과냉각액에 의한 생성

물리학의 미해결 문제:

유체 또는 일반 고체와 유리상 사이의 전환 특성은 무엇입니까?"고체 이론에서 가장 깊고 흥미로운 미해결 문제는 아마도 유리의 성질과 유리 전이 이론일 것입니다." - P.W. 앤더슨[11]

용융 담금질은 냉각이 충분히 빠르면(특징 결정화 시간에 비해) 결정화를 방지하고 대신 과냉각액의 무질서한 원자구조를 T에서 고체g 상태로 동결한다.물질이 담금질될 때 유리가 되는 경향을 유리 형성 능력이라고 합니다.이 능력은 강성 [12]이론으로 예측할 수 있다.일반적으로 유리는 결정 형태에 관해 구조적으로 준안정된 상태로 존재하지만, 예를 들어 아타틱 폴리머에는 비정질상의 [13]결정 유사체가 존재하지 않는다.

유리는 부피, 엔트로피엔탈피같은 특정 열역학 변수가 유리 전이 범위를 통해 불연속적인 1차 상전이[7][14] 없기 때문에 액체로 간주되기도 합니다.유리 천이열팽창성 열용량과 같은 강도 높은 열역학 변수가 불연속적인 2차 위상 천이와 유사한 것으로 설명될 수 있지만,[2] 이는 올바르지 않습니다.위상 변환의 평형 이론은 유리에 적용되지 않으며, 따라서 유리 전이는 [4][5]고체에서 고전적인 평형 위상 변환 중 하나로 분류될 수 없습니다.또한 차동 주사 열량 측정에서 발견된 것과 같이 가열 속도에 대한 Tg의 온도 의존성을 기술하지 않는다.

자연발생

유리는 화산 마그마에서 자연적으로 형성될 수 있다.흑요석은 화산에서 분출된 용암이 급속히 [15]냉각될 때 생성되는 높은 실리카(SiO2) 함량을 가진 일반적인 화산 유리이다.임팩타이트는 운석의 충돌로 형성된 유리로, 몰다비이트(중부와 동유럽), 리비아 사막 유리(동부 사하라 사막, 리비아 동부 사막, 이집트 서부 사막) 등이 [16]대표적이다.석영유리화는 또한 번개가 모래에 부딪혀서, 풀구라이트라고 불리는 속이 [17]빈 가지 모양의 뿌리 같은 구조를 형성할 때 발생할 수 있습니다.트리니타이트트리니티 핵폭탄 실험장의 [18]사막 바닥 모래에서 생성된 유리 잔류물이다.사우스오스트레일리아에서 발견에디오위 유리는 하나 또는 [19]여러 개의 소행성이나 혜성에 의한 플라이스토세 초원의 화재, 번개 또는 초고속 충격에서 유래하는 것으로 제안되었습니다.

역사

기원전 4세기 로마 케이지

자연발생적인 흑요석 유리는 석기시대 사회에서 사용되었는데, 매우 날카로운 모서리를 따라 깨져서 절삭 도구와 [20][21]무기에 이상적이었습니다.유리 제조는 인간이 [20]철의 냄새를 맡는 방법을 발견하기 훨씬 전인 적어도 6000년 전으로 거슬러 올라간다.고고학적 증거는 최초의 진짜 합성 유리가 레바논과 북부 시리아, 메소포타미아 또는 고대 [22][23]이집트에서 만들어졌음을 암시한다.기원전 3천 년 중반의 가장 오래된 유리 물체는 비즈로, 아마도 처음에는 금속 가공(슬래그)의 우연한 부산물로 만들어졌거나 [24]유리와 유사한 공정으로 만들어진 유리 전 물질인 페이언스(faence)의 생산 과정에서 만들어졌을 것입니다.초기 유리는 거의 투명하지 않았고 종종 불순물과 [20]결함을 포함했으며,[25] 기원전 15세기까지 나타나지 않았던 진짜 유리보다는 기술적으로 진품이다.그러나 기원전 1700년 이전(아마 기원전 1900년 이전) 인더스 문명으로부터 출토된 붉은 오렌지색 유리구슬은 메소포타미아에서 기원전 1600년,[26][27] 이집트에서 기원전 1500년경에 나타난 지속적인 유리 생산보다 앞선다.후기 청동기 시대에는 이집트[22]서아시아에서 유리 제조 기술이 빠르게 발전했다.이 시기의 고고학적 발견물로는 색색의 유리괴, 용기, [22][28]구슬 등이 있다.많은 초기 유리 생산은 차가운 상태에서 [29]유리를 갈고 조각하는 것과 같은 석공에서 차용한 연마 기술에 의존했다.

유리라는 용어로마제국 후기에 발달했다.후기 라틴어 glesum이 아마도 투명하고 광택이 나는 [30]물질을 뜻하는 게르만어에서 유래한 것은 트리에르로마 유리 제조 센터(오늘날 독일에 위치)에서였다.유리제품은 로마제국[31] 전역에서 국내, 장례식,[32] 산업적 [33]맥락뿐만 아니라 멀리 [34][35]떨어진 지방의 시장에서 거래되는 물품으로 발견되었다.로마 유리의 는 중국,[36] 발트족, 중동, 인도에서 [37] 로마 제국 밖에서 발견되었다.로마인들은 다른 색상의 융합된 층을 식각하고 조각함으로써 만들어진 카메오 유리를 완성하여 유리 [38]물체에 부조된 디자인을 만들어냈다.

생데니스 대성당 성가대의 창문으로 광범위한 유리 영역의 최초 사용 중 하나(19세기 유리를 복원한 13세기 초 건축)

고전주의 이후 서아프리카에서 베냉은 유리와 [39]유리구슬을 제조했다.유리는 중세 유럽에서 널리 사용되었다.앵글로색슨 유리는 정착지와 [40]공동묘지의 고고학적 발굴 과정에서 영국 전역에서 발견되었다.10세기 이후, 유리는 교회성당들의 스테인드글라스 창문에 사용되었고, 샤르트르 대성당과 데니스 대성당유명한 사례들이 있었다.14세기에 이르러 건축가들은 파리 생트 샤펠 (1203–1248)과 글로스터 대성당의 동쪽 끝과 같은 스테인드 글라스 벽으로 건물을 설계했다.유럽의 르네상스 시대의 건축 양식의 변화와 함께, 스테인드글라스는 19세기에 [42]고딕 부흥 건축과 함께 큰 부흥을 이루었지만, 대형 스테인드글라스 창문의 사용은 훨씬 덜 [41]보편화 되었다.

13세기 동안, 베니스의 무라노 섬은 유리를 만드는 중심지가 되었고,[38] 다채로운 장식품을 대량으로 생산하기 위한 중세 기술을 기반으로 만들어졌다.무라노 유리 제조업자들은 매우 투명한 무채색 유리 크리스탈로를 개발했고, 그래서 그것이 창문, 거울, 배의 등, [20]렌즈에 광범위하게 사용된 천연 결정과 유사하다고 요구했습니다.13세기, 14세기, 그리고 15세기에 이집트와 [43]시리아에서는 유리 그릇에 에나멜을 칠하고 금박을 입히는 것이 완벽해졌다.17세기 말, 보헤미아는 20세기 초까지 남아있던 유리 생산의 중요한 지역이 되었다.17세기까지, 베네치아의 전통에서 유리는 영국에서 생산되었다.약 1675년, 조지 라벤스크로프트 크리스털 유리를 발명했고, 18세기에 [38] 유리가 유행하게 되었다.장식용 유리제품은 19세기 [38]후반 아르누보 시대에 중요한 예술 매체가 되었다.

20세기 내내, 새로운 대량 생산 기술은 훨씬 더 많은 양의 유리를 광범위하게 사용할 수 있게 했고, 건축 자재로 실용화되었고 [44]유리의 새로운 응용을 가능하게 했습니다.1920년대에 주형 식각 공정이 개발되었으며, 이 공정에서는 주형에서 각 주형 조각이 이미 유리 표면에 있는 이미지로 나타나도록 직접 주형에 식각되었습니다.이러한 제조 비용 절감으로 1930년대에 값싼 유리제품이 만들어졌고, 이는 후에 대공황 [45]유리제품으로 알려지게 되었다.1950년대에 영국필킹턴 브라더스사는 녹은 [20]주석 위에 떠서 고품질의 왜곡 없는 평평한 유리판을 만드는 플로트 유리 공정을 개발했다.현대의 다층 건물들은 종종 거의 전체가 [46]유리로 만들어진 커튼월로 지어진다.라미네이트 유리는 [47]윈드스크린용 차량에 널리 적용되어 왔다.안경용 광학 유리는 [48]중세부터 사용되어 왔다.렌즈 생산은 점점 더 능숙해져 천문학자들에게 도움[49] 줄 뿐만 아니라 의학과 [50]과학에 다른 응용분야를 갖게 되었다.유리는 또한 많은 태양 에너지 [51]수집기에서 조리개 커버로 사용됩니다.

21세기에 유리 제조업체들은 스마트폰, 태블릿 컴퓨터, 그리고 다른 많은 종류의 정보 기기들위한 터치스크린에 널리 적용하기 위해 화학적으로 강화된 유리의 다른 브랜드를 개발했다.여기에는 Corning이 개발 및 제조한 Gorilla Glass, AGC Inc.DragontrailShott AG의 [52][53][54]Xensation이 포함됩니다.

물리 속성

옵티컬

유리는 기하학적 광학에 이어 빛을 굴절, 반사 및 전달하는 능력 때문에 광학 시스템에서 널리 사용되고 있습니다.광학에서 유리의 가장 흔하고 오래된 응용 분야는 렌즈, 창문, 거울,[55] 프리즘입니다.유리의 주요 광학 특성인 굴절률, 분산투과성은 화학 성분과 열 [55]이력에 크게 좌우됩니다.광학 유리는 일반적으로 1.4~2.4의 굴절률과 (분산을 특징짓는) 아베 수(Abe 수)가 15~[55]100입니다.굴절률은 고밀도([56]굴절률 증가) 첨가제 또는 저밀도(굴절률 감소) 첨가제에 의해 변경될 수 있다.

유리 투명도는 다결정 [57]재료에서 빛을 산란시키는 입자 경계가 없기 때문에 발생합니다.결정화에 의한 반불투명성은 융접을 일으키기에 불충분한 온도로 장기간 유지함으로써 많은 안경에서 유도될 수 있다.이러한 방법으로,[43][58] Réaumur의 유리 자기라고 알려진 결정성, 탈질된 재료가 생산됩니다.유리는 일반적으로 가시광선에는 투명하지만 다른 파장의 빛에는 불투명할 수 있습니다.규산염 유리는 일반적으로 4μm의 투과 차단으로 적외선 파장에 불투명하지만, 중금속 불화물칼코게나이드 유리는 [59]각각 최대 7μm, 최대 18μm의 적외선 파장에 투명하다.금속 산화물을 추가하면 금속 이온이 특정 [59]색상에 해당하는 빛의 파장을 흡수하기 때문에 다양한 색상의 유리가 생성됩니다.

다른.

제조공정에서는 유리잔을 붓고 성형하고 압출하여 평판부터 매우 복잡한 [60]형상에 이르기까지 다양한 형태로 성형할 수 있다.완제품은 부서지기 쉬우며 [61][62]내구성을 높이기 위해 라미네이트 또는 담금질을 하지 않으면 파손될 수 있습니다.유리는 일반적으로 불활성이고, 화학 공격에 강하고, 물의 작용에 대부분 견딜 수 있기 때문에 식품 및 대부분의 [20][63][64]화학 물질을 위한 용기 제조에 이상적인 재료입니다.그럼에도 불구하고, 보통 화학적인 공격에 매우 강하지만,[63][65] 유리는 어떤 조건에서는 부식되거나 녹을 수 있습니다.특정 유리 성분을 구성하는 물질은 유리가 얼마나 빨리 부식되는지에 영향을 미칩니다.알칼리 또는 알칼리 토류 원소의 비율이 높은 유리는 다른 유리 [66][67]조성물보다 부식이 더 쉽습니다.

유리 밀도는 용융 실리카의 경우 입방 센티미터 당 2.2그램(2,200 kg/m3)에서 밀도가 높은 부싯돌 [68]유리의 경우 입방 센티미터 당 7.2그램(7,200 kg/m3)까지 다양한 화학 조성에 따라 달라집니다.유리는 대부분의 금속보다 강하며, 파손 없이 가역압축이 가능하기 때문에 순수 무결점 유리의 이론적인 인장강도는 14기가파스칼(2,000,000psi)에서 35기가파스칼(5,100,000psi)로 추정됩니다.단, 스크래치, 버블 및 기타 미세한 결함으로 인해 대부분의 시판용 안경에서는 [59]14메가파스칼(2,000psi)~175메가파스칼(25,400psi)의 일반적인 범위가 발생합니다.강화와 같은 몇 가지 공정은 [69]유리의 강도를 증가시킬 수 있습니다.정성스럽게 뽑아낸 무결점 유리섬유는 최대 11.5기가파스칼(1,670,[59]000psi)의 강도로 제조할 수 있습니다.

Reputed flow

The observation that old windows are sometimes found to be thicker at the bottom than at the top is often offered as supporting evidence for the view that glass flows over a timescale of centuries, the assumption being that the glass has exhibited the liquid property of flowing from one shape to another.[70] This assumption is incorrect, as once solidified, glass stops flowing. The sags and ripples observed in old glass were already there the day it was made; manufacturing processes used in the past produced sheets with imperfect surfaces and non-uniform thickness.[7] (The near-perfect float glass used today only became widespread in the 1960s.)

The rate of glass flow in mediaeval windows was calculated in 2017. It was found that the glass was 16 orders of magnitude (1016 times) less viscous (hence freer-flowing) than expected at room temperature—16 orders of magnitude less than previous estimates based on soda–lime–silicate glass. It was estimated that the rate of flow would not exceed 1nm per billion years.[71][72]

Types

Silicate

Quartz sand (silica) is the main raw material in commercial glass production

Silicon dioxide (SiO2) is a common fundamental constituent of glass. Fused quartz is a glass made from chemically-pure silica.[67] It has very low thermal expansion and excellent resistance to thermal shock, being able to survive immersion in water while red hot, resists high temperatures (1000–1500 °C) and chemical weathering, and is very hard. It is also transparent to a wider spectral range than ordinary glass, extending from the visible further into both the UV and IR ranges, and is sometimes used where transparency to these wavelengths is necessary. Fused quartz is used for high-temperature applications such as furnace tubes, lighting tubes, melting crucibles, etc.[73] However, its high melting temperature (1723 °C) and viscosity make it difficult to work with. Therefore, normally, other substances (fluxes) are added to lower the melting temperature and simplify glass processing.[74]

Soda–lime

Sodium carbonate (Na2CO3, "soda") is a common additive and acts to lower the glass-transition temperature. However, sodium silicate is water soluble, so lime (CaO, calcium oxide, generally obtained from limestone), some magnesium oxide (MgO) and aluminium oxide (Al2O3) are other common components added to improve chemical durability. Soda–lime glasses (Na2O) + lime (CaO) + magnesia (MgO) + alumina (Al2O3) account for over 75% of manufactured glass, containing about 70 to 74% silica by weight.[67][75] Soda–lime–silicate glass is transparent, easily formed, and most suitable for window glass and tableware.[76] However, it has a high thermal expansion and poor resistance to heat.[76] Soda–lime glass is typically used for windows, bottles, light bulbs, and jars.[74]

Borosilicate

Borosilicate glasses (e.g. Pyrex, Duran) typically contain 5–13% boron trioxide (B2O3).[74] Borosilicate glasses have fairly low coefficients of thermal expansion (7740 Pyrex CTE is 3.25×10−6/°C[77] as compared to about 9×10−6/°C for a typical soda–lime glass[78]). They are, therefore, less subject to stress caused by thermal expansion and thus less vulnerable to cracking from thermal shock. They are commonly used for e.g. labware, household cookware, and sealed beam car head lamps.[74]

Lead

The addition of lead(II) oxide into silicate glass lowers melting point and viscosity of the melt.[79] The high density of lead glass (silica + lead oxide (PbO) + potassium oxide (K2O) + soda (Na2O) + zinc oxide (ZnO) + alumina) results in a high electron density, and hence high refractive index, making the look of glassware more brilliant and causing noticeably more specular reflection and increased optical dispersion.[67][80] Lead glass has a high elasticity, making the glassware more workable and giving rise to a clear "ring" sound when struck. However, lead glass cannot withstand high temperatures well.[73] Lead oxide also facilitates solubility of other metal oxides and is used in colored glass. The viscosity decrease of lead glass melt is very significant (roughly 100 times in comparison with soda glass); this allows easier removal of bubbles and working at lower temperatures, hence its frequent use as an additive in vitreous enamels and glass solders. The high ionic radius of the Pb2+ ion renders it highly immobile and hinders the movement of other ions; lead glasses therefore have high electrical resistance, about two orders of magnitude higher than soda–lime glass (108.5 vs 106.5 Ω⋅cm, DC at 250 °C).[81]

Aluminosilicate

Aluminosilicate glass typically contains 5-10% alumina (Al2O3). Aluminosilicate glass tends to be more difficult to melt and shape compared to borosilicate compositions, but has excellent thermal resistance and durability.[74] Aluminosilicate glass is extensively used for fiberglass,[82] used for making glass-reinforced plastics (boats, fishing rods, etc.), top-of-stove cookware, and halogen bulb glass.[73][74]

Other oxide additives

The addition of barium also increases the refractive index. Thorium oxide gives glass a high refractive index and low dispersion and was formerly used in producing high-quality lenses, but due to its radioactivity has been replaced by lanthanum oxide in modern eyeglasses.[83] Iron can be incorporated into glass to absorb infrared radiation, for example in heat-absorbing filters for movie projectors, while cerium(IV) oxide can be used for glass that absorbs ultraviolet wavelengths.[84] Fluorine lowers the dielectric constant of glass. Fluorine is highly electronegative and lowers the polarizability of the material. Fluoride silicate glasses are used in manufacture of integrated circuits as an insulator.[85]

Glass-ceramics

A high-strength glass-ceramic cooktop with negligible thermal expansion

Glass-ceramic materials contain both non-crystalline glass and crystalline ceramic phases. They are formed by controlled nucleation and partial crystallisation of a base glass by heat treatment.[86] Crystalline grains are often embedded within a non-crystalline intergranular phase of grain boundaries. Glass-ceramics exhibit advantageous thermal, chemical, biological, and dielectric properties as compared to metals or organic polymers.[86]

The most commercially important property of glass-ceramics is their imperviousness to thermal shock. Thus, glass-ceramics have become extremely useful for countertop cooking and industrial processes. The negative thermal expansion coefficient (CTE) of the crystalline ceramic phase can be balanced with the positive CTE of the glassy phase. At a certain point (~70% crystalline) the glass-ceramic has a net CTE near zero. This type of glass-ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C.[87][86]

Fibreglass

Fibreglass (also called glass fibre reinforced plastic, GRP) is a composite material made by reinforcing a plastic resin with glass fibres. It is made by melting glass and stretching the glass into fibres. These fibres are woven together into a cloth and left to set in a plastic resin.[88][89][90] Fibreglass has the properties of being lightweight and corrosion resistant, and is a good insulator enabling its use as building insulation material and for electronic housing for consumer products. Fibreglass was originally used in the United Kingdom and United States during World War II to manufacture radomes. Uses of fibreglass include building and construction materials, boat hulls, car body parts, and aerospace composite materials.[91][88][90]

Glass-fibre wool is an excellent thermal and sound insulation material, commonly used in buildings (e.g. attic and cavity wall insulation), and plumbing (e.g. pipe insulation), and soundproofing.[91] It is produced by forcing molten glass through a fine mesh by centripetal force, and breaking the extruded glass fibres into short lengths using a stream of high-velocity air. The fibres are bonded with an adhesive spray and the resulting wool mat is cut and packed in rolls or panels.[59]

Non-silicate

A CD-RW (CD). Chalcogenide glass form the basis of rewritable CD and DVD solid-state memory technology.[92]

Besides common silica-based glasses many other inorganic and organic materials may also form glasses, including metals, aluminates, phosphates, borates, chalcogenides, fluorides, germanates (glasses based on GeO2), tellurites (glasses based on TeO2), antimonates (glasses based on Sb2O3), arsenates (glasses based on As2O3), titanates (glasses based on TiO2), tantalates (glasses based on Ta2O5), nitrates, carbonates, plastics, acrylic, and many other substances.[5] Some of these glasses (e.g. Germanium dioxide (GeO2, Germania), in many respects a structural analogue of silica, fluoride, aluminate, phosphate, borate, and chalcogenide glasses) have physico-chemical properties useful for their application in fibre-optic waveguides in communication networks and other specialized technological applications.[93][94]

Silica-free glasses may often have poor glass forming tendencies. Novel techniques, including containerless processing by aerodynamic levitation (cooling the melt whilst it floats on a gas stream) or splat quenching (pressing the melt between two metal anvils or rollers), may be used increase cooling rate, or reduce crystal nucleation triggers.[95][96][97]

Amorphous metals

Samples of amorphous metal, with millimeter scale

In the past, small batches of amorphous metals with high surface area configurations (ribbons, wires, films, etc.) have been produced through the implementation of extremely rapid rates of cooling. Amorphous metal wires have been produced by sputtering molten metal onto a spinning metal disk.[98][99]

More recently a number of alloys have been produced in layers with thickness exceeding 1 millimeter.[when?] These are known as bulk metallic glasses (BMG). Liquidmetal Technologies sell a number of zirconium-based BMGs.

Batches of amorphous steel have also been produced that demonstrate mechanical properties far exceeding those found in conventional steel alloys.[100]

Experimental evidence indicates that the system Al-Fe-Si may undergo a first-order transition to an amorphous form (dubbed "q-glass") on rapid cooling from the melt. Transmission electron microscopy (TEM) images indicate that q-glass nucleates from the melt as discrete particles with a uniform spherical growth in all directions. While x-ray diffraction reveals the isotropic nature of q-glass, a nucleation barrier exists implying an interfacial discontinuity (or internal surface) between the glass and melt phases.[101][102]

Polymers

Important polymer glasses include amorphous and glassy pharmaceutical compounds. These are useful because the solubility of the compound is greatly increased when it is amorphous compared to the same crystalline composition. Many emerging pharmaceuticals are practically insoluble in their crystalline forms.[103] Many polymer thermoplastics familiar from everyday use are glasses. For many applications, like glass bottles or eyewear, polymer glasses (acrylic glass, polycarbonate or polyethylene terephthalate) are a lighter alternative to traditional glass.[104]

Molecular liquids and molten salts

Molecular liquids, electrolytes, molten salts, and aqueous solutions are mixtures of different molecules or ions that do not form a covalent network but interact only through weak van der Waals forces or through transient hydrogen bonds. In a mixture of three or more ionic species of dissimilar size and shape, crystallization can be so difficult that the liquid can easily be supercooled into a glass.[105][106] Examples include LiCl:RH2O (a solution of lithium chloride salt and water molecules) in the composition range 4<R<8.[107] sugar glass,[108] or Ca0.4K0.6(NO3)1.4.[109] Glass electrolytes in the form of Ba-doped Li-glass and Ba-doped Na-glass have been proposed as solutions to problems identified with organic liquid electrolytes used in modern lithium-ion battery cells.[110]

Production

Robotized float glass unloading

Following the glass batch preparation and mixing, the raw materials are transported to the furnace. Soda–lime glass for mass production is melted in glass melting furnaces. Smaller scale furnaces for specialty glasses include electric melters, pot furnaces, and day tanks.[75] After melting, homogenization and refining (removal of bubbles), the glass is formed. Flat glass for windows and similar applications is formed by the float glass process, developed between 1953 and 1957 by Sir Alastair Pilkington and Kenneth Bickerstaff of the UK's Pilkington Brothers, who created a continuous ribbon of glass using a molten tin bath on which the molten glass flows unhindered under the influence of gravity. The top surface of the glass is subjected to nitrogen under pressure to obtain a polished finish.[111] Container glass for common bottles and jars is formed by blowing and pressing methods.[112] This glass is often slightly modified chemically (with more alumina and calcium oxide) for greater water resistance.[113]

Glass blowing

Once the desired form is obtained, glass is usually annealed for the removal of stresses and to increase the glass's hardness and durability.[114] Surface treatments, coatings or lamination may follow to improve the chemical durability (glass container coatings, glass container internal treatment), strength (toughened glass, bulletproof glass, windshields[115]), or optical properties (insulated glazing, anti-reflective coating).[116]

New chemical glass compositions or new treatment techniques can be initially investigated in small-scale laboratory experiments. The raw materials for laboratory-scale glass melts are often different from those used in mass production because the cost factor has a low priority. In the laboratory mostly pure chemicals are used. Care must be taken that the raw materials have not reacted with moisture or other chemicals in the environment (such as alkali or alkaline earth metal oxides and hydroxides, or boron oxide), or that the impurities are quantified (loss on ignition).[117] Evaporation losses during glass melting should be considered during the selection of the raw materials, e.g., sodium selenite may be preferred over easily evaporating selenium dioxide (SeO2). Also, more readily reacting raw materials may be preferred over relatively inert ones, such as aluminum hydroxide (Al(OH)3) over alumina (Al2O3). Usually, the melts are carried out in platinum crucibles to reduce contamination from the crucible material. Glass homogeneity is achieved by homogenizing the raw materials mixture (glass batch), by stirring the melt, and by crushing and re-melting the first melt. The obtained glass is usually annealed to prevent breakage during processing.[117][118]

Colour

Colour in glass may be obtained by addition of homogenously distributed electrically charged ions (or colour centres). While ordinary soda–lime glass appears colourless in thin section, iron(II) oxide (FeO) impurities produce a green tint in thick sections.[119] Manganese dioxide (MnO2), which gives glass a purple colour, may be added to remove the green tint given by FeO.[120] FeO and chromium(III) oxide (Cr2O3) additives are used in the production of green bottles.[119] Iron (III) oxide, on the other-hand, produces yellow or yellow-brown glass.[121] Low concentrations (0.025 to 0.1%) of cobalt oxide (CoO) produces rich, deep blue cobalt glass.[122] Chromium is a very powerful colourising agent, yielding dark green.[123] Sulphur combined with carbon and iron salts produces amber glass ranging from yellowish to almost black.[124] A glass melt can also acquire an amber colour from a reducing combustion atmosphere.[125] Cadmium sulfide produces imperial red, and combined with selenium can produce shades of yellow, orange, and red.[119][121] The additive Copper(II) oxide (CuO) produces a turquoise colour in glass, in contrast to Copper(I) oxide (Cu2O) which gives a dull brown-red colour.[126]

Uses

The Shard glass skyscraper, in London

Architecture and windows

Soda–lime sheet glass is typically used as transparent glazing material, typically as windows in external walls of buildings. Float or rolled sheet glass products is cut to size either by scoring and snapping the material, laser cutting, water jets, or diamond bladed saw. The glass may be thermally or chemically tempered (strengthened) for safety and bent or curved during heating. Surface coatings may be added for specific functions such as scratch resistance, blocking specific wavelengths of light (e.g. infrared or ultraviolet), dirt-repellence (e.g. self-cleaning glass), or switchable electrochromic coatings.[127]

Structural glazing systems represent one of the most significant architectural innovations of modern times, where glass buildings now often dominate skylines of many modern cities.[128] These systems use stainless steel fittings countersunk into recesses in the corners of the glass panels allowing strengthened panes to appear unsupported creating a flush exterior.[128] Structural glazing systems have their roots in iron and glass conservatories of the nineteenth century[129]

Tableware

Glass is an essential component of tableware and is typically used for water, beer and wine drinking glasses.[50] Wine glasses are typically stemware, i.e. goblets formed from a bowl, stem, and foot. Crystal or Lead crystal glass may be cut and polished to produce decorative drinking glasses with gleaming facets.[130][131] Other uses of glass in tableware include decanters, jugs, plates, and bowls.[50]

Packaging

The inert and impermeable nature of glass makes it a stable and widely used material for food and drink packaging as glass bottles and jars. Most container glass is soda–lime glass, produced by blowing and pressing techniques. Container glass has a lower magnesium oxide and sodium oxide content than flat glass, and a higher silica, calcium oxide, and aluminum oxide content.[132] Its higher content of water-insoluble oxides imparts slightly higher chemical durability against water, which is advantageous for storing beverages and food. Glass packaging is sustainable, readily recycled, reusable and refillable.[133]

For electronics applications, glass can be used as a substrate in the manufacture of integrated passive devices, thin-film bulk acoustic resonators, and as a hermetic sealing material in device packaging,[134][135] including very thin solely glass based encapsulation of integrated circuits and other semiconductors in high manufacturing volumes.[136]

Laboratories

Glass is an important material in scientific laboratories for the manufacture of experimental apparatus because it is relatively cheap, readily formed into required shapes for experiment, easy to keep clean, can withstand heat and cold treatment, is generally non-reactive with many reagents, and its transparency allows for the observation of chemical reactions and processes.[137][138] Laboratory glassware applications include flasks, petri dishes, test tubes, pipettes, graduated cylinders, glass lined metallic containers for chemical processing, fractionation columns, glass pipes, Schlenk lines, gauges, and thermometers.[139][137] Although most standard laboratory glassware has been mass-produced since the 1920s, scientists still employ skilled glassblowers to manufacture bespoke glass apparatus for their experimental requirements.[140]

Optics

Glass is a ubiquitous material in optics by virtue of its ability to refract, reflect, and transmit light. These and other optical properties can be controlled by varying chemical compositions, thermal treatment, and manufacturing techniques. The many applications of glass in optics includes glasses for eyesight correction, imaging optics (e.g. lenses and mirrors in telescopes, microscopes, and cameras), fibre optics in telecommunications technology, and integrated optics. Microlenses and gradient-index optics (where the refractive index is non-uniform) find application in e.g. reading optical discs, laser printers, photocopiers, and laser diodes.[55]

Art

Part of German stained glass panel of 1444 with the Visitation; pot metal coloured glass of various colours, including white glass, black vitreous paint, yellow silver stain, and the "olive-green" parts are enamel. The plant patterns in the red sky are formed by scratching away black paint from the red glass before firing. A restored panel with new lead cames.

Glass as art dates to least 1300 BC shown as an example of natural glass found in Tutankhamun's pectoral,[141] which also contained vitreous enamel, that is to say, melted coloured glass used on a metal backing. Enamelled glass, the decoration of glass vessels with coloured glass paints, has existed since 1300 BC,[142] and was prominent in the early 20th century with Art Nouveau glass and that of the House of Fabergé in St. Petersburg, Russia. Both techniques were used in stained glass, which reached its height roughly from 1000 to 1550, before a revival in the 19th century.

The 19th century saw a revival in ancient glass-making techniques including cameo glass, achieved for the first time since the Roman Empire, initially mostly for pieces in a neo-classical style. The Art Nouveau movement made great use of glass, with René Lalique, Émile Gallé, and Daum of Nancy in the first French wave of the movement, producing coloured vases and similar pieces, often in cameo glass or in lustre glass techniques.[143]

Louis Comfort Tiffany in America specialized in stained glass, both secular and religious, in panels and his famous lamps. The early 20th-century saw the large-scale factory production of glass art by firms such as Waterford and Lalique. Small studios may hand-produce glass artworks. Techniques for producing glass art include blowing, kiln-casting, fusing, slumping, pâte de verre, flame-working, hot-sculpting and cold-working. Cold work includes traditional stained glass work and other methods of shaping glass at room temperature. Objects made out of glass include vessels, paperweights, marbles, beads, sculptures and installation art.[144]

See also

References

  1. ^ ASTM definition of glass from 1945
  2. ^ a b Zallen, R. (1983). The Physics of Amorphous Solids. New York: John Wiley. pp. 1–32. ISBN 978-0-471-01968-8.
  3. ^ Cusack, N.E. (1987). The physics of structurally disordered matter: an introduction. Adam Hilger in association with the University of Sussex press. p. 13. ISBN 978-0-85274-829-9.
  4. ^ a b c Scholze, Horst (1991). Glass – Nature, Structure, and Properties. Springer. pp. 3–5. ISBN 978-0-387-97396-8.
  5. ^ a b c d Elliot, S.R. (1984). Physics of Amorphous Materials. Longman group ltd. pp. 1–52. ISBN 0-582-44636-8.
  6. ^ Neumann, Florin. "Glass: Liquid or Solid – Science vs. an Urban Legend". Archived from the original on 9 April 2007. Retrieved 8 April 2007.
  7. ^ a b c Gibbs, Philip. "Is glass liquid or solid?". Archived from the original on 29 March 2007. Retrieved 21 March 2007.
  8. ^ "Philip Gibbs" Glass Worldwide, (May/June 2007), pp. 14–18
  9. ^ Salmon, P.S. (2002). "Order within disorder". Nature Materials. 1 (2): 87–8. doi:10.1038/nmat737. PMID 12618817. S2CID 39062607.
  10. ^ Vannoni, M.; Sordini, A.; Molesini, G. (2011). "Relaxation time and viscosity of fused silica glass at room temperature". Eur. Phys. J. E. 34 (9): 9–14. doi:10.1140/epje/i2011-11092-9. PMID 21947892. S2CID 2246471.
  11. ^ Anderson, P.W. (1995). "Through the Glass Lightly". Science. 267 (5204): 1615–16. doi:10.1126/science.267.5204.1615-e. PMID 17808155. S2CID 28052338.
  12. ^ Phillips, J.C. (1979). "Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys". Journal of Non-Crystalline Solids. 34 (2): 153. Bibcode:1979JNCS...34..153P. doi:10.1016/0022-3093(79)90033-4.
  13. ^ Folmer, J.C.W.; Franzen, Stefan (2003). "Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory". Journal of Chemical Education. 80 (7): 813. Bibcode:2003JChEd..80..813F. doi:10.1021/ed080p813.
  14. ^ Loy, Jim. "Glass Is A Liquid?". Archived from the original on 14 March 2007. Retrieved 21 March 2007.
  15. ^ "Obsidian: Igneous Rock – Pictures, Uses, Properties". geology.com.
  16. ^ "Impactites: Impact Breccia, Tektites, Moldavites, Shattercones". geology.com.
  17. ^ Klein, Hermann Joseph (1 January 1881). Land, sea and sky; or, Wonders of life and nature, tr. from the Germ. [Die Erde und ihr organisches Leben] of H.J. Klein and dr. Thomé, by J. Minshull.
  18. ^ Giaimo, Cara (June 30, 2017). "The Long, Weird Half-Life of Trinitite". Atlas Obscura. Retrieved July 8, 2017.
  19. ^ Roperch, Pierrick; Gattacceca, Jérôme; Valenzuela, Millarca; Devouard, Bertrand; Lorand, Jean-Pierre; Arriagada, Cesar; Rochette, Pierre; Latorre, Claudio; Beck, Pierre (2017). "Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert". Earth and Planetary Science Letters. 469 (1 July 2017): 15–26. Bibcode:2017E&PSL.469...15R. doi:10.1016/j.epsl.2017.04.009. S2CID 55581133.
  20. ^ a b c d e f Ward-Harvey, K. (2009). Fundamental Building Materials. Universal-Publishers. pp. 83–90. ISBN 978-1-59942-954-0.
  21. ^ "Digs Reveal Stone-Age Weapons Industry With Staggering Output". National Geographic News. 13 April 2015.
  22. ^ a b c Julian Henderson (2013). Ancient Glass. Cambridge University Press. pp. 127–157. doi:10.1017/CBO9781139021883.006.
  23. ^ "Glass Online: The History of Glass". Archived from the original on 24 October 2011. Retrieved 29 October 2007.
  24. ^ "All About Glass Corning Museum of Glass". www.cmog.org.
  25. ^ Karklins, Karlis (January 2013). "Simon Kwan -- Early Chinese Faience and Glass Beads and Pendants". BEADS: Journal of the Society of Bead Researchers.
  26. ^ Kenoyer, J.M (2001). "Bead Technologies at Harappa, 3300-1900 BC: A Comparative Summary". South Asian Archaeology (PDF). Paris. pp. 157–170.
  27. ^ McIntosh, Jane (2008). The Ancient Indus Valley: New Perspectives. ABC-CLIO. p. 99. ISBN 978-1-57607-907-2.
  28. ^ "How did Manufactured Glass Develop in the Bronze Age? - DailyHistory.org". dailyhistory.org.
  29. ^ Wilde, H. "Technologische Innovationen im 2. Jahrtausend v. Chr. Zur Verwendung und Verbreitung neuer Werkstoffe im ostmediterranen Raum". GOF IV, Bd 44, Wiesbaden 2003, 25–26.
  30. ^ Douglas, R.W. (1972). A history of glassmaking. Henley-on-Thames: G T Foulis & Co Ltd. p. 5. ISBN 978-0-85429-117-5.
  31. ^ Whitehouse, David (2003). Roman Glass in the Corning Museum of Glass, Volume 3. Hudson Hills. p. 45. ISBN 978-0-87290-155-1.
  32. ^ The Art Journal. Virtue and Company. 1888. p. 365.
  33. ^ Brown, A.L. (November 1921). "The Manufacture of Glass Milk Bottles". The Glass Industry. Ashlee Publishing Company. 2 (11): 259.
  34. ^ Aton, Francesca, Perfectly Preserved 2,000-Year-Old Roman Glass Bowl Unearthed in the Netherlands, Art News, January 25, 2022
  35. ^ McGreevy, Nora, 2,000-Year-Old Roman Bowl Discovered Intact in the Netherlands, National Geographic, January 28, 2022
  36. ^ Dien, Albert E. (2007). Six Dynasties Civilization. Yale University Press. p. 290. ISBN 978-0-300-07404-8.
  37. ^ Silberman, Neil Asher; Bauer, Alexander A. (2012). The Oxford Companion to Archaeology. Oxford University Press. p. 29. ISBN 978-0-19-973578-5.
  38. ^ a b c d "glass Definition, Composition, & Facts". Encyclopedia Britannica.
  39. ^ Oliver, Roland, and Fagan, Brian M. Africa in the Iron Age, c500 B.C. to A.D. 1400. New York: Cambridge University Press, p. 187. ISBN 0-521-20598-0.
  40. ^ Keller, Daniel; Price, Jennifer; Jackson, Caroline (2014). Neighbours and Successors of Rome: Traditions of Glass Production and use in Europe and the Middle East in the Later 1st Millennium AD. Oxbow Books. pp. 1–41. ISBN 978-1-78297-398-0.
  41. ^ Tutag, Nola Huse; Hamilton, Lucy (1987). Discovering Stained Glass in Detroit. Wayne State University Press. pp. 11. ISBN 978-0-8143-1875-1.
  42. ^ Packard, Robert T.; Korab, Balthazar; Hunt, William Dudley (1980). Encyclopedia of American architecture. McGraw-Hill. pp. 268. ISBN 978-0-07-048010-0.
  43. ^ a b One or more of the preceding sentences incorporates text from a publication now in the public domain: Chisholm, Hugh, ed. (1911). "Glass". Encyclopædia Britannica. Vol. 12 (11th ed.). Cambridge University Press. p. 86.
  44. ^ Freiman, Stephen (2007). Global Roadmap for Ceramic and Glass Technology. John Wiley & Sons. p. 705. ISBN 978-0-470-10491-0.
  45. ^ "Depression Glass". Archived from the original on 2 December 2014. Retrieved 19 October 2007.
  46. ^ Gelfand, Lisa; Duncan, Chris (2011). Sustainable Renovation: Strategies for Commercial Building Systems and Envelope. John Wiley & Sons. p. 187. ISBN 978-1-118-10217-6.
  47. ^ Lim, Henry W.; Honigsmann, Herbert; Hawk, John L.M. (2007). Photodermatology. CRC Press. p. 274. ISBN 978-1-4200-1996-4.
  48. ^ Bach, Hans; Neuroth, Norbert (2012). The Properties of Optical Glass. Springer. p. 267. ISBN 978-3-642-57769-7.
  49. ^ McLean, Ian S. (2008). Electronic Imaging in Astronomy: Detectors and Instrumentation. Springer Science & Business Media. p. 78. ISBN 978-3-540-76582-0.
  50. ^ a b c "Glass Applications – Glass Alliance Europe". Glassallianceeurope.eu. Retrieved 1 March 2020.
  51. ^ Enteria, Napoleon; Akbarzadeh, Aliakbar (2013). Solar Energy Sciences and Engineering Applications. CRC Press. p. 122. ISBN 978-0-203-76205-9.
  52. ^ "Gorilla Glass maker unveils ultra-thin and flexible Willow Glass". Physics News. Archived from the original on 6 November 2013. Retrieved 1 November 2013.
  53. ^ "Xensation". Schott. Archived from the original on 3 November 2013. Retrieved 1 November 2013.
  54. ^ Fingas, Jon (19 July 2018). "Gorilla Glass 6 gives phones a better shot at surviving multiple drops". Engadget.
  55. ^ a b c d Bach, Hans; Neuroth, Norbert (2012). The Properties of Optical Glass. Springer. pp. 1–11. ISBN 978-3-642-57769-7.
  56. ^ White, Mary Anne (2011). Physical Properties of Materials, Second Edition. CRC Press. p. 70. ISBN 978-1-4398-9532-0.
  57. ^ Carter, C. Barry; Norton, M. Grant (2007). Ceramic Materials: Science and Engineering. Springer Science & Business Media. p. 583. ISBN 978-0-387-46271-4.
  58. ^ Mysen, Bjorn O.; Richet, Pascal (2005). Silicate Glasses and Melts: Properties and Structure. Elsevier. p. 10.
  59. ^ a b c d e "Industrial glass – Properties of glass". Encyclopedia Britannica.
  60. ^ Mattox, D.M. (2014). Handbook of Physical Vapor Deposition (PVD) Processing. Cambridge University Press. p. 60. ISBN 978-0-08-094658-0.
  61. ^ Zarzycki, Jerzy (1991). Glasses and the Vitreous State. Cambridge University Press. p. 361. ISBN 978-0-521-35582-7.
  62. ^ Thomas, Alfred; Jund, Michael (2013). Collision Repair and Refinishing: A Foundation Course for Technicians. p. 365. ISBN 978-1-133-60187-6.
  63. ^ a b Gardner, Irvine Clifton; Hahner, Clarence H. (1949). Research and Development in Applied Optics and Optical Glass at the National Bureau of Standards: A Review and Bibliography. U.S. Government Printing Office. p. 13. ISBN 9780598682413.
  64. ^ Dudeja, Puja; Gupta, Rajul K.; Minhas, Amarjeet Singh (2016). Food Safety in the 21st Century: Public Health Perspective. Academic Press. p. 550. ISBN 978-0-12-801846-0.
  65. ^ Bengisu, M. (2013). Engineering Ceramics. Springer Science & Business Media. p. 360. ISBN 978-3-662-04350-9.
  66. ^ Batchelor, Andrew W.; Loh, Nee Lam; Chandrasekaran, Margam (2011). Materials Degradation and Its Control by Surface Engineering. World Scientific. p. 141. ISBN 978-1-908978-14-1.
  67. ^ a b c d Chawla, Sohan L. (1993). Materials Selection for Corrosion Control. ASM International. pp. 327–328. ISBN 978-1-61503-728-5.
  68. ^ Shaye Storm (2004). "Density of Glass". The Physics Factbook: An encyclopedia of scientific essays. Wikidata Q87511351.
  69. ^ "Glass Strength". www.pilkington.com. Archived from the original on 26 July 2017. Retrieved 24 November 2017.
  70. ^ Kenneth Chang (29 July 2008). "The Nature of Glass Remains Anything but Clear". The New York Times. Archived from the original on 24 April 2009. Retrieved 29 July 2008.
  71. ^ Gulbiten, Ozgur; Mauro, John C.; Guo, Xiaoju; Boratav, Olus N. (3 August 2017). "Viscous flow of medieval cathedral glass". Journal of the American Ceramic Society. 101 (1): 5–11. doi:10.1111/jace.15092. ISSN 0002-7820.
  72. ^ Gocha, April (3 August 2017). "Glass viscosity calculations definitively debunk the myth of observable flow in medieval windows". The American Ceramic Society.
  73. ^ a b c "Mining the sea sand". Seafriends. 8 February 1994. Archived from the original on 29 February 2012. Retrieved 15 May 2012.
  74. ^ a b c d e f "Glass – Chemistry Encyclopedia". Archived from the original on 2 April 2015. Retrieved 1 April 2015.
  75. ^ a b B.H.W.S. de Jong, "Glass"; in "Ullmann's Encyclopedia of Industrial Chemistry"; 5th edition, vol. A12, VCH Publishers, Weinheim, Germany, 1989, ISBN 978-3-527-20112-9, pp. 365–432.
  76. ^ a b Spence, William P.; Kultermann, Eva (2016). Construction Materials, Methods and Techniques. Cengage Learning. pp. 510–526. ISBN 978-1-305-08627-2.
  77. ^ "Properties of PYREX®, PYREXPLUS® and Low Actinic PYREX Code 7740 Glasses" (PDF). Corning, Inc. Archived (PDF) from the original on 13 January 2012. Retrieved 15 May 2012.
  78. ^ "AR-GLAS® Technical Data" (PDF). Schott, Inc. Archived (PDF) from the original on 12 June 2012.
  79. ^ Shelby, J.E. (2017). Introduction to Glass Science and Technology. Royal Society of Chemistry. p. 125. ISBN 978-0-85404-639-3.
  80. ^ Schwartz, Mel (2002). Encyclopedia of Materials, Parts and Finishes (Second ed.). CRC Press. p. 352. ISBN 978-1-4200-1716-8.
  81. ^ Shackelford, James F.; Doremus, Robert H. (12 April 2008). Ceramic and Glass Materials: Structure, Properties and Processing. Springer Science & Business Media. p. 158. ISBN 978-0-387-73362-3.
  82. ^ Askeland, Donald R.; Fulay, Pradeep P. (2008). Essentials of Materials Science & Engineering. Cengage Learning. p. 485. ISBN 978-0-495-24446-2.
  83. ^ "Glass Ingredients – What is Glass Made Of?". www.historyofglass.com. Archived from the original on 23 April 2017. Retrieved 23 April 2017.
  84. ^ Pfaender, Heinz G. (1996). Schott guide to glass. Springer. pp. 135, 186. ISBN 978-0-412-62060-7. Archived from the original on 25 May 2013. Retrieved 8 February 2011.
  85. ^ Doering, Robert; Nishi, Yoshio (2007). Handbook of semiconductor manufacturing technology. CRC Press. pp. 12–13. ISBN 978-1-57444-675-3.
  86. ^ a b c Holand, Wolfram; Beall, George H. (2012). Glass Ceramic Technology. John Wiley & Sons. pp. 1–38. ISBN 978-1-118-26592-5.
  87. ^ Richerson, David W. (1992). Modern ceramic engineering : properties, processing and use in design (2nd ed.). New York: Dekker. pp. 577–578. ISBN 978-0-8247-8634-2.
  88. ^ a b Parkyn, Brian (2013). Glass Reinforced Plastics. Elsevier. pp. 3–41. ISBN 978-1-4831-0298-6.
  89. ^ Mayer, Rayner M. (1993). Design with reinforced plastics. Springer. p. 7. ISBN 978-0-85072-294-9.
  90. ^ a b "Properties of Matter Reading Selection: Perfect Teamwork". www.propertiesofmatter.si.edu. Archived from the original on 12 May 2016. Retrieved 25 April 2017.
  91. ^ a b "Fibreglass glass". Encyclopedia Britannica.
  92. ^ Greer, A. Lindsay; Mathur, N (2005). "Materials science: Changing Face of the Chameleon". Nature. 437 (7063): 1246–1247. Bibcode:2005Natur.437.1246G. doi:10.1038/4371246a. PMID 16251941. S2CID 6972351.
  93. ^ Rivera, V. A. G.; Manzani, Danilo (30 March 2017). Technological Advances in Tellurite Glasses: Properties, Processing, and Applications. Springer. p. 214. ISBN 978-3-319-53038-3.
  94. ^ Jiang, Xin; Lousteau, Joris; Richards, Billy; Jha, Animesh (1 September 2009). "Investigation on germanium oxide-based glasses for infrared optical fibre development". Optical Materials. 31 (11): 1701–1706. Bibcode:2009OptMa..31.1701J. doi:10.1016/j.optmat.2009.04.011.
  95. ^ J. W. E. Drewitt; S. Jahn; L. Hennet (2019). "Configurational constraints on glass formation in the liquid calcium aluminate system". Journal of Statistical Mechanics: Theory and Experiment. 2019 (10): 104012. arXiv:1909.07645. Bibcode:2019JSMTE..10.4012D. doi:10.1088/1742-5468/ab47fc. S2CID 202583753.
  96. ^ C. J. Benmore; J. K. R. Weber (2017). "Aerodynamic levitation, supercooled liquids and glass formation". Advances in Physics: X. 2 (3): 717–736. Bibcode:2017AdPhX...2..717B. doi:10.1080/23746149.2017.1357498.
  97. ^ Davies, H. A.; Hull J. B. (1976). "The formation, structure and crystallization of non-crystalline nickel produced by splat-quenching". Journal of Materials Science. 11 (2): 707–717. Bibcode:1976JMatS..11..215D. doi:10.1007/BF00551430. S2CID 137403190.
  98. ^ Klement, Jr., W.; Willens, R.H.; Duwez, Pol (1960). "Non-crystalline Structure in Solidified Gold-Silicon Alloys". Nature. 187 (4740): 869. Bibcode:1960Natur.187..869K. doi:10.1038/187869b0. S2CID 4203025.
  99. ^ Liebermann, H.; Graham, C. (1976). "Production of Amorphous Alloy Ribbons and Effects of Apparatus Parameters on Ribbon Dimensions". IEEE Transactions on Magnetics. 12 (6): 921. Bibcode:1976ITM....12..921L. doi:10.1109/TMAG.1976.1059201.
  100. ^ Ponnambalam, V.; Poon, S. Joseph; Shiflet, Gary J. (2004). "Fe-based bulk metallic glasses with diameter thickness larger than one centimeter". Journal of Materials Research. 19 (5): 1320. Bibcode:2004JMatR..19.1320P. doi:10.1557/JMR.2004.0176.
  101. ^ "Metallurgy Division Publications". NIST Interagency Report 7127. Archived from the original on 16 September 2008.
  102. ^ Mendelev, M.I.; Schmalian, J.; Wang, C.Z.; Morris, J.R.; K.M. Ho (2006). "Interface Mobility and the Liquid-Glass Transition in a One-Component System". Physical Review B. 74 (10): 104206. Bibcode:2006PhRvB..74j4206M. doi:10.1103/PhysRevB.74.104206.
  103. ^ "A main research field: Polymer glasses". www-ics.u-strasbg.fr. Archived from the original on 25 May 2016.
  104. ^ Carraher Jr., Charles E. (2012). Introduction to Polymer Chemistry. CRC Press. p. 274. ISBN 978-1-4665-5495-5.
  105. ^ Ruby, S.L.; Pelah, I. (2013). "Crystals, Supercooled Liquids, and Glasses in Frozen Aqueous Solutions". In Gruverman, Irwin J. (ed.). Mössbauer Effect Methodology: Volume 6 Proceedings of the Sixth Symposium on Mössbauer Effect Methodology New York City, January 25, 1970. Springer Science & Business Media. p. 21. ISBN 978-1-4684-3159-9.
  106. ^ Levine, Harry; Slade, Louise (2013). Water Relationships in Foods: Advances in the 1980s and Trends for the 1990s. Springer Science & Business Media. p. 226. ISBN 978-1-4899-0664-9.
  107. ^ Dupuy J, Jal J, Prével B, Aouizerat-Elarby A, Chieux P, Dianoux AJ, Legrand J (October 1992). "Vibrational dynamics and structural relaxation in aqueous electrolyte solutions in the liquid, undercooled liquid and glassy states" (PDF). Journal de Physique IV. 2 (C2): C2-179–C2-184. Bibcode:1992JPhy4...2C.179D. doi:10.1051/jp4:1992225. S2CID 39468740. European Workshop on Glasses and Gels.
  108. ^ Hartel, Richard W.; Hartel, AnnaKate (2014). Candy Bites: The Science of Sweets. Springer Science & Business Media. p. 38. ISBN 978-1-4614-9383-9.
  109. ^ Charbel Tengroth (2001). "Structure of Ca0.4K0.6(NO3)1.4 from the glass to the liquid state". Phys. Rev. B. 64 (22): 224207. Bibcode:2001PhRvB..64v4207T. doi:10.1103/PhysRevB.64.224207.
  110. ^ "Lithium-Ion Pioneer Introduces New Battery That's Three Times Better". Fortune. Archived from the original on 9 April 2017. Retrieved 6 May 2017.
  111. ^ "PFG Glass". Pfg.co.za. Archived from the original on 6 November 2009. Retrieved 24 October 2009.
  112. ^ Code of Federal Regulations, Title 40,: Protection of Environment, Part 60 (Sections 60.1-end), Revised As of July 1, 2011. Government Printing Office. October 2011. ISBN 978-0-16-088907-3.
  113. ^ Ball, Douglas J.; Norwood, Daniel L.; Stults, Cheryl L. M.; Nagao, Lee M. (24 January 2012). Leachables and Extractables Handbook: Safety Evaluation, Qualification, and Best Practices Applied to Inhalation Drug Products. John Wiley & Sons. p. 552. ISBN 978-0-470-17365-7.
  114. ^ Chisholm, Hugh, ed. (1911). "Glass" . Encyclopædia Britannica. Vol. 12 (11th ed.). Cambridge University Press. pp. 87–105.
  115. ^ "windshields how they are made". autoglassguru. Retrieved 9 February 2018.
  116. ^ Pantano, Carlo. "Glass Surface Treatments: Commercial Processes Used in Glass Manufacture" (PDF).
  117. ^ a b "Glass melting, Pacific Northwest National Laboratory". Depts.washington.edu. Archived from the original on 5 May 2010. Retrieved 24 October 2009.
  118. ^ Fluegel, Alexander. "Glass melting in the laboratory". Glassproperties.com. Archived from the original on 13 February 2009. Retrieved 24 October 2009.
  119. ^ a b c d e f Mukherjee, Swapna (2013). The Science of Clays: Applications in Industry, Engineering, and Environment. Springer Science & Business Media. p. 142. ISBN 978-9-4007-6683-9.
  120. ^ Walker, Perrin; Tarn, William H. (1990). CRC Handbook of Metal Etchants. CRC press. p. 798. ISBN 978-1-4398-2253-1.
  121. ^ a b Langhamer, Antonín (2003). The Legend of Bohemian Glass: A Thousand Years of Glassmaking in the Heart of Europe. Tigris. p. 273. ISBN 978-8-0860-6211-2.
  122. ^ "3. Glass, Colour and the Source of Cobalt". Internet Archaeology.
  123. ^ Chemical Fact Sheet – Chromium Archived 2017-08-15 at the Wayback Machine www.speclab.com.
  124. ^ David M Issitt. Substances Used in the Making of Coloured Glass 1st.glassman.com.
  125. ^ Shelby, James E. (2007). Introduction to Glass Science and Technology. Royal Society of Chemistry. p. 211. ISBN 978-1-84755-116-0.
  126. ^ a b Nicholson, Paul T.; Shaw, Ian (2000). Ancient Egyptian Materials and Technology. Cambridge University Press. p. 208. ISBN 978-0-521-45257-1.
  127. ^ Weller, Bernhard; Unnewehr, Stefan; Tasche, Silke; Härth, Kristina (2012). Glass in Building: Principles, Applications, Examples. Walter de Gruyter. pp. 1–19. ISBN 978-3-0346-1571-6.
  128. ^ a b "The rise of glass buildings". Glass Times. 9 January 2017. Retrieved 1 March 2020.
  129. ^ Patterson, Mic (2011). Structural Glass Facades and Enclosures. Jon Wiley & Sons. p. 29. ISBN 978-0-470-93185-1.
  130. ^ Hynes, Michael; Jonson, Bo (1997). "Lead, glass and the environment". Chemical Society Reviews. 26 (2): 145. doi:10.1039/CS9972600133.
  131. ^ "Cut glass decorative arts". Encyclopedia Britannica.
  132. ^ "High temperature glass melt property database for process modeling"; Eds.: Thomas P. Seward III and Terese Vascott; The American Ceramic Society, Westerville, Ohio, 2005, ISBN 1-57498-225-7
  133. ^ "Why choose Glass?". FEVE.
  134. ^ Sun, P.; et, al. (2018). "Design and Fabrication of Glass-based Integrated Passive Devices". IEEE, 19th International Conference on Electronic Packaging Technology (ICEPT): 59–63. doi:10.1109/ICEPT.2018.8480458. ISBN 978-1-5386-6386-8. S2CID 52935909.
  135. ^ Letz, M.; et, al. (2018). "Glass in Electronic Packaging and Integration: High Q Inductances for 2.35 GHz Impedance Matching in 0.05 mm Thin Glass Substrates". IEEE 68th Electronic Components and Technology Conference (ECTC): 1089–1096. doi:10.1109/ECTC.2018.00167. ISBN 978-1-5386-4999-2. S2CID 51972637.
  136. ^ Lundén, H.; et, al. (2004). "Novel glass welding technique for hermetic encapsulation". Proceedings of the 5th Electronics System-integration Technology Conference (ESTC): 1–4. doi:10.1109/ESTC.2014.6962719. ISBN 978-1-4799-4026-4. S2CID 9980556.
  137. ^ a b Zumdahl, Steven (2013). Lab Manual. Cengage Learning. pp. ix–xv. ISBN 978-1-285-69235-7.
  138. ^ "Science Under Glass". National Museum of American History. 29 July 2015.
  139. ^ Basudeb, Karmakar (2017). Functional Glasses and Glass-Ceramics: Processing, Properties and Applications. Butterworth-Heinemann. pp. 3–5. ISBN 978-0-12-805207-5.
  140. ^ "Scientific Glassblowing National Museum of American History". Americanhistory.si.edu. 17 December 2012. Retrieved 4 March 2020.
  141. ^ Tut's gem hints at space impact, BBC News, July 19, 2006.
  142. ^ The Earliest Cloisonné Enamels
  143. ^ Arwas, Victor (1996). The Art of Glass: Art Nouveau to Art Deco. pp. 1–54. ISBN 978-1-901092-00-4.
  144. ^ "A-Z of glass". Victoria and Albert Museum. Retrieved 9 March 2020.

External links