Loading AI tools
Da Wikipédia, a enciclopédia livre
A rede de telefonia móvel celular é uma rede de telecomunicações projetada para o provisionamento de serviços de telefonia móvel, ou seja, para a comunicação entre uma ou mais estações móveis (telefone celular no Brasil ou telemóvel em Portugal). Historicamente, em 1990 a cidade do Rio de Janeiro é a primeira no Brasil a operar comercialmente o serviço de telefonia móvel celular.
Desde o final da década de 1990, o crescimento da rede se deu pela popularização do modo pré-pago. Nessa modalidade, o usuário paga, não pela assinatura básica do serviço, mas pelo tempo de uso, na forma de créditos. O serviço de telefonia móvel pré-paga é uma invenção portuguesa: o primeiro cartão pré-pago do mundo foi lançado em Portugal, no dia 7 de setembro de 1995, pela empresa TMN.[1]
Telefone celular ou telemóvel[2]: do termo original em inglês cell phone (CELLular telePHONE ou mobile) é um terminal móvel que funciona através de um sistema de comunicação sem fio. As redes de telefonia celular tiveram início com a implantação da 1a. geração. O sistema analógico (AMPS) nos EUA, (VSF) na Inglaterra e (NMT) na Finlândia entre outros. Esse sistema possuía uma baixa capacidade, uma vez que só permitia tráfego de voz, e era bastante vulnerável à clonagem. A partir da 2a. geração, a comunicação é digital, permitindo voz e dados. Os sistemas mais conhecidos são:
Estação rádio-base (ERB)[3]: é um sistema rádio e antena de comunicação, que permite a cobertura de uma área específica, chamada de célula.
Central de comutação celular (CCC)[3]: é uma central telefônica digital com funções específicas para o sistema móvel celular.
Abaixo, estão listados alguns padrões de tecnologias de sistemas celulares existentes no Brasil. Uns encontram-se extintos e outros são exclusivos de certas operadoras.
De Acordo com lei aprovada pela Anatel, as operadoras que trabalham com a tecnologia AMPS no Brasil tinham até o dia 31 de junho de 2008, para efetuar a desativação obrigatória das redes AMPS, cujo espectro após isso, será utilizado em outras tecnologias nas mesmas operadoras (tal como extensão de espectro para o 3G HSDPA).
Da necessidade de sistemas digitais com maior capacidade, surgiram as tecnologias de segunda geração, que trazem as seguintes vantagens sobre os analógicos: codificação digital de voz mais poderosas, maior eficiência espectral, melhor qualidade de voz, facilidade na comunicação de dados e criptografia. Ainda na rede 2G, foi possível navegar na internet com baixa velocidade (20kbits a 50kbits). As redes 2G utilizam frequências de operação de 900MHz, 1800MHz e 1900MHz. A mais difundida hoje é o GSM, que utiliza tecnologia TDMA e CDMA. Ambas oferecem segurança, boa qualidade de voz a um baixo custo e suporte um grande números de serviços, entre eles: SMS, MMS, GPRS entre outros.
A partir de 2003 entraram em operação as redes 3G (terceira geração) com tecnologia UMTS baseada no sistema Europeu, e com frequência de operação na faixa de 2,1 GHz. Passamos a ter velocidades entre 384 kbits a 2 Mbits, o que evidenciava cada vez mais a ênfase no tráfego de dados. Além do aumento da velocidade, mantivemos ainda total compatibilidade com as redes 2G.
Essa tecnologia já se encontra em operação na Europa, Ásia e Américas, utilizando-se as tecnologias LTE (Long Term Evolution) e Mobile-WiMAX. No Brasil, iniciou-se a operação comercial das redes 4G LTE em 2012, na faixa de 2,5 GHz, a qual já está instalada nas cidades-sede da Copa do Mundo FIFA 2014, atualmente em fase de ampliação da cobertura.
O foco das redes 4G é integralmente para o tráfego de dados (pacotes), ao contrário dos sistemas anteriores, híbridos, que alternavam entre redes de pacotes ou de circuitos a depender da demanda, respectivamente, de dados ou voz. O propósito foi reduzir a complexidade na infraestrutura de rede existente nas arquiteturas anteriores. O LTE, especificamente, mantém compatibilidade com sistemas legados. No entanto, enquanto as redes 3.5G e 3G, em uso, atingem tipicamente velocidades máximas de 14 Megabits por segundo (Mbps), são esperados, em condições ideais, picos de até 120 Mbps nas redes LTE.
É importante notar que, de acordo com a ITU (como definido originalmente na especificação IMT-Advanced), uma rede só poderia ser caracterizada como "4G" se fosse capaz de prover 100 Mbps a usuários em movimento e 1 Gbps para usuários parados. Por isso, tecnicamente falando, em princípio as redes LTE não seriam estritamente 4G. No entanto, a ITU posteriormente flexibilizou às tecnologias LTE e Mobile-WiMAX, devido a questões de marketing comercial e por características diferenciadas dessas tecnologias (como adoção de OFDM e MIMO, latência reduzida e maior patamar de velocidade, entre outras), a adoção do termo 4G para designá-las [4]. Em seguida, criou a expressão "True 4G" exclusivamente para diferenciar as novas tecnologias que atinjam os requisitos necessários à especificação IMT-Advanced. Dessa forma, somente redes LTE Advanced e WiMAX-Advanced, sucessoras das tecnologias atualmente em uso, serão enquadradas como "True 4G" [5].
Em decorrência, tornou-se usual às operadoras empregar comercialmente a sigla da tecnologia empregada na publicidade e nos seus produtos, acrescentando, por exemplo, "LTE" após "GG" (i.e., "4G+ LTE"), identificando mais precisamente o tipo de rede e tecnologia disponibilizados.
Há duas principais categorias da quinta geração de conectividade móvel: o 5G de ondas milimétricas (mmWave), conhecido por sua alta velocidade, e o 5G de frequência abaixo de 6 GHz, que oferece uma cobertura mais ampla. Ambas as variantes buscam aprimorar a conectividade móvel, proporcionando diferentes benefícios em termos de velocidade e alcance.
Na prática, a velocidade de download e upload pode mudar dependendo da geolocalização. Por exemplo, algumas operadoras utilizam a frequência de 700 MHz próxima a municípios do interior e que tenham poucos habitantes.
A frequência de 700 MHz tem maior alcance de cobertura, exigindo menos antenas nesses locais. Porém, ela possui menor capacidade de atender usuários simultâneos e a velocidade de download e upload é mais baixa.
Com o 5G, a expectativa é de levar maiores velocidades de internet, possibilitando empresas de diversos setores e a indústria a habilitarem mais dispositivos conectados, criando um ecossistema inteligente para carros autônomos e automação do chão de fábrica, por exemplo.
Outro benefício é fornecer banda larga de alta velocidade, sem a necessidade de as operadoras precisarem levar fibra ou cabeamento de cobre às empresas. Essas promessas devem ser cumpridas porque o 5G usa espectros de alta frequência:
Para melhorar o 4G e distribuir 5G, no futuro.
O mesmo objetivo da frequência de 700 MHz.
Frequência voltada ao consumidor final.
Frequência pensada para banda larga fixa.
Há três principais tipos de 5G: o 5G standalone (SA), o 5G non-standalone (NSA) e o 5G DE Compartilhamento Dinâmico de Espectro (DSS).
O 5G standalone tem uma arquitetura totalmente independente. Ou seja: ele não depende de infraestruturas legadas de 4G. Isto é diferente do 5G non-standalone, que precisa ser integrado à rede 4G, mas que, de todo modo, permite a plena utilização do potencial do 5G para a implementação de serviços avançados de digitalização, como a comunicação de máquina com máquina (M2M) e a internet das coisas (IoT).
Já o 5G DSS, usa somente a infraestrutura 4G. Sua velocidade é menor do que a das outras tecnologias 5G, chegando 51,7 megabits por segundo de download. A latência também é menor, chegando a 60 milissegundos.
Disponível nas capitais e principais cidades brasileiras pelas operadoras Vivo, Claro e Tim. Outras operadoras regionais como Unifique e Operadora Virtuais (mvno) também disponibilizam o sinal 5G.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.