Loading AI tools
Chemical compound From Wikipedia, the free encyclopedia
Trenbolone enanthate, known by the nickname Trenabol, is a synthetic and injected anabolic–androgenic steroid (AAS) and a derivative of nandrolone which was never marketed.[1][2] It is the C17β enanthate ester and a long-acting prodrug of trenbolone.[1] Trenbolone enanthate was never approved for medical or veterinary use but is used in scientific research[3][4] and has been sold on the internet black market as a designer steroid for bodybuilders and athletes.[5][6]
Clinical data | |
---|---|
Other names | Trenabol; Trenbolone heptanoate; 19-Nor-δ9,11-testosterone 17β-enanthate; Estra-4,9,11-trien-17β-ol-3-one 17β-enanthate |
Routes of administration | Intramuscular injection |
Drug class | Androgen; Anabolic steroid; Androgen ester; Progestogen |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
CompTox Dashboard (EPA) | |
Chemical and physical data | |
Formula | C25H34O3 |
Molar mass | 382.544 g·mol−1 |
3D model (JSmol) | |
| |
|
Trenbolone Enanthate being a potent anabolic steroid has several potential side effects stemming from its particularly strong androgenic properties and its regulation on human hormones.[7]
Anabolic-androgenic steroid (AAS) users report significant psychological changes. Fluctuation in testosterone, a key AAS, affects the brain's structure and function, potentially leading to mood disorders and aggressive behavior.[8] Trenbolone Enanthate users have reported significant psychological changes, including increased aggression, mood instability, and impaired social interactions.[9] Prolonged use of AAS may also lead to psychological dependence, with approximately 1/3 of users experiencing withdrawal symptoms upon cessation.[10]
Anabolic-androgenic steroids(AAS) impact male reproductive health. Their misuse can lead to a condition known as anabolic steroid-induced hypogonadism (ASIH), where natural testosterone production is suppressed. The decreased testosterone production leads to decreased sperm production and can cause prolonged infertility even after stopping use.[11] Chronic AAS use increases the risk of infertility due to its impact on hormonal balance, and some effects such as gynecomastia may not be reversible.[12]
Trenbolone Enanthate can include several androgenic side effects such as increased body hair growth, acne, and potential baldness in predisposed individuals.[7][13]
Gynecomastia is a condition that enlarges the breast tissue in males which is often produced as a side effect from the use of AAS.[10] AAS can disrupt the normal balance of estrogen and testosterone in the body due to the increase in testosterone, which can be aromatized into estrogen. Elevated levels of estrogen in males can be linked to both weight gain and gynecomastia.[14] While Trenbolone Enanthate is known for not aromatizing into estrogen,[15] trenbolone exhibits high progestogenic activity which is one of three natural developments of breast tissue in males, also leading to gynecomastia.[16][12]
Trenbolone Enanthate is renowned for its capacity to promote significant muscle growth and strength gain. Its anabolic effects facilitate increased protein synthesis and nitrogen retention in muscle tissue.[13] Trenbolone Enanthate is also notable in the field of strength gain, with many users reporting marked improvements in their lifting capabilities in part due to the AAS' ability to increase red blood cell count and improve oxygenation of muscle tissue along with the increase in testosterone.[17] The compound is also often employed for its fat-burning properties.[18] It enhances the metabolic rate and promotes the conversion of fat into energy,[19] contributing to leaner muscle development during cutting cycles in body building.[18]
Trenbolone Enanthate is a potential treatment for muscle and bone loss without adverse effects commonly associated with testosterone, such as prostate growth or polycythemia.[20] Trenbolone Enanthate was hypothesized to offer benefits similar to selective androgen receptor modulators(SARMs) due to its inability to convert into more potent androgens in specific tissues.[20]
In the veterinary field, Trenbolone Enanthate has a history of use for increasing muscle mass in livestock. This application is aimed at improving the lean muscle yield in animals prior to slaughter, enhancing the quality of meat production.[21]
Trenbolone was first synthesized in 1963 by L. Velluz and his co-workers, it was originally developed for veterinary use to improve muscle mass and feed efficiency in cattle;[22] however, trenbolone's potent anabolic and androgenic properties soon caught the attention of bodybuilders and athletes. The drug, however, has never been approved for human use, which has legal implications.[23]
Trenbolone Enanthate has never had regulatory approval for human use from any single health agency. Its legal status varies by country, however, it is commonly a controlled substance and non-prescribed use is highly illegal. For example, in the United States, the Drug Enforcement Administration (DEA) considers trenbolone and its esters (including its acetate and enanthate form) as Schedule III controlled substances similar to the likes of Australia where use of possession is a criminal offence.[24][25] However, trenbolone is considered a class C drug with no penalty for personal use or possession in the United Kingdom.[26] The legal framework surrounding trenbolone and its derivatives is complex and not universally consistent, reflecting the substance's potent effects and the concerns over its potential misuse. Sporting organizations, including the World Anti Doping Agency (WADA), closely monitor the use of such substances, especially in competitive events like the Olympics, due to these concerns.[27]
Anabolic steroid | Structure | Ester | Relative mol. weight | Relative AAS contentb | Durationc | ||||
---|---|---|---|---|---|---|---|---|---|
Position | Moiety | Type | Lengtha | ||||||
Boldenone undecylenate | C17β | Undecylenic acid | Straight-chain fatty acid | 11 | 1.58 | 0.63 | Long | ||
Drostanolone propionate | C17β | Propanoic acid | Straight-chain fatty acid | 3 | 1.18 | 0.84 | Short | ||
Metenolone acetate | C17β | Ethanoic acid | Straight-chain fatty acid | 2 | 1.14 | 0.88 | Short | ||
Metenolone enanthate | C17β | Heptanoic acid | Straight-chain fatty acid | 7 | 1.37 | 0.73 | Long | ||
Nandrolone decanoate | C17β | Decanoic acid | Straight-chain fatty acid | 10 | 1.56 | 0.64 | Long | ||
Nandrolone phenylpropionate | C17β | Phenylpropanoic acid | Aromatic fatty acid | – (~6–7) | 1.48 | 0.67 | Long | ||
Trenbolone acetate | C17β | Ethanoic acid | Straight-chain fatty acid | 2 | 1.16 | 0.87 | Short | ||
Trenbolone enanthated | C17β | Heptanoic acid | Straight-chain fatty acid | 7 | 1.41 | 0.71 | Long | ||
Footnotes: a = Length of ester in carbon atoms for straight-chain fatty acids or approximate length of ester in carbon atoms for aromatic fatty acids. b = Relative androgen/anabolic steroid content by weight (i.e., relative androgenic/anabolic potency). c = Duration by intramuscular or subcutaneous injection in oil solution. d = Never marketed. Sources: See individual articles. |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.