Loading AI tools
Standard measure of the performance of an engine or aviation fuel From Wikipedia, the free encyclopedia
An octane rating, or octane number, is a standard measure of a fuel's ability to withstand compression in an internal combustion engine without causing engine knocking. The higher the octane number, the more compression the fuel can withstand before detonating. Octane rating does not relate directly to the power output or the energy content of the fuel per unit mass or volume, but simply indicates the resistance to detonating under pressure without a spark.
Whether a higher octane fuel improves or impairs an engine's performance depends on the design of the engine. In broad terms, fuels with a higher octane rating are used in higher-compression gasoline engines, which may yield higher power for these engines. The added power in such cases comes from the way the engine is designed to compress the air/fuel mixture, and not directly from the rating of the gasoline.[1]
In contrast, fuels with lower octane (but higher cetane numbers) are ideal for diesel engines because diesel engines (also called compression-ignition engines) do not compress the fuel, but rather compress only air, and then inject fuel into the air that was heated by compression. Gasoline engines rely on ignition of compressed air and fuel mixture, which is ignited only near the end of the compression stroke by electric spark plugs. Therefore, being able to compress the air/fuel mixture without causing detonation is important mainly for gasoline engines. Using gasoline with lower octane than an engine is built for may cause engine knocking and/or pre-ignition.[2]
The octane rating of aviation gasoline was extremely important in determining aero engine performance in the aircraft of World War II.[3] The octane rating affected not only the performance of the gasoline, but also its versatility; the higher octane fuel allowed a wider range of lean to rich operating conditions.[3]
In spark ignition internal combustion engines, knocking (also knock, detonation, spark knock, pinging, or pinking) occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but when one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front. The fuel-air charge is meant to be ignited by the spark plug only, and at a precise point in the piston's stroke. Knock occurs when the peak of the combustion process no longer occurs at the optimum moment for the four-stroke cycle. In a simple explanation, the forward moving wave of combustion that burns the hydrocarbon + oxygen mixture inside the cylinder like a wave that a surfer would wish to surf upon is violently disrupted by a secondary wave that has started elsewhere. The shock wave of these two separate waves creates the characteristic metallic "pinging" sound, and cylinder pressure increases dramatically. Effects of engine knocking range from inconsequential (incremental heating plus power loss) to completely destructive (detonation while one of the valves is still open).
Knocking should not be confused with pre-ignition—they are two separate events with pre-ignition occurring before the combustion event. However, pre-ignition is highly correlated with knock because knock will cause rapid heat increase within the cylinder eventually leading to destructive pre-detonation. [4]
Most engine management systems commonly found in automobiles today, typically electronic fuel injection (EFI), have a knock sensor that monitors if knock is being produced by the fuel being used. In modern computer-controlled engines, the ignition timing will be automatically altered by the engine management system to reduce the knock to an acceptable level.
Octanes are a family of hydrocarbons that are typical components of gasoline. They are colorless liquids that boil around 125 °C (260 °F). One member of the octane family, 2,2,4-Trimethylpentane (iso-octane), is used as a reference standard to benchmark the tendency of gasoline or LPG fuels to resist self-ignition.
The octane rating of gasoline is measured in a test engine and is defined by comparison with the mixture of 2,2,4-trimethylpentane (iso-octane) and normal heptane that would have the same anti-knocking capability as the fuel under test. The percentage, by volume, of 2,2,4-trimethylpentane in that mixture is the octane number of the fuel. For example, gasoline with the same knocking characteristics as a mixture of 90% iso-octane and 10% heptane would have an octane rating of 90.[5] A rating of 90 does not mean that the gasoline contains just iso-octane and heptane in these proportions, but that it has the same detonation resistance properties (generally, gasoline sold for common use never consists solely of iso-octane and heptane; it is a mixture of many hydrocarbons and often other additives).
Octane ratings are not indicators of the energy content of fuels. (See Effects below and Heat of combustion). They are only a measure of the fuel's tendency to burn in a controlled manner, rather than exploding in an uncontrolled manner.[6]
Where the octane number is raised by blending in ethanol, energy content per volume is reduced. Ethanol energy density can be compared with gasoline in heat-of-combustion tables.
It is possible for a fuel to have a Research Octane Number (RON) more than 100, because iso-octane is not the most knock-resistant substance available today. Racing fuels, avgas, LPG and alcohol fuels such as methanol may have octane ratings of 110 or significantly higher. Typical "octane booster" gasoline additives include MTBE, ETBE, iso-octane and toluene. Lead in the form of tetraethyllead was once a common additive, but concerns about its toxicity have led to its use for fuels for road vehicles being progressively phased out worldwide beginning in the 1970s.[7]
The most common type of octane rating worldwide is the Research Octane Number (RON). RON is determined by running the fuel in a test engine at 600 rpm with a variable compression ratio under controlled conditions, and comparing the results with those for mixtures of iso-octane and n-heptane.[8] The compression ratio is varied during the test to challenge the fuel's antiknocking tendency, as an increase in the compression ratio will increase the chances of knocking.
Another type of octane rating, called Motor Octane Number (MON), is determined at 900 rpm engine speed instead of the 600 rpm for RON.[2] MON testing uses a similar test engine to that used in RON testing, but with a preheated fuel mixture, higher engine speed, and variable ignition timing to further stress the fuel's knock resistance. Depending on the composition of the fuel, the MON of a modern pump gasoline will be about 8 to 12 lower than the RON,[citation needed] but there is no direct link between RON and MON. See the table below.
In Canada, The United States, and Mexico, the advertised octane rating is the average of the RON and the MON, called the Anti-Knock Index (AKI). It is often written on pumps as (R+M)/2. AKI is also sometimes called PON (Pump Octane Number).
Because of the 8 to 12 octane number difference between RON and MON noted above, the AKI shown in Canada and the United States is 4 to 6 octane numbers lower than elsewhere in the world for the same fuel. This difference between RON and MON is known as the fuel's sensitivity,[9] and is not typically published for those countries that use the Anti-Knock Index labelling system.
See the table in the following section for a comparison.
Another type of octane rating, called Observed Road Octane Number (RdON), is derived from testing the gasoline in ordinary multi-cylinder engines (rather than in a purpose-built test engine), normally at wide open throttle. This type of test was developed in the 1920s and is still reliable today. The original RdON tests were done in cars on the road, but as technology developed the testing was moved to chassis dynamometers with environmental controls to improve consistency.[10]
The evaluation of the octane number by either of the two laboratory methods requires a special engine built to match the tests' rigid standards, and the procedure can be both expensive and time-consuming. The standard engine required for the test may not always be available, especially in out-of-the-way places or in small or mobile laboratories. These and other considerations led to the search for a rapid method for the evaluation of the anti-knock quality of gasoline. Such substitute methods include FTIR, near infrared on-line analyzers, and others. Deriving an equation that can be used to calculate ratings accurately enough would also serve the same purpose, with added advantages. The term Octane Index is often used to refer to the use of an equation to determine a theoretical rating, in contradistinction to the direct measurements required for research or motor octane numbers. An octane index can be of great service in the blending of gasoline. Motor gasoline, as marketed, is usually a blend of several types of refinery grades that are derived from different processes such as straight-run gasoline, reformate, cracked gasoline etc. These different grades are blended in amounts that will meet final product specifications. Most refiners produce and market more than one grade of motor gasoline, differing principally in their anti-knock quality. Being able to make sufficiently accurate estimates of the octane rating that will result from blending different refinery products is essential, something for which the calculated octane index is specially suited.[11]
Aviation gasolines used in piston aircraft engines common in general aviation have a slightly different method of measuring the octane of the fuel. Similar to an AKI, it has two different ratings, although it is usually referred to only by the lower of the two. One is referred to as the "aviation lean" rating, which for ratings up to 100 is the same as the MON of the fuel.[12] The second is the "aviation rich" rating and corresponds to the octane rating of a test engine under forced induction operation common in high-performance and military piston aircraft. This utilizes a supercharger, and uses a significantly richer fuel/air ratio for improved detonation resistance.[9][unreliable source?]
The most common currently used fuel, 100LL, has an aviation lean rating of 100 octane, and an aviation rich rating of 130.[13]
This section needs additional citations for verification. (June 2023) |
The RON/MON values of n-heptane and iso-octane are exactly 0 and 100, respectively, by the definition of octane rating. The following table lists octane ratings for various other fuels.[14][15]
Fuel | RON | MON | AKI or (R+M)/2 |
---|---|---|---|
hexadecane | < −30 | ||
n-octane | −20 | −17 | −18.5 |
n-heptane (RON and MON 0 by definition) | 0 | 0 | 0 |
diesel fuel | 15–25 | ||
2-methylheptane | 23 | 23.8 | 23 |
n-hexane | 25 | 26.0 | 26 |
1-pentene | 34 | ||
2-methylhexane | 44 | 46.4 | 45.2 |
3-methylhexane | 55.0 | ||
1-heptene | 60 | ||
n-pentane | 62 | 61.9 | 62 |
requirement for a typical two-stroke outboard motor[16] | 69 | 65 | 67 |
Pertamina "Premium" in Indonesia (discontinued) | 88 | 78 | 83 |
Pertamina "Pertalite" and Vivo "Revvo 90" in Indonesia (will begin discontinuing sales in 2024) | 90 | ||
"Plus 91" (Regular) in Costa Rica[17] | 91 | 79 | 85 |
"Súper" (Premium) in Costa Rica[18] | 95 | 83 | 89 |
"E15" (Unleaded 88) in United States | 95 | 81 | 88 |
"Regular gasoline" in Japan | 90 | ||
n-butanol | 92 | 71 | 83 |
Neopentane (dimethylpropane) | 80.2 | ||
n-butane | 94[19] | 90.1 | 92 |
Isopentane (methylbutane) | 90.3 | ||
"Regular Gasoline/Petroleum" in Australia, New Zealand, Canada and the United States | 91–92 | 82–83 | 87 |
Pertamina "Pertamax 92" in Indonesia | 92 | 82 | 87 |
"Shell Super" in Indonesia, "Total Performance 92" in Indonesia, "Vivo Revvo 92" in Indonesia, "BP 92" in Indonesia | 92 | ||
2,2-dimethylbutane | 93.4 | ||
2,3-dimethylbutane | 94.4 | ||
"Mid-Grade Gasoline" in the United States and Canada | 94–95 | 84–85 | 89–90 |
"YPF Super" and "Shell Formula Super" in Argentina | 95 | 84 | 89-90 |
"Axion Super" in Argentina | 95 | 83 | 89 |
"Super/Premium" in New Zealand and Australia | 95 | 85 | 90 |
"Aral Super 95" in Germany, "Aral Super 95 E10" (10% ethanol) in Germany | 95 | 85 | 90 |
"Shell V-Power" in Indonesia, "Total Performance 95" in Indonesia, Pertamina "Pertamax Green" in Indonesia, "Shell FuelSave " in Malaysia | 95 | ||
"EuroSuper" or "EuroPremium" or "Regular unleaded" in UK/Europe, "SP95" and "SP95-E10" (10% ethanol blend) in France, "Super 95" in Belgium | 95 | 85–86 | 90–91 |
"Premium" or "Super unleaded" gasoline in US and Canada (10% ethanol blend) | 97 | 87–88 | 92–93 |
"Shell V-Power 97" in Malaysia and Chile | 97 | ||
"Premium Gasoline" in the United States | 96–98 | 86–88 | 91–93 |
"IES 98 Plus" in Italy, "Aral SuperPlus 98" in Germany, Pertamina "Pertamax Turbo" in Indonesia, Premium unleaded in the UK | 98 | ||
"YPF Infinia" and "Shell V-Power" in Argentina | 98 | 85 | 91-92 |
"Axion Quantium" in Argentina | 98 | 88 | 93 |
"Corriente (Regular)" in Colombia | 91.5[20] | 70 | 81[21] |
"Extra (Super/Plus)" in Colombia | 95[22] | 79 | 87[23] |
"SuperPlus" in Germany | 98 | 88 | 93 |
"Shell V-Power 98", "Caltex Platinum 98 with Techron", "Esso Mobil Synergy 8000" and "SPC LEVO 98" in Singapore, "BP Ultimate 98/Mobil Synergy 8000" in New Zealand, "SP98" in France, "Super 98" in Belgium, Great Britain, Slovenia and Spain, “Ampol Amplify 98 Unleaded” in Australia | 98 | 89–90 | 93–94 |
"Shell V-Power Nitro+ 99" "Tesco Momentum 99" In the United Kingdom | 99 | 87 | 93 |
Pertamina "Pertamina Racing Fuel" (bioethanol blend) in Indonesia | 100 | 86 | 93 |
"Premium" gasoline in Japan, "IP Plus 100"[24] in Italy, "Tamoil WR 100" in Italy, "Shell V-Power Racing" in Australia - discontinued July 2008,[25] "NPD 100Plus" in New Zealand[26] | 100 | 89 | |
"Shell V-Power" in Italy and Germany | 100 | 88 | 94 |
"Eni (or Agip) Blu Super +(or Tech)" in Italy | 100 | 87 | 94 |
iso-octane (RON and MON 100 by definition) | 100 | 100 | 100 |
"Petron Blaze 100 Euro 4M" in Philippines and Malaysia | 100 | ||
"San Marco Petroli F-101" in Italy (northern Italy only, just a few gas stations) | 101 | ||
benzene | 101 | ||
2,5-Dimethylfuran | 101.3[27] | 88.1[27] | 94.7[27] |
Petro-Canada "Ultra 94" in Canada[28] | 101.5 | 88 | 94 |
Aral Ultimate 102 in Germany | 102 | 88 | 95 |
Gulf Endurance 102 Racing Fuel (sold only at Silverstone Circuit in the United Kingdom) | 102 | 93–94 | 97–98 |
ExxonMobil Avgas 100LL[29] | 99.6 (min) | ||
Petrobras Podium in Brazil[30] | 102 | 88 | 97 |
E85 gasoline | 102-105 | 85-87 | 94–96[31] |
i-butane | 102[19] | 97.6 | 100 |
"BP Ultimate 102" - now discontinued[32] | 102 | 93–94 | 97–98 |
t-butanol | 103 | 91 | 97 |
2,3,3-trimethylpentane | 106.1[33] | 99.4[33] | 103 |
ethane | 108 | ||
ethanol | 108.6[34] | 89.7[34] | 99.15 |
methanol | 108.7[34] | 88.6[34] | 98.65 |
2,2,3-trimethylpentane | 109.6[33] | 99.9[33] | 105 |
propane | 112 | 97 | 105 |
ethylbenzene[35] | 112 | 99 | 106 |
isopropylbenzene (cumene)[35] | 112 | 102 | 107 |
2,2,3-trimethylbutane | 112.1[33] | 101.3[33] | 106 |
VP C16 Race Fuel[36] | 117 | 118 | 117.5 |
propan-2-ol | 118 | 98 | 108 |
propan-1-ol | 118[37] | 98 | 108[37] |
xylene | 118 | 115 | 116.5 |
methane | 120 | 120 | 120 |
toluene | 121 | 107 | 114 |
hydrogen | > 130 | 60[38] |
Higher octane ratings correlate to higher activation energies: the amount of applied energy required to initiate combustion. Since higher octane fuels have higher activation energy requirements, it is less likely that a given compression will cause uncontrolled ignition, otherwise known as autoignition, self-ignition, pre-ignition, detonation, or knocking.
Because octane is a measured and/or calculated rating of the fuel's ability to resist autoignition, the higher the octane of the fuel, the harder that fuel is to ignite and the more heat is required to ignite it. The result is that a hotter ignition spark is required for ignition. Creating a hotter spark requires more energy from the ignition system, which in turn increases the parasitic electrical load on the engine. The spark also must begin earlier in order to generate sufficient heat at the proper time for precise ignition. As octane, ignition spark energy, and the need for precise timing increase, the engine becomes more difficult to "tune" and keep "in tune". The resulting sub-optimal spark energy and timing can cause major engine problems, from a simple "miss" to uncontrolled detonation and catastrophic engine failure.
Mechanically within the cylinder, stability can be visualized as having a flame wave initiate at the spark plug and then "travel in a fairly uniform manner across the combustion chamber"[39] with the expanding gas mix pushing the piston throughout the entirety of the power stroke. A stable gasoline and air mix will combust when the flame wave reaches the molecules, adding heat at the interface. Knock occurs when a secondary flame wave forms from instability and then travels against the path of the primary flame wave, thus depriving the power stroke of its uniformity and causing issues including power loss and heat buildup.[40]
The other rarely-discussed reality with high-octane fuels associated with "high performance" is that as octane increases, the specific gravity and energy content of the fuel per unit of weight are reduced. The net result is that to make a given amount of power, more high-octane fuel must be burned in the engine. Lighter and "thinner" fuel also has a lower specific heat, so the practice of running an engine "rich" to use excess fuel to aid in cooling requires richer and richer mixtures as octane increases.
Higher-octane, lower-energy-dense "thinner" fuels often contain alcohol compounds incompatible with the stock fuel system components, which also makes them hygroscopic. They also evaporate away much more easily than heavier, lower-octane fuel which leads to more accumulated contaminants in the fuel system. It is typically the hydrochloric acids that form due to that water[citation needed] and the compounds in the fuel that have the most detrimental effects on the engine fuel system components, as such acids corrode many metals used in gasoline fuel systems.
During the compression stroke of an internal combustion engine, the temperature of the air-fuel mix rises as it is compressed, in accordance with the ideal gas law. Higher compression ratios necessarily add parasitic load to the engine, and are only necessary if the engine is being specifically designed to run on high-octane fuel. Aircraft engines run at relatively low speeds and are "undersquare". They run best on lower-octane, slower-burning fuels that require less heat and a lower compression ratio for optimum vaporization and uniform fuel-air mixing, with the ignition spark coming as late as possible in order to extend the production of cylinder pressure and torque as far down the power stroke as possible. The main reason for using high-octane fuel in air-cooled engines is that it is more easily vaporized in a cold carburetor and engine and absorbs less intake air heat which greatly reduces the tendency for carburetor icing to occur.
With their reduced densities and weight per volume of fuel, the other obvious benefit is that an aircraft with any given volume of fuel in the tanks is automatically lighter. And since many airplanes are flown only occasionally and may sit unused for weeks or months, the lighter fuels tend to evaporate away and leave behind fewer deposits such as "varnish" (gasoline components, particularly alkenes and oxygenates slowly polymerize into solids).[clarification needed] Aircraft also typically have dual "redundant" ignition systems which are nearly impossible to tune and time to produce identical ignition timing, so using a lighter fuel that's less prone to autoignition is a wise "insurance policy". For the same reasons, those lighter fuels which are better solvents are much less likely to cause any "varnish" or other fouling on the "backup" spark plugs.[citation needed]
In almost all general aviation piston engines, the fuel mixture is directly controlled by the pilot, via a knob and cable or lever similar to (and next to) the throttle control. Leaning — reducing the mixture from its maximum amount — must be done with knowledge, as some combinations of fuel mixture and throttle position (that produce the highest ) can cause detonation and/or pre-ignition, in the worst case destroying the engine within seconds.[citation needed] Pilots are taught in primary training to avoid settings that produce the highest exhaust gas temperatures, and run the engine either "rich of peak EGT" (more fuel than can be burned with the available air) or "lean of peak" (less fuel, leaving some oxygen in the exhaust) as either will keep the fuel-air mixture from detonating prematurely.[41] Because of the high cost of unleaded, high-octane avgas, and possible increased range before refueling, some general aviation pilots attempt to save money by tuning their fuel-air mixtures and ignition timing to run "lean of peak". Additionally, the decreased air density at higher altitudes (such as Colorado) and temperatures (as in summer) requires leaning (reduction in amount of fuel per volume or mass of air) for the peak EGT and power (crucial for takeoff).
This section needs additional citations for verification. (June 2024) |
The selection of octane ratings available at filling stations can vary greatly between countries.
Due to its name, the chemical "octane" is often misunderstood as the only substance that determines the octane rating (or octane number) of a fuel. This is an inaccurate description. In reality, the octane rating is defined as a number describing the stability and ability of a fuel to prevent an engine from unwanted combustions[83] that occur spontaneously in the other regions within a cylinder (i.e., delocalized explosions from the spark plug). This phenomenon of combustion is more commonly known as engine knocking or self-ignition, which causes damage to pistons over time and reduces the lifespan of engines.
In 1927, Graham Edgar[84] devised the method of using iso-octane and n-heptane as reference chemicals, in order to rate the knock resistance of a fuel with respect to this isomer of octane,[85] thus the name "octane rating". By definition, the isomers iso-octane and n-heptane have an octane rating of 100 and 0, respectively.[86] Because of its more volatile nature, n-heptane ignites and knocks readily, which gives it a relatively low octane rating;[87] the isomer iso-octane causes less knocking because it is more branched and combusts more smoothly. In general, branched compounds with a higher intermolecular force (e.g., London dispersion force for iso-octane) will have a higher octane rating, because they are harder to ignite.[88]
Octane isomers such as n-octane and 2,3,3-trimethylpentane have an octane rating of -20 and 106.1, respectively (RON measurement).[89] The large differences between the octane ratings for the isomers show that the compound octane itself is clearly not the only factor that determines octane ratings, especially for commercial fuels consist of a wide variety of compounds.
"Octane" is colloquially used in the expression "high-octane".[90] The term is used to describe a powerful action because of the association with the concept of "octane rating". This is a misleading term, because the octane rating of gasoline is not directly related to the power output of an engine. Using gasoline of a higher octane than an engine is designed for cannot increase its power output.
Octane became well known in American popular culture in the 1960s, when gasoline companies boasted of "high octane" levels in their gasoline advertisements. The compound adjective "high-octane", meaning powerful or dynamic, is recorded in a figurative sense from 1944. By the 1990s, the phrase was commonly being used as a word intensifier, and it has found a place in modern English slang.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.