Measure space
Set on which a generalization of volumes and integrals is defined From Wikipedia, the free encyclopedia
Set on which a generalization of volumes and integrals is defined From Wikipedia, the free encyclopedia
A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the σ-algebra) and the method that is used for measuring (the measure). One important example of a measure space is a probability space.
A measurable space consists of the first two components without a specific measure.
A measure space is a triple where[1][2]
In other words, a measure space consists of a measurable space together with a measure on it.
Set . The -algebra on finite sets such as the one above is usually the power set, which is the set of all subsets (of a given set) and is denoted by Sticking with this convention, we set
In this simple case, the power set can be written down explicitly:
As the measure, define by so (by additivity of measures) and (by definition of measures).
This leads to the measure space It is a probability space, since The measure corresponds to the Bernoulli distribution with which is for example used to model a fair coin flip.
Most important classes of measure spaces are defined by the properties of their associated measures. This includes, in order of increasing generality:
Another class of measure spaces are the complete measure spaces.[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.