Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,386)

Search Parameters:
Keywords = permanent magnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6878 KiB  
Article
Finite Element Analysis of Electromagnetic Characteristics of a Single-Phase Permanent Magnet Linear Oscillation Actuator
by Hongbin Zhang, Zhaoxin Wang, Minshuo Chen, Zhan Shen, Haitao Yu and Zhike Xu
Sensors 2025, 25(2), 452; https://doi.org/10.3390/s25020452 - 14 Jan 2025
Abstract
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce [...] Read more.
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce the detent force. According to the principle of electromagnetic fields, the electromagnetic field equation is listed and the function of the motor is deduced. At the same time, the eight-node hexahedral element is used to calculate the listed universal functions, and the inductance, flux linkage, induced electromotive force and electromagnetic force of the motor are deduced. The electromagnetic field of the motor is simulated by two-dimensional and three-dimensional finite element methods, and the accuracy of the calculation results of the electromagnetic characteristics of the cylindrical linear oscillation motor by the two methods is compared and analyzed. Finally, an experimental prototype was developed and the no-load characteristics of the motor were tested using the existing linear motor towing method. By comparing the experimental and simulation results, the accuracy of the theoretical analysis and the rationality of the motor design are verified. Full article
Show Figures

Figure 1

23 pages, 14773 KiB  
Article
Reduction in DC-Link Capacitor Current by Phase Shifting Method for a Dual Three-Phase Voltage Source Inverters Dual Permanent Magnet Synchronous Motors System
by Deniz Şahin and Bülent Dağ
World Electr. Veh. J. 2025, 16(1), 39; https://doi.org/10.3390/wevj16010039 - 14 Jan 2025
Viewed by 92
Abstract
This paper presents a carrier waves phase shifting method to reduce the dc-link capacitor current for a dual three-phase permanent magnet synchronous motor drive system. dc-link capacitors absorb the ripple current generated at the input due to the harmonics of the pulse width [...] Read more.
This paper presents a carrier waves phase shifting method to reduce the dc-link capacitor current for a dual three-phase permanent magnet synchronous motor drive system. dc-link capacitors absorb the ripple current generated at the input due to the harmonics of the pulse width modulation (PWM). The size, cost, reliability, and lifetime of the dc-link capacitor are negatively affected by this ripple current flowing through it. The proposed method is especially appropriate for common dc-link capacitors for a dual inverter system driving two PMSMs. In this paper, the input current of each inverter is analyzed using Double Fourier Analysis, and the harmonic components of the dc-link capacitor current are determined. The carrier wave phase shifting method is proposed to reduce the magnitude of the harmonics and thus reduce the dc-link capacitor current. Furthermore, the optimum angle between the carrier waves for the maximum reduction in the dc-link capacitor current is analyzed and simulated for different scenarios considering the speed and load torque of the PMSMs. The proposed method is verified through experiments and PMSMs are driven by three-phase voltage source inverters (VSIs) modulated with Space Vector Pulse Width Modulation (SVPWM), which is the most common PWM strategy. The proposed method reduced the dc-link capacitor current by 60%, thereby significantly decreasing the required dc-link capacitance, the volume of the drive system, and its cost. Full article
Show Figures

Figure 1

34 pages, 22208 KiB  
Article
Design and Optimization of Support and Drive System for Magnetic Levitation Air Compressor for Fuel Cells
by Enhui Xing, Qi Gao, Yuanqi Dong and Wenxin Bai
Actuators 2025, 14(1), 26; https://doi.org/10.3390/act14010026 - 13 Jan 2025
Viewed by 243
Abstract
The 5-degree-of-freedom active magnetic bearings (5-DOF AMB) and high-speed permanent magnet synchronous motor (HPMSM) were combined and applied to energy-recovery-type air compressors for fuel cells, which gives full play to the advantages of both and meets the design requirements for air compressors in [...] Read more.
The 5-degree-of-freedom active magnetic bearings (5-DOF AMB) and high-speed permanent magnet synchronous motor (HPMSM) were combined and applied to energy-recovery-type air compressors for fuel cells, which gives full play to the advantages of both and meets the design requirements for air compressors in fuel cells. Based on the energy recovery air compressor for fuel cells with a power of 30 kW and a rated speed of 100,000 rpm, this paper combined 5-DOF AMB with HPMSM and used it as its support and drive system. Multi-physics field and multi-objective optimization were carried out by integrating the multi-physics field with the Multi-objective Grey Wolf Algorithm (MOGWO), and the feasibility of the design of the system and its reliability were verified using finite element software. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

15 pages, 3853 KiB  
Article
Phase Formation Mechanism and Anomalous Magnetic Variation of High-Performance La-Co-Doped Strontium Ferrites
by Pengbo Fu, Zhenhuan Li, Fang Wang, Munan Yang, Lulu Liu, Licheng Wang, Huayang Gong, Jian Zhang and Baogen Shen
Materials 2025, 18(2), 323; https://doi.org/10.3390/ma18020323 - 13 Jan 2025
Viewed by 208
Abstract
La-Co-doped ferrite is widely used due to its excellent magnetic properties, but the mechanisms of La-Co doping on its phase formation and magnetic properties remain unclear. This study clarifies the phase formation mechanisms and reveals that La-Co doping reduces the formation temperatures of [...] Read more.
La-Co-doped ferrite is widely used due to its excellent magnetic properties, but the mechanisms of La-Co doping on its phase formation and magnetic properties remain unclear. This study clarifies the phase formation mechanisms and reveals that La-Co doping reduces the formation temperatures of the intermediate phase SrFeO3−x and thus the final SrFe12O19 phase. This promotes complete formation of SrFe12O19, enhancing saturation magnetization. The unexpected change in coercivity after La-Co doping contradicts the variation in the determined magnetocrystalline anisotropy field. We identify that it arises from the La-Co doping lowering the formation temperature of SrFe12O19, leading to excessive particle growth. Full article
(This article belongs to the Special Issue Design, Control and Applications of Permanent Magnet Materials)
Show Figures

Figure 1

16 pages, 8559 KiB  
Article
Transmission Line Modeling-Based Position Sensorless Control for Permanent Magnet Synchronous Machines
by Dianxun Xiao, Kun Hu and Chengrui Li
Electronics 2025, 14(2), 271; https://doi.org/10.3390/electronics14020271 - 10 Jan 2025
Viewed by 297
Abstract
Position sensorless control has been widely used in permanent magnet synchronous motor (PMSM) drives in low-cost applications or in the fault-tolerance control of position sensors. Conventional sensorless control methods often adopt a back electromagnetic force (EMF)-based position observer, which results in bandwidth reduction [...] Read more.
Position sensorless control has been widely used in permanent magnet synchronous motor (PMSM) drives in low-cost applications or in the fault-tolerance control of position sensors. Conventional sensorless control methods often adopt a back electromagnetic force (EMF)-based position observer, which results in bandwidth reduction in signal processing and lower estimation accuracy. This paper introduces a numerical solution based on transmission line modeling (TLM) to obtain the back EMF. The TLM method is used for the numerical calculation of electromagnetics due to the clear algorithm structure, robust convergence and stability, and easy implementation in dynamic circuit analyses. This paper first analyzes the 2D TLM method techniques. Then, a new application of TLM theory in position sensorless control of PMSMs is put forward. The proposed TLM-based sensorless control scheme can estimate the back EMF without decreasing the bandwidth, thereby enhancing the dynamic performance of the sensorless control. All numerical results are implemented using the proposed approach, which validates the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

13 pages, 7720 KiB  
Article
Calculation of the Optimal Magnetic Duty Cycle for a Graded Coaxial Magnet of a Rotary Type Magnetic Refrigerator
by Chih-Hao Lee, Pai-Hsiang Cheng, Keh-Chyang Leou, Chih-Ming Hsieh and Yu-Chuan Su
Energies 2025, 18(2), 289; https://doi.org/10.3390/en18020289 - 10 Jan 2025
Viewed by 298
Abstract
In the design of a rotary-type magnetic refrigerator, a high field of a coaxial magnet is desired. Typically, a high-field design can be achieved with a small duty cycle, which might not be optimized from the viewpoint of the thermal hydraulics of a [...] Read more.
In the design of a rotary-type magnetic refrigerator, a high field of a coaxial magnet is desired. Typically, a high-field design can be achieved with a small duty cycle, which might not be optimized from the viewpoint of the thermal hydraulics of a magnetic refrigerator. In this work, a numerical simulation analysis of a graded coaxial magnet designed using a COMSOL program for a rotary-type active magnetic refrigeration (AMR) system was performed. The magnet structures are based on neodymium–iron–boron permanent magnets with thin gadolinium (Gd) and gadolinium-terbium alloy (Gd-Tb) plates as AMR materials. For a rotary-type magnetic cooling system, from the thermal–hydraulic point of view, the best duty cycle of a coaxial magnet should be 50% if the magnetic field can be kept constant during the period of duty cycles. However, the simulation calculation shows a serious reduction in the magnetic field strength at higher duty cycles, resulting in lower magnetic cooling efficiency. After considering the thermos-hydraulic part, the optimized duty cycle is around 30% in the case of a temperature span of 8 K between the hot and cold ends on a rotary-type magnetic cooling system. By applying graded Gd-Tb alloy along the flow direction, the performance of magnetic refrigeration improves significantly. Compared to a pure Gd AMR system, it is demonstrated that more than three times the increase in the cooling capacity can be achieved. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

16 pages, 8738 KiB  
Article
Sensorless Control of PMaSynRM Based on Hybrid Active Flux Observer
by Zhiqi Li, Jian Su, Huizhen Gao, Erxuan Zhang, Xiaolin Kuang, Chengrui Li, Guangdong Bi and Dianguo Xu
Electronics 2025, 14(2), 259; https://doi.org/10.3390/electronics14020259 - 10 Jan 2025
Viewed by 278
Abstract
Permanent Magnet assisted Synchronous Reluctance Motor (PMaSynRM) is widely used in electric vehicles, aerospace and other fields with its high speed range, high cost performance and so on. To improve the rotor position estimation accuracy of active flux observer which only uses voltage [...] Read more.
Permanent Magnet assisted Synchronous Reluctance Motor (PMaSynRM) is widely used in electric vehicles, aerospace and other fields with its high speed range, high cost performance and so on. To improve the rotor position estimation accuracy of active flux observer which only uses voltage model or current model in the existing sensorless control methods of PMaSynRM, this paper proposes a sensorless control method of PMaSynRM based on the hybrid of voltage model and current model. In this paper, the definition of active flux is determined according to the mathematical model of PMaSynRM, and then the active flux observer is constructed. The observer includes voltage model and current model, and the proportional integral controller is added to the observer, and the current model is used as feedback compensation to realize the stable operation of the motor without position sensor. The simulation results show that the active flux observer can realize high position observation accuracy and achieve the stable operation of the PMaSynRM in a wide speed range. The proposed method can effectively improve the system load capacity and anti-interference ability. Full article
(This article belongs to the Special Issue Design and Control of Drives and Electrical Machines)
Show Figures

Figure 1

22 pages, 11869 KiB  
Article
Large Language Model-Based Tuning Assistant for Variable Speed PMSM Drive with Cascade Control Structure
by Tomasz Tarczewski, Djordje Stojic and Andrzej Dzielinski
Viewed by 298
Abstract
A cascade control structure (CCS) is still the most commonly used control scheme in variable speed control (VSC) electrical drives with alternating current (AC) motors. Several tuning methods are used to select the coefficients of controllers applied in CCS. These approaches can be [...] Read more.
A cascade control structure (CCS) is still the most commonly used control scheme in variable speed control (VSC) electrical drives with alternating current (AC) motors. Several tuning methods are used to select the coefficients of controllers applied in CCS. These approaches can be divided into analytical, empirical, and heuristic ones. Regardless of the tuning method used, there is still a question of whether the CCS is tuned optimally in terms of considered performance indicators to provide high-performance behavior of the electrical drive. Recently, artificial intelligence-based methods, e.g., swarm-based metaheuristic algorithms (SBMAs), have been extensively examined in this field, giving promising results. Moreover, the intensive development of artificial intelligence (AI) assistants based on large language models (LLMs) supporting decision-making processes is observed. Therefore, it is worth examining the ability of LLMs to tune the CCS in the VSC electrical drive. This paper investigates tuning methods for the cascade control structure equipped with PI-type current and angular velocity controllers for PMSM drive. Sets of CCS parameters from electrical engineers with different experiences are compared with reference solutions obtained by using the SBMA approach and LLMs. The novel LLM-based Tuning Assistant (TA) is developed and trained to improve the quality of responses. Obtained results are assessed regarding the drive performance, number of attempts, and time required to accomplish the considered task. A quantitative analysis of LLM-based solutions is also presented. The results indicate that AI-based tuning methods and the properly trained Tuning Assistant can significantly improve the performance of VSC electrical drives, while state-of-the-art LLMs do not guarantee high-performance drive operation. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters and Drives)
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
Traction Synchronous Machine with Rotor Field Winding and Two-Phase Harmonic Field Exciter
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Aleksey Paramonov and Victor Goman
World Electr. Veh. J. 2025, 16(1), 25; https://doi.org/10.3390/wevj16010025 - 6 Jan 2025
Viewed by 364
Abstract
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant [...] Read more.
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant power speed range in the field weakening region. An alternative to permanent magnet motors is synchronous motors with field windings. This article presents a novel design of a traction brushless synchronous motor with a field winding and a two-phase harmonic exciter winding on the rotor and zero-sequence signal injection. The two-phase harmonic exciter winding increases the electromotive force on the field winding compared to a single-phase one and makes it possible to start the motor at any rotor position. This article discusses the advantages of the proposed design over conventional solutions. A simplified mathematical model based on the finite element method for steady state simulation is presented. The machine performance of a hysteresis current controller and a field-oriented PI current controller are compared using the model. Full article
Show Figures

Figure 1

13 pages, 4139 KiB  
Article
Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores
by Marija Šuljagić, Vuk Uskoković, Lukasz Kilanski, Sabina Lewinska, Abdul Khaliq, Anna Ślawska-Waniewska, Aleksandar Kremenović, Vladimir Pavlović, Dejan A. Jeremić and Ljubica Andjelković
Viewed by 441
Abstract
First-row transition metal oxides have relatively modest magnetic properties compared to those of permanent magnets based on rare earth elements. However, there is a hope that this gap might be bridged via proper compositional and structural adjustments. Bi-magnetic nanostructures with homogeneous interfaces often [...] Read more.
First-row transition metal oxides have relatively modest magnetic properties compared to those of permanent magnets based on rare earth elements. However, there is a hope that this gap might be bridged via proper compositional and structural adjustments. Bi-magnetic nanostructures with homogeneous interfaces often exhibit a combination or synergy of properties of both phases, resulting in improved performance compared to their monophasic magnetic counterparts. To gain a deeper insight into these complex structures, a bi-magnetic nanostructured material composed of superparamagnetic nanoparticles comprising a zinc ferrite core and a nickel ferrite shell was synthesized using the seed-mediated growth approach. The resulting ZnFe2O4@NiFe2O4 core–shell nanoparticles were characterized using a series of experimental techniques and were compared to the ZnFe2O4 cores. Most importantly, the formation of the NiFe2O4 shell around the ZnFe2O4 core improved the net crystallinity of the material and altered the particle morphology by reducing the convexity of the surface. Simultaneously, the magnetic measurements demonstrated the coherence of the interface between the core and the shell. These effects combined led to improved spin coupling and stronger magnetism, as evidenced by higher saturation magnetization and the doubling of the blocking temperature for the ZnFe2O4@NiFe2O4 core–shell particles relative to the ZnFe2O4 cores. Full article
Show Figures

Figure 1

27 pages, 4210 KiB  
Article
Magnetic Field Distribution and Energy Losses in a Permanent Magnet Linear Synchronous Motor Under Stick-Slip Friction
by Paweł Olejnik, Yared D. Desta and Marcin Mydłowski
Energies 2025, 18(1), 191; https://doi.org/10.3390/en18010191 - 4 Jan 2025
Viewed by 652
Abstract
This study investigates the modeling and dynamic analysis of three coupled electromechanical systems, emphasizing interactions between a magnetic linear drive and frictional contact with flat springs. The experimental setup includes a table driven by a three-phase permanent magnet linear synchronous motor (PMLSM) using [...] Read more.
This study investigates the modeling and dynamic analysis of three coupled electromechanical systems, emphasizing interactions between a magnetic linear drive and frictional contact with flat springs. The experimental setup includes a table driven by a three-phase permanent magnet linear synchronous motor (PMLSM) using an LMCA4 inductor, LMCAS3 magnetic track, and Xenus XTL controller. Mechanical phenomena such as stick-slip friction and impulsive loads are observed, particularly due to the rapid buckling of flat springs. These springs transition between sliding friction and fixation, impacting the motor’s operation during reciprocating velocity trajectories and generating acoustic emissions. Numerical simulations using COMSOL Multiphysics evaluate the magnetic field and system geometry in two- and three-dimensional spaces. Key findings include mechanical stick-slip vibrations, numerical modeling of the linear drive, and comparative analysis of experimental and simulated inductor current variations. Additionally, energy loss mechanisms under irregular loading conditions are assessed. The results highlight the coupling between friction-induced current changes and magnetic field variations, elucidating their impact on motor efficiency, vibration propagation, and acoustic emissions. The study provides insights into optimizing the design and reliability of coreless linear motors for precision applications under discontinuous loading. Full article
Show Figures

Figure 1

18 pages, 8361 KiB  
Article
Multi-Physical Field Coupling Analysis of Electro-Controlled Permanent Magnet Blank Holder Processes Considering Thermal Magnetic Losses
by Zhanshan Wang, Linyuan Meng, Gaochao Yu and Xiaoyu Ji
Viewed by 314
Abstract
Electro-permanent magnet (EPM) technology is characterized by high integration, strong modularity, and stable magnetic force, making it a current research focus when combined with sheet metal deep drawing processes to develop EPM blank holder deep drawing technology. In this study, we investigated the [...] Read more.
Electro-permanent magnet (EPM) technology is characterized by high integration, strong modularity, and stable magnetic force, making it a current research focus when combined with sheet metal deep drawing processes to develop EPM blank holder deep drawing technology. In this study, we investigated the issue of thermal magnetic quantitative magnetic loss after the prolonged use of the EPMBH process, analyzing the variation in magnetic force with the temperature increase to provide necessary data support for the application of the EPMBH. First, a thermal network model for the four-magnetic pole unit EPM magnetic device was established, and through calculations on this model, the thermal equilibrium temperatures for the permanent magnet (PM)-NdFeB and reversible magnet (RM)-AlNiCo were found to be 72.13 °C and 72.41 °C, respectively. Second, the magnetic performance of PM and RM at different temperature points was measured to analyze the variation in their magnetic characteristics with the temperature increase. Third, a magnetic force model of the EPM magnetic device was established, and finite element analysis was conducted using the measured magnetic characteristics data of RM and PM. The results indicated that an increase in temperature leads to a reduction in magnetic force, with a maximum reduction of 18.57% observed after thermal equilibrium. An experimental testing platform was designed and built to validate the calculation and simulation results. Finally, a sheet metal deep drawing experiment using the EPMBH process was conducted, taking into account thermal magnetic loss factors. The results showed that magnetic force loss due to temperature rise affects the forming quality of the sheet metal. Therefore, in practical applications, it is necessary to establish a real-time temperature monitoring system and develop a temperature-based magnetic force compensation module. Full article
Show Figures

Figure 1

23 pages, 10070 KiB  
Article
An Innovative NOx Emissions Prediction Model Based on Random Forest Feature Selection and Evolutionary Reformer
by Xianyu Meng, Xi Li, Jialei Chen, Yongyan Fu, Chu Zhang, Muhammad Shahzad Nazir and Tian Peng
Processes 2025, 13(1), 107; https://doi.org/10.3390/pr13010107 - 3 Jan 2025
Viewed by 413
Abstract
Developing more precise NOx emission prediction models is pivotal for effectively controlling NOx emissions from gas turbines. In this paper, a Reformer is combined with random forest (RF) feature selection and the chaos game optimization (CGO) algorithm to predict NOx in gas turbines. [...] Read more.
Developing more precise NOx emission prediction models is pivotal for effectively controlling NOx emissions from gas turbines. In this paper, a Reformer is combined with random forest (RF) feature selection and the chaos game optimization (CGO) algorithm to predict NOx in gas turbines. Firstly, RF evaluates the importance of data features and reduces the dimensionality of multidimensional data to improve the predictive performance of the model. Secondly, the Reformer model extracts the inherent pattern of different data and explores the intrinsic connection between gas turbine variables to establish a more accurate NOx emission prediction model. Thirdly, the CGO algorithm is a parameter-free meta-heuristic optimization algorithm used to find the best parameters for the prediction model. The CGO algorithm was improved using Chebyshev Chaos Mapping to improve the initial population quality of the CGO algorithm. To evaluate the efficiency of the proposed model, a dataset of gas turbines in north-western Turkey is studied, and the results obtained are compared with seven benchmark models. The final results of this paper show that RF can select appropriate input variables, and the Reformer can extract the intrinsic links of the data and build a more accurate NOx prediction model. At the same time, ICGO can optimize the parameters of the Reformer effectively. Full article
Show Figures

Figure 1

30 pages, 11332 KiB  
Article
Research on Fault Diagnosis of Ship Propulsion System Based on Improved Residual Network
by Wei Yuan, Julong Chen and Xingji Yu
J. Mar. Sci. Eng. 2025, 13(1), 70; https://doi.org/10.3390/jmse13010070 - 3 Jan 2025
Viewed by 329
Abstract
In ship propulsion, accurately diagnosing faults in permanent magnet synchronous motor is essential but challenging due to limitations in the intuitive characterization and feature extraction of fault signals. This study presents an innovative approach to motor fault detection by integrating phase-contrastive current dot [...] Read more.
In ship propulsion, accurately diagnosing faults in permanent magnet synchronous motor is essential but challenging due to limitations in the intuitive characterization and feature extraction of fault signals. This study presents an innovative approach to motor fault detection by integrating phase-contrastive current dot patterns with an enhanced residual network, enhancing the diagnostic effect. Initially, the research involves creating a dataset that simulates stator currents. It is achieved through mathematical modeling of two common faults in permanent magnet synchronous motors: inter-turn short circuits and demagnetization. Subsequently, the parameters of the phase-contrastive current dot pattern are optimized using the Hunter-Prey Optimization technique to convert the three-phase stator currents of the motor into grayscale images. Lastly, a residual network, which includes a Squeeze-and-Excitation module, is engineered to boost the identification of crucial fault characteristics. The experimental results show that the proposed method achieves a high accuracy rate of 98.5% in the fault diagnosis task of motors, which can accurately identify the fault information and is significant in enhancing the reliability and safety of ship propulsion systems. Full article
Show Figures

Figure 1

15 pages, 6267 KiB  
Article
Efficiency Optimization of the Main Operating Points of an EV Traction Motor
by Gi-haeng Lee and Yong-min You
Appl. Sci. 2025, 15(1), 368; https://doi.org/10.3390/app15010368 - 2 Jan 2025
Viewed by 435
Abstract
Motor efficiency presents a trade-off between low-speed and high-speed regions. Additionally, the cross-sectional area of hairpin motors employing rectangular wires is larger than that of round wires, thereby amplifying AC copper losses. As the operating speed increases, the AC copper loss also becomes [...] Read more.
Motor efficiency presents a trade-off between low-speed and high-speed regions. Additionally, the cross-sectional area of hairpin motors employing rectangular wires is larger than that of round wires, thereby amplifying AC copper losses. As the operating speed increases, the AC copper loss also becomes more pronounced; therefore, efficiently determining the optimal design point considering these characteristics is essential. This study optimizes the efficiency of an electric vehicle (EV) simulation is conducted using MATLAB 2024, and the main operating points according to the driving cycle are selected. For the EV simulation to select the main operating points, the driving cycle of the multi-cycle test method, which is used for measuring domestic driving range, is considered to enhance the validity of the operating points. The efficiency optimization of the main operating points was performed considering the AC copper loss, and essential parameters such as the torque ripple and total harmonic distortion of the back-electromotive force were incorporated as constraints. Furthermore, the predictive performances of the 11 metamodels were compared to identify the most suitable metamodel for the output and design variables. Subsequently, the selected metamodel was integrated with four optimization algorithms to optimize the design. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop