Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of ZnFe2O4
2.3. Synthesis of ZnFe2O4@NiFe2O4
2.4. Characterization of the Synthesized Nanoparticles
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajalilou, A.; Mazlan, S.A. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A 2016, 122, 680. [Google Scholar] [CrossRef]
- Narang, S.B.; Pubby, K. Nickel Spinel Ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163. [Google Scholar] [CrossRef]
- Ismael, M. Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review. Sol. Energy Mater. Sol. Cells 2021, 219, 110786. [Google Scholar] [CrossRef]
- Costa, A.C.F.M.; Tortella, E.; Morelli, M.R.; Kiminami, R.H.G.A. Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 2003, 256, 174–182. [Google Scholar] [CrossRef]
- Caltun, O.; Dumitru, I.; Feder, M.; Lupu, N.; Chiriac, H. Substituted cobalt ferrites for sensors applications. J. Magn. Magn. Mater. 2008, 320, e869–e873. [Google Scholar] [CrossRef]
- Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019, 265, 29–44. [Google Scholar] [CrossRef]
- Valenzuela, R. Novel Applications of Ferrites. Phys. Res. Int. 2012, 2012, 591839. [Google Scholar] [CrossRef]
- Feng, R.; Lan, D.; Li, Y.; He, Y.; He, Q.; Wang, Y. Multiphase magnetic array-anchored layered Fe3O4/FeO/C composites with magnetic coupling effect for highly efficient microwave absorption. Ceram. Int. 2024, 50, 55461–55469. [Google Scholar] [CrossRef]
- Aakash; Choubey, R.; Das, D.; Mukherjee, S. Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. J. Alloy Compd. 2016, 668, 33–39. [Google Scholar] [CrossRef]
- Rana, S.; Gallo, A.; Srivastava, R.S.; Misra, R.D.K. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: Functionalization, conjugation and drug release kinetics. Acta Biomater. 2007, 3, 233–242. [Google Scholar] [CrossRef]
- Shultz, M.D.; Calvin, S.; Fatouros, P.P.; Morrison, S.A.; Carpenter, E.E. Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mater. 2007, 311, 464–468. [Google Scholar] [CrossRef]
- Starsich, F.H.L.; Sotiriou, G.A.; Wurnig, M.C.; Eberhardt, C.; Hirt, A.M.; Boss, A.; Pratsinis, S.E. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment. Adv. Healthc. Mater. 2016, 5, 2698–2706. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S.; Chowdhury, F.-U.-Z.; Hoque, S.M. Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J. Magn. Magn. Mater. 2019, 479, 126–134. [Google Scholar] [CrossRef]
- Kremenović, A.; Antić, B.; Vulić, P.; Blanuša, J.; Tomic, A. ZnFe2O4 antiferromagnetic structure redetermination. J. Magn. Magn. Mater. 2017, 426, 264–266. [Google Scholar] [CrossRef]
- Raghavender, A.T. Chapter 8—How to Make Zinc Ferrites Become Ferromagnetic? In Nano-Sized Multifunctional Materials; Hong, N.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 165–205. [Google Scholar] [CrossRef]
- Chinnasamy, C.N.; Narayanasamy, A.; Ponpandian, N.; Chattopadhyay, K.; Guérault, H.; Greneche, J.-M. Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Matter 2000, 12, 7795–7805. [Google Scholar] [CrossRef]
- Chinnasamy, C.; Narayanasamy, A.; Ponpandian, N.; Chattopadhyay, K.; Guérault, H.; Greneche, J.-M. Ferrimagnetic ordering in nanostructured zinc ferrite. Scr. Mater. 2001, 44, 1407–1410. [Google Scholar] [CrossRef]
- Hamdeh, H.; Ho, J.-C.; Oliver, S.; Willey, R.; Kramer, J.; Chen, Y.; Lin, S.; Yao, Y.; Daturi, M.; Busca, G. Ferrimagnetic zinc ferrite fine powders. IEEE Trans. Magn. 1995, 31, 3808–3810. [Google Scholar] [CrossRef]
- Umut, E.; Coşkun, M.; Pineider, F.; Berti, D.; Güngüneş, H. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. J. Colloid Interface Sci. 2019, 550, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Manglam, M.K.; Shukla, A.; Kumar, L.; Seal, P.; Borah, J.; Kar, M. Optimization of magnetic properties and hyperthermia study on soft magnetic nickel ferrite fiber. Phys. B Condens. Matter 2021, 621, 413280. [Google Scholar] [CrossRef]
- Dönmez, Ç.E.D.; Manna, P.K.; Nickel, R.; Aktürk, S.; van Lierop, J. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. ACS Appl. Mater. Interfaces 2019, 11, 6858–6866. [Google Scholar] [CrossRef]
- Faramawy, A.M.; El-Sayed, H.M. Enhancement of magnetization and optical properties of CuFe2O4/ZnFe2O4 core/shell nanostructure. Sci. Rep. 2024, 14, 6935. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Luo, J.; Wanjala, B.N.; Wang, C.; Chernova, N.A.; Engelhard, M.H.; Liu, Y.; Bae, I.-T.; Zhong, C.-J. Core−Shell-Structured Magnetic Ternary Nanocubes. J. Am. Chem. Soc. 2010, 132, 17686–17689. [Google Scholar] [CrossRef] [PubMed]
- Pichon, B.P.; Gerber, O.; Lefevre, C.; Florea, I.; Fleutot, S.; Baaziz, W.; Pauly, M.; Ohlmann, M.; Ulhaq, C.; Ersen, V.; et al. Microstructural and Magnetic Investigations of Wüstite-Spinel Core-Shell Cubic-Shaped Nanoparticles. Chem. Mater. 2011, 23, 2886–2900. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Z.J. Controlled Synthesis and Magnetic Properties of Bimagnetic Spinel Ferrite CoFe2O4 and MnFe2O4 Nanocrystals with Core–Shell Architecture. J. Am. Chem. Soc. 2012, 134, 10182–10190. [Google Scholar] [CrossRef] [PubMed]
- Torrejón, J.; Infante, G.; Badini-Confalonieri, G.; Pirota, K.R.; Vázquez, M. Electroplated Bimagnetic Microwires: From Processing to Magnetic Properties and Sensor Devices. JOM 2013, 65, 890–900. [Google Scholar] [CrossRef]
- Oberdick, S.D.; Abdelgawad, A.; Moya, C.; Mesbahi-Vasey, S.; Kepaptsoglou, D.; Lazarov, V.K.; Evans, R.F.L.; Meilak, D.; Skoropata, E.; van Lierop, J.; et al. Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles. Sci. Rep. 2018, 8, 3425. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.S.A.; Kim, H.; Lee, H.; Ryu, C.; Young Lee, J.; Yoon, J. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance. Nanomaterials 2020, 10, 991. [Google Scholar] [CrossRef]
- Polishchuk, D.; Nedelko, N.; Solopan, S.; Ślawska-Waniewska, A.; Zamorskyi, V.; Tovstolytkin, A.; Belous, A. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles. Nanoscale Res. Lett. 2018, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, K.; Cheng, L.; Zhu, J.; Ma, X.; Xu, H.; Li, Y.; Guo, L.; Gu, H.; Liu, Z. PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Lavorato, G.C.; Peddis, D.; Lima, E.; Troiani, H.E.; Agostinelli, E.; Fiorani, D.; Zysler, R.D.; Winkler, E.L. Magnetic Interactions and Energy Barrier Enhancement in Core/Shell Bimagnetic Nanoparticles. J. Phys. Chem. C 2015, 119, 15755–15762. [Google Scholar] [CrossRef]
- Cardona, F.A.; Urquiza, E.S.; de la Presa, P.; Tobón, S.H.; Pal, U.; Fraijo, P.H.; Yacaman, M.J.; Ramírez, J.D.L.; Ivkov, R.; Angulo-Molina, A.; et al. Enhanced magnetic properties and MRI performance of bi-magnetic core–shell nanoparticles. RSC Adv. 2016, 6, 77558–77568. [Google Scholar] [CrossRef]
- Lavorato, G.C.; Lima, E.; Troiani, H.E.; Zysler, R.D.; Winkler, E.L. Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale 2017, 9, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Fabris, F.; Lima, E.; De Biasi, E.; Troiani, H.E.; Mansilla, M.V.; Torres, T.E.; Pacheco, R.F.; Ibarra, M.R.; Goya, G.F.; Zysler, R.D.; et al. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core–shell nanoparticles. Nanoscale 2019, 11, 3164–3172. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Sun, S.; Li, J.; Wang, Z.L.; Liu, J.P. Tailoring magnetic properties of core/shell nanoparticles. Appl. Phys. Lett. 2004, 85, 792–794. [Google Scholar] [CrossRef]
- Lavorato, G.C.; Das, R.; Xing, Y.; Robles, J.; Litterst, F.J.; Baggio-Saitovitch, E.; Phan, M.-H.; Srikanth, H. Origin and Shell-Driven Optimization of the Heating Power in Core/Shell Bimagnetic Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 1755–1765. [Google Scholar] [CrossRef]
- Nica, V.; Caro, C.; Páez-Muñoz, J.M.; Leal, M.P.; Garcia-Martin, M.L. Bi-Magnetic Core-Shell CoFe2O4@MnFe2O4 Nanoparticles for In Vivo Theranostics. Nanomaterials 2020, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Li, J.; Wang, Z.L.; Liu, J.P.; Sun, S. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Lett. 2004, 4, 187–190. [Google Scholar] [CrossRef]
- Estrader, M.; López-Ortega, A.; Estradé, S.; Golosovsky, I.V.; Salazar-Alvarez, G.; Vasilakaki, M.; Trohidou, K.N.; Varela, M.; Stanley, D.C.; Sinko, M.; et al. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat. Commun. 2013, 4, 2960. [Google Scholar] [CrossRef] [PubMed]
- López-Ortega, A.; Estrader, M.; Salazar-Alvarez, G.; Roca, A.G.; Nogués, J. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 2015, 553, 1–32. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jang, J.-T.; Choi, J.-S.; Moon, S.H.; Noh, S.-H.; Kim, J.-W.; Kim, J.-G.; Kim, I.-S.; Park, K.I.; Cheon, J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 2011, 6, 418–422. [Google Scholar] [CrossRef]
- Soares, J.M.; Cabral, F.A.O.; de Araújo, J.H.; Machado, F.L.A. Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2. Appl. Phys. Lett. 2011, 98, 72502. [Google Scholar] [CrossRef]
- Masala, O.; Hoffman, D.; Sundaram, N.; Page, K.; Proffen, T.; Lawes, G.; Seshadri, R. Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid State Sci. 2006, 8, 1015–1022. [Google Scholar] [CrossRef]
- Sun, S.; Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205. [Google Scholar] [CrossRef]
- Sun, S.; Zeng, H.; Robinson, D.B.; Raoux, S.; Rice, P.M.; Wang, S.X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Andjelković, L.; Jeremić, D.; Milenković, M.R.; Radosavljević, J.; Vulić, P.; Pavlović, V.; Manojlović, D.; Nikolić, A.S. Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles. Ceram. Int. 2020, 46, 3528–3533. [Google Scholar] [CrossRef]
- Angotzi, M.S.; Mameli, V.; Cara, C.; Peddis, D.; Xin, H.L.; Sangregorio, C.; Mercuri, M.L.; Cannas, C. On the synthesis of bi-magnetic manganese ferrite-based core–shell nanoparticles. Nanoscale Adv. 2021, 3, 1612–1623. [Google Scholar] [CrossRef]
- Carbone, L.; Cozzoli, P.D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493. [Google Scholar] [CrossRef]
- Mélinon, P.; Begin-Colin, S.; Duvail, J.L.; Gauffre, F.; Boime, N.H.; Ledoux, G.; Plain, J.; Reiss, P.; Silly, F.; Warot-Fonrose, B. Engineered inorganic core/shell nanoparticles. Phys. Rep. 2014, 543, 163–197. [Google Scholar] [CrossRef]
- Scarfiello, R.; Nobile, C.; Cozzoli, P.D. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms. Front. Mater. 2016, 3, 56. [Google Scholar] [CrossRef]
- Jin, C.; Qu, Y.; Wang, M.; Han, J.; Hu, Y.; Guo, R. Aqueous Solution-Based Fe3O4 Seed-Mediated Route to Hydrophilic Fe3O4–Au Janus Nanoparticles. Langmuir 2016, 32, 4595–4601. [Google Scholar] [CrossRef] [PubMed]
- Jishkariani, D.; Wu, Y.; Wang, D.; Liu, Y.; van Blaaderen, A.; Murray, C.B. Preparation and Self-Assembly of Dendronized Janus Fe3O4–Pt and Fe3O4–Au Heterodimers. ACS Nano 2017, 11, 7958–7966. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Ju, Y.; Chu, X.; Ding, Y.; Huang, X.; Zhu, K.; Tang, T.; Su, X.; Hou, Y. Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic–Magnetic Ag–Fe@Fe3O4 Heterostructures with Reduced Cytotoxicity. Adv. Sci. 2018, 5, 1800271. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yin, H.; Dai, S.; Sun, S. A General Approach to Noble Metal−Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation. Chem. Mater. 2010, 22, 3277–3282. [Google Scholar] [CrossRef]
- Xu, C.; Wang, B.; Sun, S. Dumbbell-like Au−Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 2009, 131, 4216–4217. [Google Scholar] [CrossRef] [PubMed]
- Angotzi, M.S.; Mameli, V.; Cara, C.; Grillo, V.; Enzo, S.; Musinu, A.; Cannas, C. Defect-assisted synthesis of magneto-plasmonic silver-spinel ferrite heterostructures in a flower-like architecture. Sci. Rep. 2020, 10, 17015. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C.L.; Boey, F.; Mirkin, C.A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292. [Google Scholar] [CrossRef]
- Tancredi, P.; Londoño, O.M.; Rojas, P.C.R.; Wolff, U.; Socolovsky, L.M.; Knobel, M.; Muraca, D. Strategies to tailor the architecture of dual Ag/Fe-oxide nano-heterocrystals—Interfacial and morphology effects on the magnetic behavior. J. Phys. D Appl. Phys. 2018, 51, 295303. [Google Scholar] [CrossRef]
- Yelenich, O.; Solopan, S.; Greneche, J.; Belous, A. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core–shell structures. Solid State Sci. 2015, 46, 19–26. [Google Scholar] [CrossRef]
- Milkovič, O.; Michaliková, J.; Bednarčík, J.; Michalik, Š. Influence of Nanoparticle Size on Strain at the Core-Shell Interface. Key Eng. Mater. 2015, 662, 217–220. [Google Scholar] [CrossRef]
- Uskoković, V.; Košak, A.; Drofenik, M. Silica-coated lanthanum–strontium manganites for hyperthermia treatments. Mater. Lett. 2006, 60, 2620–2622. [Google Scholar] [CrossRef]
- Jain, R. A Review on the Development of XRD in Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2022, 35, 1033–1047. [Google Scholar] [CrossRef]
- Solopan, S.; Nedelko, N.; Lewińska, S.; Ślawska-Waniewska, A.; Zamorskyi, V.; Tovstolytkin, A.; Belous, A. Core/shell architecture as an efficient tool to tune DC magnetic parameters and AC losses in spinel ferrite nanoparticles. J. Alloy Compd. 2019, 788, 1203–1210. [Google Scholar] [CrossRef]
- Gomes, R.C.; da Silva, F.G.; Silva, T.-Q.; Gomide, G.; Pilati, V.; Aquino, R.; Geshev, J.; Perzynski, R.; Depeyrot, J. Magnetic irreversibility and saturation criteria in ultrasmall bimagnetic nanoparticles. J. Alloy Compd. 2020, 824, 153646. [Google Scholar] [CrossRef]
- Uskoković, V.; Huynh, E.; Tang, S.; Jovanović, S.; Wu, V.M. Colloids or powders: Which nanoparticle formulations do cells like more? Colloids Surf. B Biointerfaces 2019, 181, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V.; Tang, S.; Wu, V.M. Targeted magnetic separation of biomolecules and cells using earthicle-based ferrofluids. Nanoscale 2019, 11, 11236–11253. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.M.; Hakamy, A.; Afify, N.; Omer, M.; Abdelbaki, R. Nanoarchitectonics of zinc nickel ferrites by the hydrothermal method for improved structural and magnetic properties. J. Alloys Compd. 2024, 984, 173941. [Google Scholar] [CrossRef]
- Vinnik, D.; Zhivulin, V.; Sherstyuk, D.; Starikov, A.; Zezyulina, P.; Gudkova, S.; Zherebtsov, D.; Rozanov, K.; Trukhanov, S.; Astapovich, K.; et al. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater. Today Chem. 2021, 20, 100460. [Google Scholar] [CrossRef]
- Krishna, K.R.; Ravinder, D.; Kumar, K.V.; Lincon, C.A. Synthesis, XRD & SEM Studies of Zinc Substitution in Nickel Ferrites by Citrate Gel Technique. World J. Condens. Matter Phys. 2012, 2, 153–159. [Google Scholar] [CrossRef]
- Yoon, S. Temperature dependence of magnetic anisotropy constant in cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 2012, 324, 2620–2624. [Google Scholar] [CrossRef]
- Sattar, A.; El-Sayed, H.; Alsuqia, I. Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J. Magn. Magn. Mater. 2015, 395, 89–96. [Google Scholar] [CrossRef]
ZnFe2O4 | ZnFe2O4@NiFe2O4 | |
---|---|---|
Unit cell parameter | a = 8.4111 (18) Å | a = 8.3721 (16) Å |
Average crystallite size | 53 (1) Å | 82 (1) Å |
Average strain | 0.14 (2) % | 0.4 (1) % |
ZnFe2O4 | ZnFe2O4@NiFe2O4 | |||||
---|---|---|---|---|---|---|
T (K) | MS (emu/g) | MR (emu/g) | HC (Oe) | MS (emu/g) | MR (emu/g) | HC (Oe) |
4.5 | 48.67 | 15.88 | 222.77 | 49.53 | 15.87 | 167.78 |
25 | 47.62 | 6.05 | 56.90 | 49.40 | 9.16 | 73.21 |
50 | 46.09 | 1.93 | 11.32 | 48.90 | 5.71 | 37.21 |
75 | 44.72 | 1.00 | 2.30 | 48.42 | 3.52 | 19.17 |
100 | 42.18 | 1.91 | 13.76 | 47.83 | 1.75 | 6.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuljagić, M.; Uskoković, V.; Kilanski, L.; Lewinska, S.; Khaliq, A.; Ślawska-Waniewska, A.; Kremenović, A.; Pavlović, V.; Jeremić, D.A.; Andjelković, L. Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores. Magnetochemistry 2025, 11, 2. https://doi.org/10.3390/magnetochemistry11010002
Šuljagić M, Uskoković V, Kilanski L, Lewinska S, Khaliq A, Ślawska-Waniewska A, Kremenović A, Pavlović V, Jeremić DA, Andjelković L. Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores. Magnetochemistry. 2025; 11(1):2. https://doi.org/10.3390/magnetochemistry11010002
Chicago/Turabian StyleŠuljagić, Marija, Vuk Uskoković, Lukasz Kilanski, Sabina Lewinska, Abdul Khaliq, Anna Ślawska-Waniewska, Aleksandar Kremenović, Vladimir Pavlović, Dejan A. Jeremić, and Ljubica Andjelković. 2025. "Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores" Magnetochemistry 11, no. 1: 2. https://doi.org/10.3390/magnetochemistry11010002
APA StyleŠuljagić, M., Uskoković, V., Kilanski, L., Lewinska, S., Khaliq, A., Ślawska-Waniewska, A., Kremenović, A., Pavlović, V., Jeremić, D. A., & Andjelković, L. (2025). Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores. Magnetochemistry, 11(1), 2. https://doi.org/10.3390/magnetochemistry11010002