Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (227)

Search Parameters:
Keywords = nanopattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4042 KiB  
Article
Enabling Fast AI-Driven Inverse Design of a Multifunctional Nanosurface by Parallel Evolution Strategies
by Ashish Chapagain, Dima Abuoliem and In Ho Cho
Nanomaterials 2025, 15(1), 27; https://doi.org/10.3390/nano15010027 - 27 Dec 2024
Viewed by 425
Abstract
Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with [...] Read more.
Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties. For artificial intelligence (AI)-driven inverse design, earlier research integrates basic multiphysics principles such as dynamic viscosity, air diffusivity, surface tension, and electric potential with backward deep learning (DL) on the framework of ES. As a successful alternative to reinforcement learning, ES performed well for the AI-driven inverse design. However, the computational limitations of ES pose a critical technical challenge to achieving fast and efficient design. This paper addresses the challenges by proposing a parallel-computing-based ES (named parallel ES). The parallel ES demonstrated the desired speed and scalability, accelerating the AI-driven inverse design of multifunctional nanopatterned surfaces. Detailed parallel ES algorithms and cost models are presented, showing its potential as a promising tool for advancing AI-driven nanomanufacturing. Full article
Show Figures

Figure 1

10 pages, 2387 KiB  
Article
Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing
by Yu Na Kim, Eun Bin Kang, Tae Wan Park and Woon Ik Park
Materials 2024, 17(22), 5609; https://doi.org/10.3390/ma17225609 - 16 Nov 2024
Viewed by 694
Abstract
Nano-transfer printing (nTP) has emerged as an effective method for fabricating three-dimensional (3D) nanopatterns on both flat and non-planar substrates. However, most transfer-printed 3D patterns tend to exhibit non-discrete and/or non-porous structures, limiting their application in high-precision nanofabrication. In this study, we introduce [...] Read more.
Nano-transfer printing (nTP) has emerged as an effective method for fabricating three-dimensional (3D) nanopatterns on both flat and non-planar substrates. However, most transfer-printed 3D patterns tend to exhibit non-discrete and/or non-porous structures, limiting their application in high-precision nanofabrication. In this study, we introduce a simple and versatile approach to produce highly ordered, porous 3D cross-bar arrays through precise control of the nTP process parameters. By selectively adjusting the polymer solution concentration and spin-coating conditions, we successfully generated discrete, periodic line patterns, which were then stacked at a 90-degree angle to form a porous 3D cross-bar structure. This technique enabled the direct transfer printing of PMMA line patterns with well-defined, square-arrayed holes, without requiring additional deposition of functional materials. This method was applied across diverse substrates, including planar Si wafers, flexible PET, metallic copper foil, and transparent glass, demonstrating its adaptability. These well-defined 3D cross-bar patterns enhance the versatility of nTP and are anticipated to find broad applicability in various nano-to-microscale electronic devices, offering high surface area and structural precision to support enhanced functionality and performance. Full article
(This article belongs to the Special Issue Advances in Materials Processing (3rd Edition))
Show Figures

Graphical abstract

10 pages, 2242 KiB  
Article
Direct Writing of Metal Nanostructures with Focused Helium Ion Beams
by Vladimir Bruevich, Leila Kasaei, Leonard C. Feldman and Vitaly Podzorov
Electron. Mater. 2024, 5(4), 293-302; https://doi.org/10.3390/electronicmat5040018 - 14 Nov 2024
Viewed by 718
Abstract
A helium ion microscope (HIM) with a focused He+-ion beam of variable flux and energy can be used as a tool for local nanoscale surface modification. In this work, we demonstrate a simple but versatile use of the HIM focused He [...] Read more.
A helium ion microscope (HIM) with a focused He+-ion beam of variable flux and energy can be used as a tool for local nanoscale surface modification. In this work, we demonstrate a simple but versatile use of the HIM focused He ion beam to fabricate conducting metallic nano- and microstructures on arbitrary substrates of varied types and shapes by directly patterning pre-deposited initially discontinuous and highly insulating (>10 TΩ/sq.) ultrathin metal films. Gold or silver films, measuring 3 nm in thickness, thermally evaporated on solid substrates have a discontinuous nanocluster morphology. Such highly resistive films can be made locally conductive using moderate doses (2 × 1016–1017 cm−2) of low-energy (30 KeV) ion bombardment. We show that an HIM can be used to directly “draw” Au and Ag conductive lines and other patterns with a variable sheet resistance as low as 10 kΩ/sq. without the use of additional precursors. This relatively straightforward, high-definition technique of direct writing with an ion beam, free from complex in vacuo catalytic or precursor chemistries, opens up new opportunities for directly fabricating elements of conformal metallic nanocircuits (interconnects, resistors, and contacts) on arbitrary organic or inorganic substrates, including those with highly curved surfaces. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

14 pages, 4167 KiB  
Article
Impact of Temperature and Substrate Type on the Optical and Structural Properties of AlN Epilayers: A Cross-Sectional Analysis Using Advanced Characterization Techniques
by Wenwang Wei, Yi Peng, Yuefang Hu, Xiuning Xu and Quanwen Xie
Molecules 2024, 29(22), 5249; https://doi.org/10.3390/molecules29225249 - 6 Nov 2024
Viewed by 646
Abstract
AlN, with its ultra-wide bandgap, is highly attractive for modern applications in deep ultraviolet light-emitting diodes and electronic devices. In this study, the surface and cross-sectional properties of AlN films grown on flat and nano-patterned sapphire substrates are characterized by a variety of [...] Read more.
AlN, with its ultra-wide bandgap, is highly attractive for modern applications in deep ultraviolet light-emitting diodes and electronic devices. In this study, the surface and cross-sectional properties of AlN films grown on flat and nano-patterned sapphire substrates are characterized by a variety of techniques, including photoluminescence spectroscopy, high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and Raman spectroscopy. The results indicate that different sapphire substrates have minimal impact on the photoluminescence spectrum of the epitaxial films. As the temperature increased, the radius of curvature of the AlN films increased, while the warpage decreased. The AlN films grown on nano-patterned substrates exhibited superior quality with less surface oxidation. During the growth of AlN thin films on different types of substrates, slight shifts in the energy bands occurred due to differences in the introduction of carbon-related impurities and intrinsic defects. The Raman shift and full width at half maximum (FWHM) of the E2(low), A1(TO), E2(high), E1(TO), and E1(LO) phonon modes for the cross-sectional AlN films varied with the depth and temperature. The stress state within the film was precisely determined with specific depths and temperatures. The FWHM of the E2(high) phonon mode suggests that the films grown on nano-patterned substrates exhibited better crystalline quality. Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
Show Figures

Figure 1

11 pages, 2309 KiB  
Article
Glass Surface Nanostructuring by Soft Lithography and Chemical Etching
by Luciano Bravo, Martín Ampuero, Jonathan Correa-Puerta, Tomás P. Corrales, Sofía Flores, Benjamín Schleyer, Natalia Hassan, Patricio Häberle, Ricardo Henríquez and Valeria del Campo
Nanomaterials 2024, 14(21), 1714; https://doi.org/10.3390/nano14211714 - 27 Oct 2024
Cited by 1 | Viewed by 3252
Abstract
Due to its high durability and transparency, soda lime glass holds a huge potential for several applications such as photovoltaics, optical instrumentation and biomedical devices, among others. The different technologies request specific properties, which can be enhanced through the modification of the surface [...] Read more.
Due to its high durability and transparency, soda lime glass holds a huge potential for several applications such as photovoltaics, optical instrumentation and biomedical devices, among others. The different technologies request specific properties, which can be enhanced through the modification of the surface morphology with a nanopattern. Here, we report a simple method to nanostructure a glass surface with soft lithography and wet-chemical etching in potassium hydroxide (KOH) solutions. Glass samples etched with a polymeric mask showed a nanopattern with stripes of widths between 220 and 450 nm and modulated heights between 50 and 200 nm. For different solution concentrations or etching times, the obtained nanopatterns led to an increase or reduction of the water contact angle. The largest increment, ~20 degrees, was achieved by etching the glass for 180 min with 30% KOH concentration, while a super-hydrophilic glass (~9° contact angle) was achieved when etching for 90 min with the same concentration. Optical characterization showed a very low influence of the nanostructured pattern on glass transparency and an increment in UV transmittance for some cases. Full article
Show Figures

Figure 1

19 pages, 5079 KiB  
Review
Advances in Design and Fabrication of Micro-Structured Solid Targets for High-Power Laser-Matter Interaction
by Florin Jipa, Laura Ionel and Marian Zamfirescu
Photonics 2024, 11(11), 1008; https://doi.org/10.3390/photonics11111008 - 25 Oct 2024
Viewed by 907
Abstract
Accelerated particles have multiple applications in materials research, medicine, and the space industry. In contrast to classical particle accelerators, laser-driven acceleration at intensities greater than 1018 W/cm2, currently achieved at TW and PW laser facilities, allow for much larger electric [...] Read more.
Accelerated particles have multiple applications in materials research, medicine, and the space industry. In contrast to classical particle accelerators, laser-driven acceleration at intensities greater than 1018 W/cm2, currently achieved at TW and PW laser facilities, allow for much larger electric field gradients at the laser focus point, several orders of magnitude higher than those found in conventional kilometer-sized accelerators. It has been demonstrated that target design becomes an important factor to consider in ultra-intense laser experiments. The energetic and spatial distribution of the accelerated particles strongly depends on the target configuration. Therefore, target engineering is one of the key approaches to optimizing energy transfer from the laser to the accelerated particles. This paper provides an overview of recent progress in 2D and 3D micro-structured solid targets, with an emphasis on fabrication procedures based on laser material processing. Recently, 3D laser lithography, which involves Two-Photon Absorption (TPA) effects in photopolymers, has been proposed as a technique for the high-resolution fabrication of 3D micro-structured targets. Additionally, laser surface nano-patterning followed by the replication of the patterns through molding, has been proposed and could become a cost-effective and reliable solution for intense laser experiments at high repetition rates. Recent works on numerical simulations have also been presented. Using particle-in-cell (PIC) simulation software, the importance of structured micro-target design in the energy absorption process of intense laser pulses—producing localized extreme temperatures and pressures—was demonstrated. Besides PIC simulations, the Finite-Difference Time-Domain (FDTD) numerical method offers the possibility to generate the specific data necessary for defining solid target material properties and designing their optical geometries with high accuracy. The prospects for the design and technological fabrication of 3D targets for ultra-intense laser facilities are also highlighted. Full article
(This article belongs to the Special Issue High-Power Ultrafast Lasers: Development and Applications)
Show Figures

Figure 1

13 pages, 16375 KiB  
Article
Laser-Induced Periodic Surface Structures and Their Application for Gas Sensing
by Johann Zehetner, Ivan Hotovy, Vlastimil Rehacek, Ivan Kostic, Miroslav Mikolasek, Dana Seyringer and Fadi Dohnal
Micromachines 2024, 15(9), 1161; https://doi.org/10.3390/mi15091161 - 17 Sep 2024
Viewed by 3597
Abstract
Semiconducting metal oxides are widely used for solar cells, photo-catalysis, bio-active materials and gas sensors. Besides the material properties of the semiconductor being used, the specific surface topology of the sensors determines device performance. This study presents different approaches for increasing the sensing [...] Read more.
Semiconducting metal oxides are widely used for solar cells, photo-catalysis, bio-active materials and gas sensors. Besides the material properties of the semiconductor being used, the specific surface topology of the sensors determines device performance. This study presents different approaches for increasing the sensing area of semiconducting metal oxide gas sensors. Micro- and nanopatterned laser-induced periodic surface structures (LIPSSs) are generated on silicon, Si/SiO2 and glass substrates. The surface morphologies of the fabricated samples are examined by FE SEM. We selected the nanostructuring and characterization of nanostructured source Ni/Au and Ti/Au films prepared on glass using laser ablation as the most suitable of the investigated approaches. Surface structures produced on glass by backside ablation provide 100 nm features with a high surface area; they are also transparent and have high resistivity. The value of the hydrogen sensitivity in the range concentrations from 100 to 500 ppm was recorded using transmittance measurements to be twice as great for the nanostructured target TiO2/Au as compared to the NiO/Au. It was found that such transparent materials present additional possibilities for producing optical gas sensors. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro- and Nanoprocessing, 2nd Edition)
Show Figures

Figure 1

12 pages, 3151 KiB  
Article
SuperNANO: Enabling Nanoscale Laser Anti-Counterfeiting Marking and Precision Cutting with Super-Resolution Imaging
by Yiduo Chen, Bing Yan, Liyang Yue, Charlotte L. Jones and Zengbo Wang
Viewed by 767
Abstract
In this paper, we present a unique multi-functional super-resolution instrument, the SuperNANO system, which integrates real-time super-resolution imaging with direct laser nanofabrication capabilities. Central to the functionality of the SuperNANO system is its capacity for simultaneous nanoimaging and nanopatterning, enabling the creation of [...] Read more.
In this paper, we present a unique multi-functional super-resolution instrument, the SuperNANO system, which integrates real-time super-resolution imaging with direct laser nanofabrication capabilities. Central to the functionality of the SuperNANO system is its capacity for simultaneous nanoimaging and nanopatterning, enabling the creation of anti-counterfeiting markings and precision cutting with exceptional accuracy. The SuperNANO system, featuring a unibody superlens objective, achieves a resolution ranging from 50 to 320 nm. We showcase the instrument’s versatility through its application in generating high-security anti-counterfeiting features on an aluminum film. These ‘invisible’ security features, which are nanoscale in dimension, can be crafted with arbitrary shapes at designated locations. Moreover, the system’s precision is further evidenced by its ability to cut silver nanowires to a minimum width of 50 nm. The integrated imaging and fabricating functions of the SuperNANO make it a pivotal tool for a variety of applications, including nanotrapping, sensing, cutting, welding, drilling, signal enhancement, detection, and nanoscale laser treatment. Full article
(This article belongs to the Special Issue Optical and Photonic Devices: From Design to Nanofabrication)
Show Figures

Figure 1

25 pages, 5468 KiB  
Review
A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System
by Sunggu Kang, Yeeun Woo, Yoseph Seo, Daehyeon Yoo, Daeryul Kwon, Hyunjun Park, Sang Deuk Lee, Hah Young Yoo and Taek Lee
Pharmaceutics 2024, 16(9), 1171; https://doi.org/10.3390/pharmaceutics16091171 - 5 Sep 2024
Viewed by 1288
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, [...] Read more.
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them. Full article
Show Figures

Figure 1

19 pages, 2872 KiB  
Article
Antimicrobial and Hemostatic Diatom Biosilica Composite Sponge
by Sol Youn, Mi-Ran Ki, Ki Ha Min, Mohamed A. A. Abdelhamid and Seung Pil Pack
Antibiotics 2024, 13(8), 714; https://doi.org/10.3390/antibiotics13080714 - 30 Jul 2024
Cited by 1 | Viewed by 1458
Abstract
The 3D nanopatterned silica shells of diatoms have gained attention as drug delivery vehicles because of their high porosity, extensive surface area, and compatibility with living organisms. Tooth extraction may result in various complications, including impaired blood clotting, desiccation of the root canal, [...] Read more.
The 3D nanopatterned silica shells of diatoms have gained attention as drug delivery vehicles because of their high porosity, extensive surface area, and compatibility with living organisms. Tooth extraction may result in various complications, including impaired blood clotting, desiccation of the root canal, and infection. Therapeutic sponges that possess multiple properties, such as the ability to stop bleeding and kill bacteria, provide numerous advantages for the healing of the area where a tooth has been removed. This study involved the fabrication of a composite material with antibacterial and hemostatic properties for dental extraction sponges. We achieved this by utilizing the porous nature and hemostatic capabilities of diatom biosilica. The antibiotic used was doxycycline. The gelatin-based diatom biosilica composite with antibiotics had the ability to prevent bleeding and release the antibiotic over a longer time compared to gelatin sponge. These properties indicate its potential as a highly promising medical device for facilitating rapid healing following tooth extraction. Full article
Show Figures

Figure 1

16 pages, 1380 KiB  
Review
Optical Active Meta-Surfaces, -Substrates, and Single Quantum Dots Based on Tuning Organic Composites with Graphene
by Marcelo R. Romero and A. Guillermo Bracamonte
Materials 2024, 17(13), 3242; https://doi.org/10.3390/ma17133242 - 2 Jul 2024
Viewed by 1157
Abstract
In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials [...] Read more.
In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications. Full article
Show Figures

Graphical abstract

15 pages, 9036 KiB  
Review
Substrate Neutrality for Obtaining Block Copolymer Vertical Orientation
by Kaitlyn Hillery, Nayanathara Hendeniya, Shaghayegh Abtahi, Caden Chittick and Boyce Chang
Polymers 2024, 16(12), 1740; https://doi.org/10.3390/polym16121740 - 19 Jun 2024
Viewed by 1108
Abstract
Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer brushes play a crucial role in providing a neutral surface conducive for the orientational control of BCPs. These brushes create a [...] Read more.
Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer brushes play a crucial role in providing a neutral surface conducive for the orientational control of BCPs. These brushes create a non-preferential substrate, allowing wetting of the distinct chemistries from each block of the BCP. This vertically aligns the BCP self-assembled lattice to create patterns that are useful for semiconductor nanofabrication. In this review, we aim to explore various methods used to tune the substrate and BCP interface toward a neutral template. This review takes a historical perspective on the polymer brush methods developed to achieve substrate neutrality. We divide the approaches into copolymer and blended homopolymer methods. Early attempts to obtain neutral substrates utilized end-grafted random copolymers that consisted of monomers from each block. This evolved into side-group-grafted chains, cross-linked mats, and block cooligomer brushes. Amidst the augmentation of the chain architecture, homopolymer blends were developed as a facile method where polymer chains with each chemistry were mixed and grafted onto the substrate. This was largely believed to be challenging due to the macrophase separation of the chemically incompatible chains. However, innovative methods such as sequential grafting and BCP compatibilizers were utilized to circumvent this problem. The advantages and challenges of each method are discussed in the context of neutrality and feasibility. Full article
(This article belongs to the Special Issue Block Copolymers: Synthesis, Self-Assembly and Application)
Show Figures

Figure 1

48 pages, 17876 KiB  
Review
Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces
by Marion Ryan C. Sytu, David H. Cho and Jong-in Hahm
Polymers 2024, 16(9), 1267; https://doi.org/10.3390/polym16091267 - 1 May 2024
Cited by 2 | Viewed by 2282
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. [...] Read more.
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA–BCP hybrids, protein–BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review. Full article
Show Figures

Figure 1

11 pages, 4602 KiB  
Article
Analytical Investigation of Replica-Molding-Enabled Nanopatterned Tribocharging Process on Soft-Material Surfaces
by In Ho Cho, Myung Gi Ji and Jaeyoun Kim
Micromachines 2024, 15(3), 417; https://doi.org/10.3390/mi15030417 - 21 Mar 2024
Cited by 1 | Viewed by 1636
Abstract
Nanopatterned tribocharge can be generated on the surface of elastomers through their replica molding with nanotextured molds. Despite its vast application potential, the physical conditions enabling the phenomenon have not been clarified in the framework of analytical mechanics. Here, we explain the final [...] Read more.
Nanopatterned tribocharge can be generated on the surface of elastomers through their replica molding with nanotextured molds. Despite its vast application potential, the physical conditions enabling the phenomenon have not been clarified in the framework of analytical mechanics. Here, we explain the final tribocharge pattern by separately applying two models, namely cohesive zone failure and cumulative fracture energy, as a function of the mold nanotexture’s aspect ratio. These models deepen our understanding of the triboelectrification phenomenon. Full article
Show Figures

Figure 1

16 pages, 4281 KiB  
Article
Oscillatory Hypoxia Can Induce Senescence of Adipose-Derived Mesenchymal Stromal Cells Potentiating Invasive Transformation of Breast Epithelial Cells
by Ashkan Novin, Khadija Wali, Aditya Pant, Shaofei Liu, Wenqiang Du, Yamin Liu, Lichao Wang, Ming Xu, Binsheng Wang, Yasir Suhail and Kshitiz
Viewed by 1674
Abstract
Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to [...] Read more.
Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to metastatic transition of the cancer. Breast cancers are characterized by regions of hypoxia, which can be temporally unstable owing to a mismatch between oxygen supply and consumption. Using a high-sensitivity nanopatterned stromal invasion assay, we found that ASCs could promote stromal invasion of not only breast cancer cell lines but also MCF10A1, a cell line derived from untransformed breast epithelium. RNA sequencing of MCF10A1 cells conditioned with medium from ASCs revealed upregulation of genes associated with increased cell migration, chemotaxis, and metastasis. Furthermore, we found that fluctuating or oscillating hypoxia could induce senescence in ASCs, which could result in an increased invasive potential in the treated MCF10A1 cells. These findings highlight the complex interplay within the breast cancer microenvironment, hypoxia, and the role of ASCs in transforming even non-cancerous breast epithelium toward an invasive phenotype, providing insights into early metastatic events. Full article
Show Figures

Figure 1

Back to TopTop