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Abstract: Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for
semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer
brushes play a crucial role in providing a neutral surface conducive for the orientational control of
BCPs. These brushes create a non-preferential substrate, allowing wetting of the distinct chemistries
from each block of the BCP. This vertically aligns the BCP self-assembled lattice to create patterns
that are useful for semiconductor nanofabrication. In this review, we aim to explore various methods
used to tune the substrate and BCP interface toward a neutral template. This review takes a historical
perspective on the polymer brush methods developed to achieve substrate neutrality. We divide the
approaches into copolymer and blended homopolymer methods. Early attempts to obtain neutral
substrates utilized end-grafted random copolymers that consisted of monomers from each block. This
evolved into side-group-grafted chains, cross-linked mats, and block cooligomer brushes. Amidst
the augmentation of the chain architecture, homopolymer blends were developed as a facile method
where polymer chains with each chemistry were mixed and grafted onto the substrate. This was
largely believed to be challenging due to the macrophase separation of the chemically incompatible
chains. However, innovative methods such as sequential grafting and BCP compatibilizers were
utilized to circumvent this problem. The advantages and challenges of each method are discussed in
the context of neutrality and feasibility.
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1. Introduction

Thin films of block copolymers (BCPs) are emerging as an energy-efficient and precise
method for high-resolution nanopatterning. Periodic structures are self-assembled through
the microphase segregation of chemically distinct blocks. Depending on their Flory–Huggins
interaction parameter (χ), their segmental length (N), and the volume fraction (ϕ) of each block,
both the lattice structure and periodicity (L0) are thermodynamically fixed [1–6]. It is precisely
this molecular definition that has attracted the application of BCP self-assembly to complement
extreme ultraviolet lithography (EUV) to rectify pattern stochastics [7]. BCPs have also been
applied to improve resolution—a method known as density multiplication—where aggressive
scaling (<30 nm) has been achieved from the tried and tested 193 nm immersion lithography
(193i) [8,9]. However, the use of BCPs for patterning requires orientational control using a
templated substrate, a process formally known as directed self-assembly (DSA). The BCPs
are subjected to either thermal or solvent annealing or a combination of both for the lattice
structure to propagate on the template [10–12]. The templated substrate is critical to DSA and
it serves two purposes: (i) vertical orientation, where phase-segregated blocks face the top
surface (the central theme of this review); and (ii) alignment of the lattice along the substrate
for long-range order [1,2,5,13]. Downstream, DSA sets the line-space (lamellar) or contact-hole
(cylinder) pattern normal to the surface, allowing top-down selective etching processes that
leverage the distinct chemistry of each block for pattern transfer into the substrate. A general
process of this patterning method is outlined in Figure 1.
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The key to achieving vertical orientation in BCPs is the use of a chemically neutral
surface towards all blocks, meaning no preference in any of the blocks to wet the surface.
This neutrality requirement applies to both the polymer–substrate and polymer–air inter-
faces. Thus, the challenge of obtaining vertical patterns can be attributed to the mixed
chemistry of the BCP, in which one block generally demonstrates a preference toward a
particular interface; hence, it dominates wetting. Interfacial energy minimization forces the
orientation of the lattice to be parallel to the substrate. For vertical orientation to occur, a
critical window must be defined to prevent bias from either blocks of the BCP, meaning
their interfacial mismatch is roughly equal or “neutral” at the substrate and the polymer–air
interface. For example, in the case of polystyrene-block-poly(methyl methacrylate) (PS-b-
PMMA) on a silicon substrate, the PMMA block expresses a higher preference toward the
silicon oxide than its counterpart, PS [14–16]. Thus, surface modification is necessary to
neutralize the preference for a vertical BCP alignment with respect to the substrate.

Several methods have been examined to obtain orientational control such as electric
fields [17], solvent annealing [11,18,19], topologically roughened surface treatment [20], and
neutralizing the interface [13,21–26]. Most commonly, surface neutralization is achieved
using random copolymers (RCPs). PS-r-PMMA brushes in various forms were first intro-
duced in a seminal work by Mansky et al. to mitigate the BCP’s surface preference [13].
It is important to note that here that film thickness is limited because the influence of the
surface diminishes with increasing volume. The BCP film thickness should not significantly
exceed the characteristic period, L0, to ensure orientation is controlled via interfacial energy
at the substrate or air interface.

In this review, we discuss various surface-neutralizing methods employed for BCP
orientational control and outline the progression of neutral-surface methods. Although
we acknowledge the significance of a top coat for neutrality at the polymer–air interface,
especially in high-χ BCPs [27,28], this review focuses on the efforts regarding the polymer–
substrate interface. In general, the methods involve mixing the chemistry of both blocks to
create an effectively neutral substrate. This is achieved using copolymers or homopolymer
blends. The progress of both routes is compared, and unique opportunities in homopolymer
blending are highlighted. Finally, we discuss emerging methods of controlling surface
chemistry in the context of BCP orientation control.
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Figure 1. Schematic of nanofabrication process of chemically patterned substrates [29] highlighting 
the direct assembly of a BCP process using various forms of neutrality: (a) homopolymer brushes; 
(b) mixed homopolymer brushes; (c) random copolymer brushes; (d) side-chain brushes; (e) ter-
nary homopolymer brushes; (f) cross-linked polymer mats; (g) block cooligomer brushes. Colors 
represent polymers with distinct repeat units. Adapted with permission from references [1,29]. 

2. Early Developments in Obtaining BCP Self-Assembly 
Graphoepitaxy utilizes confinement in the form of topographical features such as 

trenches to achieve orientational alignment and represents some of the earliest demon-
strations of substrate neutrality. Here, BCP chains are oriented by (i) the chemical modifi-
cation of the side and bottom walls, and (ii) the commensurability of the trench size with 
its periodicity, forcing alignment in order to maximize conformational entropy. Although 
this method can be highly successful when obtaining ordered BCPs, it also poses limita-
tions such as chemical stability, overfilling and underfilling of BCP trenches, high costs, 
and interference with further processing if the structures cannot be removed [30–32]. For 
these reasons, chemoepitaxy methods are highly advantageous to maximize feature den-
sity [9]. Rather than topography, chemoepitaxy primarily relies on sparse chemical pat-
terns to guide the orientation of the BCP lattice. Here, a neutral surface is utilized as a 
spacer between guiding patterns and chemistry preferentially wets one of the blocks. Ide-
ally, BCP chains above the neutral surface adopt the orientation of the “guided” chains 
through careful control of their commensurability to the BCP period. 

Figure 1. Schematic of nanofabrication process of chemically patterned substrates [29] highlighting
the direct assembly of a BCP process using various forms of neutrality: (a) homopolymer brushes;
(b) mixed homopolymer brushes; (c) random copolymer brushes; (d) side-chain brushes; (e) ternary
homopolymer brushes; (f) cross-linked polymer mats; (g) block cooligomer brushes. Colors represent
polymers with distinct repeat units. Adapted with permission from references [1,29].

2. Early Developments in Obtaining BCP Self-Assembly

Graphoepitaxy utilizes confinement in the form of topographical features such as
trenches to achieve orientational alignment and represents some of the earliest demonstra-
tions of substrate neutrality. Here, BCP chains are oriented by (i) the chemical modification
of the side and bottom walls, and (ii) the commensurability of the trench size with its
periodicity, forcing alignment in order to maximize conformational entropy. Although this
method can be highly successful when obtaining ordered BCPs, it also poses limitations
such as chemical stability, overfilling and underfilling of BCP trenches, high costs, and
interference with further processing if the structures cannot be removed [30–32]. For these
reasons, chemoepitaxy methods are highly advantageous to maximize feature density [9].
Rather than topography, chemoepitaxy primarily relies on sparse chemical patterns to
guide the orientation of the BCP lattice. Here, a neutral surface is utilized as a spacer
between guiding patterns and chemistry preferentially wets one of the blocks. Ideally, BCP
chains above the neutral surface adopt the orientation of the “guided” chains through
careful control of their commensurability to the BCP period.
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Prior to modern DSA methods, BCP alignment through neutral interfaces has been
investigated since the 1990s. In particular, confining lamellar-forming BCP films between
two hard parallel walls was a well-investigated method to understand the effects of con-
finement on the BCP’s bulk interactions, phase segregation, natural period, and surface
interactions [33–35]. It was understood that thickness played a significant role in obtaining
symmetric and antisymmetric films, and incommensurate unconfined films were accom-
modated via the step height (L0) at the free surface where both blocks could be present
at both interfaces, as identified from works by Bates and Russell et al. [36–38]. Confining
the films via rigid supports with the preferential wetting of one of the blocks resulted
in parallel orientation, despite incommensurate spacing with the L0 of the BCP, which
frustrated the polymer with enthalpic and entropic penalties in free energy. To this effect,
Kellogg et al. were motivated to isolate the effects of these frustrations; hence, they reduced
preferential adsorption by applying random copolymers (RCPs) composed of the BCP block
components to the rigid wall [33]. In obtaining perpendicular lamellae, they demonstrated
the importance of the non-biased neutrality required for the BCP to relax into perpendicular
domains with respect to the interface. This gave rise to the uptake of RCP usage as an
inexpensive way to orient diblock copolymers by controlling the interfacial energy pref-
erence toward either block in the BCP. However, this method posed limitations such as
that unanchored RCPs may have exhibited mixing with the BCP layer and unremitting
processes. This, in turn, gave rise to other work to fill these gaps. This limited the effect the
RCPs could have on the BCP by not allowing the localization of the RCP to influence the
self-assembly behavior.

Further mixing between the RCP and thin-film BCP was alleviated by Mansky et al.,
who demonstrated end-grafting of the RCP onto a substrate to control interfacial interac-
tions between the BCP film and the substrate. Furthermore, by controlling the composition
of the monomer input of the RCP before synthesis, they were able to alter the neutrality of
the RCP brushes toward a lamellar-forming BCP (Figure 2a). It was found that roughly
sixty percent styrene was needed in the pre-synthetic composition for non-preferential
RCPs, which were then functionalized and anchored to the substrate. There was also little
to no preferential segregation; thus, the resulting BCP successfully self-assembled into
lamellae patterns. This led to the following works by Huang and Mays, which encased
the orientation of the copolymer microdomains normal to the surface by altering both the
surface and air interfaces [24]. This was accomplished by incorporating previous works
that had demonstrated that perfluoroalkyl-terminated polymers immigrated toward the air
interface and that had used hydroxy-terminated RCPs for the surface interface. Figure 2b
displays a schematic of these alterations. By adapting Mansky’s anchored RCPs and adding
surface-activated RCPs to the top, they demonstrated sufficient neutrality coverage on
either interface of the BCP [39]. However, this may be redundant for BCPs with a low χ

such as PS-b-PMMA because later findings showed that the top surface had near-equal in-
terfacial energies at elevated temperatures. Hence, the BCP orientation may be sufficiently
adaptable by modifying one interface.
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BCP thin-film using RCP derivatives [39]. Adapted with permission from reference [39]. 
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able RCPs due to the comprehensive reviews available elsewhere [2,16]. 

Figure 2. Left: Simplified schematics of directed self-assembly routes. Colors represent polymers with
distinct repeat units. Right: (a) Nitroxide-mediated radical polymerization for hydroxyl-terminated
end-functionalized RCPs inspired by Mansky’s study. (b) Alternative confinement of a BCP thin-film
using RCP derivatives [39]. Adapted with permission from reference [39].

3. Alternative Approaches to Obtaining Neutrality Using Copolymers

Since the recent uptake in the use of RCP brushes, researchers have naturally explored
other avenues to modify these systems to alleviate known limitations. Thus, Nealey and
Gopalan et al. explored the use of grafting RCPs from side-chain anchoring rather than end-
grafting polymers, as displayed in Figure 3a [40]. This was accomplished by the addition
of 2-hydroxyethyl methacrylate (HEMA) during polymerization to form the hydroxyl-
containing side-group series at various ratios (Figure 3b). The role of polydispersity (PDI)
on grafted brushes was also slightly explored using classical and living synthetic routes
to obtain polymers with differing PDIs. Yet, with multiple covalent binding sites now
introduced to the polymer, the effect of examining PDI was rendered obsolete compared
with adjusting the precursor ratios of monomers. Overall, substrate neutrality was achieved
(Figure 3c). The primary improvement from this approach was faster kinetic binding than
end-grafted RCPs due to the increased number of grafting sites. The changes in chain
conformation due to the multiple sites, however, led to a shallower brush thickness and
lower graft density, which has been shown to negatively impact neutrality due to the lack
of “proximity shielding” of the substrate akin to self-assembled monolayers [41,42].

Within a few years, Han, Nealey, and Gopalan et al. introduced an extensive technique
utilizing cross-linking thin-film mats (Figure 4) [26,43]. This study utilized the range of neu-
trality from RCP brushes as previously outlined by Mansky et al. [13]. These cross-linkable
RCPs were used as a neutral template for BCP orientational control by altering the PS frac-
tions to PMMA fractions and keeping the cross-linking fraction of glycidyl methacrylate
(GMA) constant. They successfully demonstrated the formation of perpendicular domains
of BCP using cross-linked RCP mats within a given neutrality window (Figure 4a–e). These
mats were suggested to be more chemically stable toward resisting materials compared
with polymer brushes [2], thus providing improved reproducibility, which is critical for
high-volume manufacturing. We limited our discussion on cross-linkable RCPs due to the
comprehensive reviews available elsewhere [2,16].
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Figure 4. Epoxy-containing RCP for use as cross-linking neutral mat with a schematic of achieved
neutrality of BCP of PS-b-PMMA (52-b-52) atop the cross-linked neutral mat. fGMA = 0.01 for all
images and varies by styrene fractions such that: (a) fSt = 0.48, (b) fSt = 0.53, (c) fSt = 0.56, (d) fSt = 0.59,
and (e) fSt = 0.63, scale bar represents 200 nm [43]. Adapted with permission from reference [43].

A few years later, Ji and Nealey’s study emerged, aiming to alleviate this tunable
window crisis by acknowledging that the synthesis of an RCP may be highly problem-
atic for polymer systems other than PS and PMMA [21]. This approach aimed to create
a simpler means of creating a neutral surface by preparing a block cooligomer in se-
quence for a monomer addition. Using low molecular weight (1.6–2.5 kg/mol) blocks of
f(st) = 51% and f(st) = 64%, with an average of 1.5 HEMA units per chain, they demonstrated
a successful neutrality for BCP self-assembly, as displayed in Figure 5. This study high-
lighted the use of polymer brushes as a neutral surface without employing RCPs as long as
the polymer brush blocks were sufficiently smaller than the BCP blocks to ensure mixing.

Other methods of providing neutrality have been investigated without the use of
RCPs. Efforts here have focused on using homopolymer blends as a simpler approach
for neutrality, if macrophase separation could be mitigated. In the following sections,
we discuss the literature, focusing on non-RCP neutrality. Additionally, we provide a
brief history of how early research influenced the field, the grafting processes to mitigate
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homopolymer separation, and the scope and limitations when obtaining a neutral surface
from homopolymer brushes.
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Figure 5. (Left) Block cooligomer brushes (1.6–2.5 kg/mol) of fSt = 0.64 grafted onto the substrate
prior to annealing the BCP of PS-b-PMMA (52-b-52) atop. (Right) Nitroxide-mediated polymerization
of O(S-b-MrH) block cooligomer [21]. Adapted with permission from reference [21].

4. A history of Homopolymer Blends

Winesett and Ade et al. were among the earliest to report tuning substrate neutrality
through the blending of homopolymer brushes [44]. End-hydroxyl-terminated PS and
PMMA were grafted as a blend onto a Si substrate. The random grafting of both chemistries
was assumed, despite a preference for PMMA to wet the substrate [33]. Nonetheless, their
water contact angle (WCA) measurements agreed with this conflicting assumption and
showed a proportional increase in WCA as PS within the blend increased (Figure 6). It was
further claimed that the results were similar to the work previously outlined by Mansky
et al. using RCP brushes. Note that a linear trend between the WCA and composition is to
be expected for RCPs due to their fixed composition. This is a critical difference from mixed
homopolymers because, as previously discussed, it is known that PMMA has a higher
preference toward the silicon substrate, and these interfacial energy differences would be
evident in practice. Therefore, it is unlikely that a linear WCA trend from 0 to 100% PS
blend would be observed. Due to the preference of PMMA, the WCA behavior should
exhibit overwhelming PMMA characteristics up to a point where a saturated PS is able
to overcome the interfacial preference [14,15]. Rather than using BCPs, films of a 1:1 PS–
PMMA homopolymer blend were used to test for neutrality. Here, the lack of macrophase
separation was attributed to a neutral substrate at 80% and 90% PS. In contradiction to
their claims, the neutrality window deviated from Mansky et al., which observed neutrality
from RCPs at 60% PS [24].

Despite achieving neutrality in the homopolymer blend, this study was not cited
as a successful attempt at gaining neutrality by the BCP community, perhaps due to
the absence of tests using BCP films (speculative). Thus, many groups have gravitated
toward employing modifications to avoid brush phase separation to arrive at substrate
neutrality [14,15,45].

One study from Liu et al. demonstrated a two-step method using PS and PMMA
brushes to investigate the wetting properties of PS polymer brushes by PMMA insertion [14].
Firstly, they outlined that PMMA-OH bound to the substrate, forming a brush layer using
the PS brushes. This was carried out by employing a control of non-functionalized PMMA
with the same annealing and washing process. This can be briefly observed in the chart
displayed in Figure 7. They also examined the effect of a reverse order of insertion and
found that when PS-OH (3 kg/mol) was inserted into PMMA-OH (20 kg/mol), the grafting
percentage was found to be around 9.4% PS and 90.6% PMMA. Alternatively, when PMMA-
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OH (20 kg/mol) was inserted into PS-OH (3 kg/mol), the composition was approximately
50.4% PS and 49.6% PMMA, further demonstrating the interfacial preference of PMMA
to the surface. Overall, this demonstrated that mixed homopolymers, when grafted in
sequence, could grant access to a neutral surface for BCP self-assembly.
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Figure 6. Water contact angle measurements of hydroxy-terminated PS (Mn = 3.8 kg/mol) and
PMMA (Mn = 4.4 kg/mol) as a function of PS composition with corresponding optical microscopy
images of 80 nm thick film with equal weights of PS = 22 kg/mol and PMMA = 23 kg/mol annealed
atop PS and PMMA brushes with compositions (a) 100% PMMA-OH, (b) 60% PS, (c) 80% PS, and
(d) 100% PS [44]. Adapted with permission from reference [44].
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Figure 7. (Left) Water contact angles of PS brushes before modification (grey), after PMMA-OH 20
(kg/mol) insertion (orange), and PS brushes treated with PMMA 20 (20 kg/mol) (teal). (Right) SEM
images of BCP PS-b-PMMA (52-b-52) annealed on the inserted brushes of PMMA in PS with the
relative Mn as follows: PS:PMMA (kg/mol) (a) 3:20, (b) 6:20, (c) 9:20, and (d) 20:20 [14]. Adapted
with permission from reference [14].

Another study carried out by Ji and Nealey et al. prepared homopolymer brushes
using blends of hydroxyl-terminated homopolymers with a low molecular weight BCP; in
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this case, it was around ten percent of the thin-film BCP size. The BCP “compatibilizer”
had to have a significantly low molecular weight so as not to microphase segregate, but
assist the homopolymer in mixing. After grafting the homopolymers, this “blender BCP”
was removed from the surface along with non-grafted excess chains before a larger thin
BCP film was applied; the selected data are shown in Figure 8a(i–iii). Thus, the blender
BCP did not interfere with the self-assembling BCP film. As previously observed by other
works, PMMA generally has a higher affinity for silicon substrates than PS. However,
with the addition of a blender BCP, defect-free vertical lamellae were obtained, despite
a homopolymer brush composition of 40% PS-60% PMMA and being near defect-free
at a ratio of 30% PS-70% PMMA. Many blends were reported to have more defects and
were unsuitable as a neutral template [23]. Interestingly, the authors reported that neutral
substrates were unattainable in the absence of BCP compatibilizers.
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Figure 8. (a) SEM images of self-assembled PS-b-PMMA (52k-b-52k) on homopolymer brushes made
from a blend solution (1 wt%) containing 70% BCP blender (5k-b-5k) and 30% homopolymers of
PS-OH (6 k) and PMMA-OH (6 k) before rinsing. The following images display these ratios of the 30%
homopolymer brushes of PS:PMMA: (i) 6:4, (ii) 5:5, and (iii) 4:6 [23]. (b) SEM images of PS-b-PMMA
(50k-b-50k) on long-chain binary homopolymer-blend brushes grafted without a BCP blender using
PS-OH (16 kg/mol) and PMMA-OH (15 kg/mol). The following images represent these ratios of
the cast blend PS:PMMA: (i) 85:15, (ii) 80:20, and (iii) 75:25 [15]. Adapted with permission from
references [15,23].

Nearly a decade later, Ceresoli and Sparnicci et al. similarly utilized homopolymers to
gain neutrality; however, in direct contradiction to Ji and Nealey et al., they did not employ
a blending agent. Instead, they employed long-chain homopolymers of PS-OH (16 kg/mol)
and PMMA-OH (15 kg/mol) in the hope of gaining a thicker brush with minimal separation
for a neutral template, in contrast to Ji and Nealey’s 6 kg/mol brushes [15]. However, the
window of neutrality of lamellae-forming BPC atop the long-chain brushes was reported to
be severely restricted. Although pockets of neutrality were achieved, there was a largely
homogenous texture from non-neutral conditions that dominated when the PS content
was less than 85% (Figure 8b(i–iii)). The reported composition of the grafted brush after
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rinsing was determined using a unique approach of the TGA-GC-MS chromatographic
relative area of the styrene and methyl methacrylate with respect to the corresponding mass
per charge (m/z). The neutrality achieved here challenged the preconceived notions and
warrants a revisiting of homopolymer-blended brushes. Areas of opportunity here include
balancing grafting characteristics, blend morphology, and asymmetric brush structures.

Shortly after, Pang and Ji et al. developed a single homopolymer approach where a
brush or mat with monomers that were chemically distinct from both blocks of the BCP were
used as a neutral substrate [46]. They successfully prepared vertically oriented BCP films
of PS-b-PMMA, poly(styrene-b-rac-lactide) (PS-b-PDLLA), and poly(styrene-b-propylene
carbonate) (PS-b-PPC). Although this method eliminated the need for mixed chemistry
(either copolymerization or blending), the identification and selection of homopolymers for
ideal neutrality can be challenging. Furthermore, it was demonstrated that small changes
in the monomer structure could lead to a loss of neutrality.

5. Surface Characterization

The surface characterization of polymer brushes is vital to understand the underlying
chemical and mechanical properties. Non-invasive characterization techniques such as
atomic force microscopy (AFM) [47–49], photo-induced force microscopy (PiFM) [50],
angle-resolved XPS, and NEXAF are a few techniques that are often used. AFM and
PiFM are scanning probe techniques. This involves mounting a sharp tip on a three-
dimensional scanning device of subatomic precision [51]. Soft materials such as polymers
and polymer brushes are commonly imaged using the tapping mode, where the van der
Waals interactions define the attractive/repulsive forces and, therefore, contrast. AFM can
image both dry [52] and wet [47] brushes over a length-scale varying from nanometers to
micrometers. Macroscopic phase separation and morphology are provided as a function of
graft density [53–55]. Polymer brushes comprise stimuli-responsiveness, and AFM can be
a highly successful technique in characterizing and monitoring their behavior in different
environments [56,57]. For example, the topography changes initiated by reorganizing
polymer brushes under various solvent exposures can be captured using AFM (Figure 9).
PiFM, however, is more beneficial when probing the chemical structure. It provides an
alternative to diffraction-limited traditional Fourier transform infrared spectroscopy (FTIR),
which is unable to resolve sub-10 nm molecular arrangements [58]. PiFM is essentially
AFM equipped with an optical system to probe molecular resonance. It has the ability
to spatiochemically image specific domains [50]. Polymer blends do not usually have
the ability to respond to resonant Raman enhancement where long-signal integration is
required [58]. Therefore, the mechanical detection of molecular resonance offered by PiFM
is uniquely positioned to understand the chemical properties of polymer brush blends.

Additionally, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can
be a powerful technique to analyze the electronic and structural properties of ultrathin
molecular layers by non-destructively revealing both the structure and chemistry of thin
organic films. This technique quantifies the density of bonds involving elements such
as carbon, nitrogen, oxygen, and fluorine; develops depth profiles; and determines bond
orientation. By measuring the absorption of linearly polarized soft X-rays near the K-shell
threshold, NEXAFS provides an element-selective analysis of low-Z elements, making
it particularly effective when studying molecular structures at interfaces [59]. It offers
detailed surface composition profiles from the top 1 to 6 nanometers of the material, which
is crucial for understanding both surface and near-surface chemistry in polymer brushes. By
measuring the electron yield at different kinetic energies corresponding with various depths
within the material, NEXAFS offers a detailed depth profile of the chemical composition by
applying a variable negative voltage bias to the detector grid, selectively detecting electrons
emitted from specific depths [60].

This offers advantages over X-ray photoelectron spectroscopy (XPS) and ultraviolet
photoelectron spectroscopy (UPS) by focusing on unoccupied states and providing com-
plementary information rather than examining occupied states in the core and valence
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regions. Additionally, NEXAFS is highly sensitive to chemical changes and the chemical
environment of atoms, allowing the detection of subtle variations in materials that might be
convoluted XPS and UPS [61]. Understanding the distribution of components such as photo-
acid generators (PAGs) within photoresist is essential for successful photolithography [62].
A significant issue NEXAFS addresses is the segregation of small-molecule additives such
as PAGs at the surface of the polymer brush during processing. This segregation can alter
the surface chemistry, impacting the performance and functionality of the polymer brush.
For instance, in chemically amplified photoresists, the presence of PAGs at the surface can
affect the interfacial photoresist structure, composition, and deprotection kinetics, leading
to problems such as T-topping and closure [60,62]. Another concern for polymer brushes
is accurate thickness determination. Optical methods such as ellipsometry [63,64] and
reflectometry [65,66] techniques are typically employed for film thicknesses ranging from
tens to hundreds of nanometers. In contrast, angle-resolved XPS is extensively utilized to
study very thin layers, typically only a few nanometers thick [67].
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Figure 9. (Left): Schematic of two-step insertion process of homopolymers for a neutral surface
using PS-OH (17.4 kg/mol) and PDMS-OH (17.8 kg/mol) to orient cylinder-forming BCPs: PS-b-
PDMS [45]. (Right): Tapping mode SPM topographical images of PS-OH (71.6% surface composition)
and PDMS-OH (28.4% surface composition) with schematics depicting expected brush and amplitude
fluctuations. (Top) is a weak PS-selective solvent, (middle) is a moderately PS-selective solvent, and
(bottom) is a highly PS-selective solvent [68]. Adapted with permission from reference [68].

6. Outlook and Future Work

The bulk of the literature discussed here focuses on PS-b-PMMA as a model system.
Although this provides valuable insights, PS-b-PMMA is unable to scale below a 20 nm
pitch for lithography due to its low χ [69]. Therefore, the methods for neutrality developed
for this system need to be adapted into high-χ BCPs such as PS-b-PDMS (polydimethylsilox-
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ane) and PS-b-P2VP (poly(2-vinyl pyridine)). However, synthesizing random copolymers
from chemically incompatible monomers (high χ) is challenging in practice. The mixed
homopolymer brush approach was applied to PS-b-PDMS for orientational control utilizing
the two-step insertion method outlined by Liu, Nealey, and Himpsel [14,45,68]. Panda
and Ho et al. demonstrated their efforts to gain control of cylinder-forming BCPs using
PS and PDMS homopolymer brushes. Figure 9 displays a generalized schematic of this
approach, achieving surface control. By sequentially grafting long-chain homopolymers,
they effectively achieved well-ordered perpendicular PDMS [45]. In addition, a similar
work further investigated the topography of PS and PDMS homopolymer brushes and
examined the swelling and contracting behavior of the chains with a cylinder-forming BCP
capped with a neutral top layer [68]. This was reported using solvent vapor annealing (SVA)
with PS-selective solvents and determined the amplitude of the roughness based on the
coil and stretching of the brushes when subjected to various solvents. This is an interesting
concept, where the chemical environment influenced the organization of the homopolymer
brushes, leading to topographical transformations. For example, amplitude fluctuations
(R)—given values of a lower amplitude corresponding with a weak PS-selective solvent, a
moderately PS-selective solvent, and a highly PS-selective solvent—were reported to be
R = 1.72 ± 0.55, R = 2.89 ± 0.73, and R = 2.98 ± 0.61, respectively. Aside from the successful
demonstration of film-spanning perpendicular cylinders via PS-b-PMMA thin-films, this
work demonstrated that surface-responsive brushes could be significant for the DSA of
high-χ BCPs.

In addition, synthetic strategies could be used to circumvent the challenges of creat-
ing neutral brushes for high-χ BCPs. A promising approach is utilizing polymerization
techniques that exhibit a highly asymmetric reaction ratio of monomers (such as surface-
initiated atom transfer radical polymerization) to obtain alternating copolymers [70]. This
technique has been applied to the preparation of polyelectrolyte brushes (PEBs) with tun-
able surface energy. The PEBs exhibited unique properties such as repulsive electrostatic
and steric interactions due to a charged group in the repeating polymer chain [70]. Addi-
tionally, the responsiveness of PEB to factors such as the pH, salt, solvent, and counterions
could be augmented based on the comonomer.

7. Conclusions

In conclusion, many studies have successfully demonstrated the alteration of a sub-
strate using polymer brushes over the last three decades. In this review, we have discussed
previous work that paved the way for substrate tuning in BCP self-assembly methods,
from the confinement of the BCP to RCP brush control via controlling synthetic monomer
ratios to variations in these species, including cross-linked polymer mats, side-anchored
brushes, and block cooligomers. We have outlined the brushes not RCP in nature, which
still expressed neutrality for orientational control, as well as the widely adaptable two-step
insertion method of mixed homopolymer brushes and the various attempts to overcome
interfacial energy mismatch, including adjusting the polymer molecular weight and adding
a blending agent to relax phase separation. Finally, we have discussed alternative methods
derived from previous works to branch out into new approaches and applications such as
modifying cylinder-forming BCPs and using alternating polymer systems. These studies
provide simple templates to obtain neutrality and tunability, and offer insights for the
future development of BCP nanopatterning.
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