Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,337)

Search Parameters:
Keywords = inundation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10174 KiB  
Article
A First Extension of the Robust Satellite Technique RST-FLOOD to Sentinel-2 Data for the Mapping of Flooded Areas: The Case of the Emilia Romagna (Italy) 2023 Event
by Valeria Satriano, Emanuele Ciancia, Nicola Pergola and Valerio Tramutoli
Remote Sens. 2024, 16(18), 3450; https://doi.org/10.3390/rs16183450 - 17 Sep 2024
Viewed by 413
Abstract
Extreme meteorological events hit our planet with increasing frequency, resulting in an ever-increasing number of natural disasters. Flash floods generated by intense and violent rains are among the most dangerous natural disasters that compromise crops and cause serious damage to infrastructure and human [...] Read more.
Extreme meteorological events hit our planet with increasing frequency, resulting in an ever-increasing number of natural disasters. Flash floods generated by intense and violent rains are among the most dangerous natural disasters that compromise crops and cause serious damage to infrastructure and human lives. In the case of such a kind of disastrous events, timely and accurate information about the location and extent of the affected areas can be crucial to better plan and implement recovery and containment interventions. Satellite systems may efficiently provide such information at different spatial/temporal resolutions. Several authors have developed satellite techniques to detect and map inundated areas using both Synthetic Aperture Radar (SAR) and a new generation of high-resolution optical data but with some accuracy limits, mostly due to the use of fixed thresholds to discriminate between the inundated and unaffected areas. In this paper, the RST-FLOOD fully automatic technique, which does not suffer from the aforementioned limitation, has been exported for the first time to the mid–high-spatial resolution (20 m) optical data provided by the Copernicus Sentinel-2 Multi-Spectral Instrument (MSI). The technique was originally designed for and successfully applied to Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data at a mid–low spatial resolution (from 1000 to 375 m). The processing chain was implemented in a completely automatic mode within the Google Earth Engine (GEE) platform to study the recent strong flood event that occurred in May 2023 in Emilia Romagna (Italy). The outgoing results were compared with those obtained through the implementation of an existing independent optical-based technique and the products provided by the official Copernicus Emergency Management Service (CEMS), which is responsible for releasing information during crisis events. The comparisons carried out show that RST-FLOOD is a simple implementation technique able to retrieve more sensitive and effective information than the other optical-based methodology analyzed here and with an accuracy better than the one offered by the CEMS products with a significantly reduced delivery time. Full article
Show Figures

Figure 1

23 pages, 6699 KiB  
Article
Urban Flood Risk Assessment and Mapping Using GIS-DEMATEL Method: Case of the Serafa River Watershed, Poland
by Wiktoria Natkaniec and Izabela Godyń
Water 2024, 16(18), 2636; https://doi.org/10.3390/w16182636 - 17 Sep 2024
Viewed by 585
Abstract
This paper develops a method integrating Geographic Information Systems (GIS) and the Decision-Making Trials and Evaluation Laboratory (DEMATEL) for the analysis of factors influencing urban flood risk and the identification of flood-prone areas. The method is based on nine selected factors: land use/land [...] Read more.
This paper develops a method integrating Geographic Information Systems (GIS) and the Decision-Making Trials and Evaluation Laboratory (DEMATEL) for the analysis of factors influencing urban flood risk and the identification of flood-prone areas. The method is based on nine selected factors: land use/land cover (LULC: the ratio of built-up areas, the ratio of greenery areas), elevation, slope, population density, distance from the river, soil, Topographic Wetness Index (TWI), and Normalized Difference Vegetation Index (NDVI). The DEMATEL method is used to determine the cause–effect relationship between selected factors, allowing for key criteria and their weights to be determined. LULC and population density were identified as the most important risk factors for urban floods. The method was applied to a case study—the Serafa River watershed (Poland), an urbanized catchment covering housing estates of cities of Kraków and Wieliczka frequently affected by flooding. GIS analysis based on publicly available data using QGIS with weights obtained from DEMATEL identified the vulnerable areas. 45% of the total catchment area was classified as areas with a very high or high level of flood risk. The results match the actual data on inundation incidents that occurred in recent years in this area. The study shows the potential and possibility of using the DEMATEL-GIS method to determine the significance of factors and to designate flood-prone areas. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

21 pages, 6610 KiB  
Article
A Data-Driven Multi-Step Flood Inundation Forecast System
by Felix Schmid and Jorge Leandro
Forecasting 2024, 6(3), 761-781; https://doi.org/10.3390/forecast6030039 - 13 Sep 2024
Viewed by 369
Abstract
Inundation maps that show water depths that occur in the event of a flood are essential for protection. Especially information on timings is crucial. Creating a dynamic inundation map with depth data in temporal resolution is a major challenge and is not possible [...] Read more.
Inundation maps that show water depths that occur in the event of a flood are essential for protection. Especially information on timings is crucial. Creating a dynamic inundation map with depth data in temporal resolution is a major challenge and is not possible with physical models, as these are too slow for real-time predictions. To provide a dynamic inundation map in real-time, we developed a data-driven multi-step inundation forecast system for fluvial flood events. The forecast system is based on a convolutional neural network (CNN), feature-informed dense layers, and a recursive connection from the predicted inundation at timestep t as a new input for timestep t + 1. The forecast system takes a hydrograph as input, cuts it at desired timesteps (t), and outputs the respective inundation for each timestep, concluding in a dynamic inundation map with a temporal resolution (t). The prediction shows a Critical Success Index (CSI) of over 90%, an average Root Mean Square Error (RMSE) of 0.07, 0.12, and 0.15 for the next 6 h, 12 h, and 24 h, respectively, and an individual RMSE value below 0.3 m, for all test datasets when compared with the results from a physically based model. Full article
(This article belongs to the Section Environmental Forecasting)
Show Figures

Figure 1

21 pages, 32879 KiB  
Article
Soil and Water Bioengineering in Fire-Prone Lands: Detecting Erosive Areas Using RUSLE and Remote Sensing Methods
by Melanie Maxwald, Ronald Correa, Edwin Japón, Federico Preti, Hans Peter Rauch and Markus Immitzer
Viewed by 538
Abstract
Soil and water bioengineering (SWBE) measures in fire-prone areas are essential for erosion mitigation, revegetation, as well as protection of settlements against inundations and landslides. This study’s aim was to detect erosive areas at the basin scale for SWBE implementation in pre- and [...] Read more.
Soil and water bioengineering (SWBE) measures in fire-prone areas are essential for erosion mitigation, revegetation, as well as protection of settlements against inundations and landslides. This study’s aim was to detect erosive areas at the basin scale for SWBE implementation in pre- and post-fire conditions based on a wildfire event in 2019 in southern Ecuador. The Revised Universal Soil Loss Equation (RUSLE) was used in combination with earth observation data to detect the fire-induced change in erosion behavior by adapting the cover management factor (C-factor). To understand the spatial accuracy of the predicted erosion-prone areas, high-resolution data from an Unmanned Aerial Vehicle (UAV) served for comparison and visual interpretation at the sub-basin level. As a result, the mean erosion at the basin was estimated to be 4.08 t ha−1 yr−1 in pre-fire conditions and 4.06 t ha−1 yr−1 in post-fire conditions. The decrease of 0.44% is due to the high autonomous vegetation recovery capacity of grassland in the first post-fire year. Extreme values increased by a factor of 4 in post-fire conditions, indicating the importance of post-fire erosion measures such as SWBE in vulnerable areas. The correct spatial location of highly erosive areas detected by the RUSLE was successfully verified by the UAV data. This confirms the effectivity of combining the RUSLE with very-high-resolution data in identifying areas of high erosion, suggesting potential scalability to other fire-prone regions. Full article
(This article belongs to the Special Issue Remote Sensing of Wildfire: Regime Change and Disaster Response)
Show Figures

Figure 1

31 pages, 15174 KiB  
Article
Flood Susceptibility Assessment for Improving the Resilience Capacity of Railway Infrastructure Networks
by Giada Varra, Renata Della Morte, Mario Tartaglia, Andrea Fiduccia, Alessandra Zammuto, Ivan Agostino, Colin A. Booth, Nevil Quinn, Jessica E. Lamond and Luca Cozzolino
Water 2024, 16(18), 2592; https://doi.org/10.3390/w16182592 - 12 Sep 2024
Viewed by 750
Abstract
Floods often cause significant damage to transportation infrastructure such as roads, railways, and bridges. This study identifies several topographic, environmental, and hydrological factors (slope, elevation, rainfall, land use and cover, distance from rivers, geology, topographic wetness index, and drainage density) influencing the safety [...] Read more.
Floods often cause significant damage to transportation infrastructure such as roads, railways, and bridges. This study identifies several topographic, environmental, and hydrological factors (slope, elevation, rainfall, land use and cover, distance from rivers, geology, topographic wetness index, and drainage density) influencing the safety of the railway infrastructure and uses multi-criteria analysis (MCA) alongside an analytical hierarchy process (AHP) to produce flood susceptibility maps within a geographic information system (GIS). The proposed methodology was applied to the catchment area of a railway track in southern Italy that was heavily affected by a destructive flood that occurred in the autumn of 2015. Two susceptibility maps were obtained, one based on static geophysical factors and another including triggering rainfall (dynamic). The results showed that large portions of the railway line are in a very highly susceptible zone. The flood susceptibility maps were found to be in good agreement with the post-disaster flood-induced infrastructural damage recorded along the railway, whilst the official inundation maps from competent authorities fail to supply information about flooding occurring along secondary tributaries and from direct rainfall. The reliable identification of sites susceptible to floods and damage may provide railway and environmental authorities with useful information for preparing disaster management action plans, risk analysis, and targeted infrastructure maintenance/monitoring programs, improving the resilience capacity of the railway network. The proposed approach may offer railway authorities a cost-effective strategy for rapidly screening flood susceptibility at regional/national levels and could also be applied to other types of linear transport infrastructures. Full article
Show Figures

Figure 1

19 pages, 11199 KiB  
Article
Predicting Flood Inundation after a Dike Breach Using a Long Short-Term Memory (LSTM) Neural Network
by Leon S. Besseling, Anouk Bomers and Suzanne J. M. H. Hulscher
Hydrology 2024, 11(9), 152; https://doi.org/10.3390/hydrology11090152 - 12 Sep 2024
Viewed by 634
Abstract
Hydrodynamic models are often used to obtain insights into potential dike breaches, because dike breaches can have severe consequences. However, their high computational cost makes them unsuitable for real-time flood forecasting. Machine learning models are a promising alternative, as they offer reasonable accuracy [...] Read more.
Hydrodynamic models are often used to obtain insights into potential dike breaches, because dike breaches can have severe consequences. However, their high computational cost makes them unsuitable for real-time flood forecasting. Machine learning models are a promising alternative, as they offer reasonable accuracy at a significant reduction in computation time. In this study, we explore the effectiveness of a Long Short-Term Memory (LSTM) neural network in fast flood modelling for a dike breach in the Netherlands, using training data from a 1D–2D hydrodynamic model. The LSTM uses the outflow hydrograph of the dike breach as input and produces water depths on all grid cells in the hinterland for all time steps as output. The results show that the LSTM accurately reflects the behaviour of overland flow: from fast rising and high water depths near the breach to slowly rising and lower water depths further away. The water depth prediction is very accurate (MAE = 0.045 m, RMSE = 0.13 m), and the inundation extent closely matches that of the hydrodynamic model throughout the flood event (Critical Success Index = 94%). We conclude that machine learning techniques are suitable for fast modelling of the complex dynamics of dike breach floods. Full article
Show Figures

Figure 1

12 pages, 11016 KiB  
Article
Inundation: A Gaming App for a Sustainable Approach to Sea Level Rise
by Stefano Solarino, Gemma Musacchio, Elena Eva, Marco Anzidei and Maddalena De Lucia
Sustainability 2024, 16(18), 7987; https://doi.org/10.3390/su16187987 - 12 Sep 2024
Viewed by 404
Abstract
Over the past few decades, communication has evolved significantly, driven by new technologies and digital connections, with the Internet and mobile phones transforming traditional communication methods. This shift has also impacted disaster risk awareness-raising, requiring messages to adapt to modern digital platforms. This [...] Read more.
Over the past few decades, communication has evolved significantly, driven by new technologies and digital connections, with the Internet and mobile phones transforming traditional communication methods. This shift has also impacted disaster risk awareness-raising, requiring messages to adapt to modern digital platforms. This article describes an effort to engage younger generations with the issue of sea level rise, critical yet often overlooked despite its significant impact on global coastal areas, through the serious digital game “Inundation”. Presented for the first time, the game offers an engaging experience where players protect territories from coastal flooding while understanding rising seas’ causes, effects, and impacts. Feedback from student beta testers highlighted the game’s effectiveness in conveying scientific concepts and increasing awareness about this pressing issue. The game’s innovative design, particularly its visual representation of sea level rise at a pace more relatable to human perception, fills a gap in environmental education by making complex topics accessible and engaging. While evaluating the impact of such tools is challenging, initial feedback suggests that “Inundation” has significant potential to foster disaster preparedness and proactive safeguarding actions. Full article
Show Figures

Figure 1

22 pages, 8177 KiB  
Article
ANN-Based Filtering of Drone LiDAR in Coastal Salt Marshes Using Spatial–Spectral Features
by Kunbo Liu, Shuai Liu, Kai Tan, Mingbo Yin and Pengjie Tao
Remote Sens. 2024, 16(18), 3373; https://doi.org/10.3390/rs16183373 - 11 Sep 2024
Viewed by 401
Abstract
Salt marshes provide diverse habitats for a wide range of creatures and play a key defensive and buffering role in resisting extreme marine hazards for coastal communities. Accurately obtaining the terrains of salt marshes is crucial for the comprehensive management and conservation of [...] Read more.
Salt marshes provide diverse habitats for a wide range of creatures and play a key defensive and buffering role in resisting extreme marine hazards for coastal communities. Accurately obtaining the terrains of salt marshes is crucial for the comprehensive management and conservation of coastal resources and ecology. However, dense vegetation coverage, periodic tide inundation, and pervasive ditch distribution create challenges for measuring or estimating salt marsh terrains. These environmental factors make most existing techniques and methods ineffective in terms of data acquisition resolution, accuracy, and efficiency. Drone multi-line light detection and ranging (LiDAR) has offered a fire-new perspective in the 3D point cloud data acquisition and potentially exhibited great superiority in accurately deriving salt marsh terrains. The prerequisite for terrain characterization from drone multi-line LiDAR data is point cloud filtering, which means that ground points must be discriminated from the non-ground points. Existing filtering methods typically rely on either LiDAR geometric or intensity features. These methods may not perform well in salt marshes with dense, diverse, and complex vegetation. This study proposes a new filtering method for drone multi-line LiDAR point clouds in salt marshes based on the artificial neural network (ANN) machine learning model. First, a series of spatial–spectral features at the individual (e.g., elevation, distance, and intensity) and neighborhood (e.g., eigenvalues, linearity, and sphericity) scales are derived from the original data. Then, the derived spatial–spectral features are selected to remove the related and redundant ones for optimizing the performance of the ANN model. Finally, the reserved features are integrated as input variables in the ANN model to characterize their nonlinear relationships with the point categories (ground or non-ground) at different perspectives. A case study of two typical salt marshes at the mouth of the Yangtze River, using a drone 6-line LiDAR, demonstrates the effectiveness and generalization of the proposed filtering method. The average G-mean and AUC achieved were 0.9441 and 0.9450, respectively, outperforming traditional geometric information-based methods and other advanced machine learning methods, as well as the deep learning model (RandLA-Net). Additionally, the integration of spatial–spectral features at individual–neighborhood scales results in better filtering outcomes than using either single-type or single-scale features. The proposed method offers an innovative strategy for drone LiDAR point cloud filtering and salt marsh terrain derivation under the novel solution of deeply integrating geometric and radiometric data. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

20 pages, 6830 KiB  
Article
Analysis of Inundation Flow Characteristics and Risk Assessment in a Subway Model Using Flow Simulations
by Jaehyun Shin, Dong Sop Rhee and Inhwan Park
Appl. Sci. 2024, 14(17), 8096; https://doi.org/10.3390/app14178096 - 9 Sep 2024
Viewed by 557
Abstract
Subway station platforms are vulnerable to flood damage. Thus, an investigation of inundation in subway platforms is required to ensure the safety of citizens against flooding. This study analyzed and validated the inundation characteristics and safety areas in a subway station model using [...] Read more.
Subway station platforms are vulnerable to flood damage. Thus, an investigation of inundation in subway platforms is required to ensure the safety of citizens against flooding. This study analyzed and validated the inundation characteristics and safety areas in a subway station model using experimental inundation depth measurements and numerical simulations. Then by using the simulation, the effects of increased inflow to water velocity and depth were analyzed, and its impact on human models was found by using risk assessments which included specific force (M0), Flood Hazard Degree (FD), Flood Intensity Factors (FIF), toppling velocity, and sliding velocity. The flood risk assessment analysis results show that assessments using M0 could increase uncertainty by broadening the evaluation of risky areas compared to other indices. Also, the drag force applied to the human models was calculated using the simulations, which provided inundation risk values to people in subway stations. Overall, the risk assessments would provide a criterion for flood situations in subway stations. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 13021 KiB  
Article
Application of GIS Spatial Analysis for the Assessment of Storm Surge Inundation Risks in the Guangdong–Macao–Hong Kong Great Bay Area
by Juan Zhang, Weiming Xu, Boliang Xu, Junpeng Zhao, Changxia Liang, Wenjing Zhang and Junjie Deng
Water 2024, 16(17), 2554; https://doi.org/10.3390/w16172554 - 9 Sep 2024
Viewed by 411
Abstract
This study evaluates the storm surge inundation risk in three anthropogenically infilled estuaries—Xichong, Renshan, and Kaozhouyang—located in the Guangdong–Macao–Hong Kong Great Bay Area, China. By integrating GIS spatial analysis with storm surge modeling, we conducted 204 numerical experiments to simulate storm surge inundation [...] Read more.
This study evaluates the storm surge inundation risk in three anthropogenically infilled estuaries—Xichong, Renshan, and Kaozhouyang—located in the Guangdong–Macao–Hong Kong Great Bay Area, China. By integrating GIS spatial analysis with storm surge modeling, we conducted 204 numerical experiments to simulate storm surge inundation under varying typhoon intensities and astronomical tide conditions. Results revealed that coastal terrain plays a crucial role in influencing storm surge levels and inundation extents. Specifically, the pocket-shaped terrain in the Renshan and Kaozhouyang estuaries amplified storm surges, resulting in higher inundation levels compared to the relatively open terrain of Xichong. Furthermore, anthropogenically reclaimed land in these estuaries appear to be particularly vulnerable to storm-induced inundation. Overall, this study underscores the importance of considering coastline morphology and the anthropogenic modifications of coastal terrain in storm surge risk assessments, offering valuable insights for disaster prevention and mitigation strategies. The use of ArcGIS spatial analysis coupled with storm surge modeling, facilitated by high-resolution DEMs, provides a statistical risk assessment of inundation. However, more complex flooding dynamics models need to be developed, particularly when terrestrial bottom friction information, which is heavily modified by human activities, can be accurately incorporated. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

20 pages, 7687 KiB  
Article
Enhancing Surface Water Monitoring through Multi-Satellite Data-Fusion of Landsat-8/9, Sentinel-2, and Sentinel-1 SAR
by Alexis Declaro and Shinjiro Kanae
Remote Sens. 2024, 16(17), 3329; https://doi.org/10.3390/rs16173329 - 8 Sep 2024
Viewed by 694
Abstract
Long revisit intervals and cloud susceptibility have restricted the applicability of earth observation satellites in surface water studies. Integrating multiple satellites offers potential for more frequent observations, yet combining different satellite sources, particularly optical and SAR satellites, presents complexities. This research explores the [...] Read more.
Long revisit intervals and cloud susceptibility have restricted the applicability of earth observation satellites in surface water studies. Integrating multiple satellites offers potential for more frequent observations, yet combining different satellite sources, particularly optical and SAR satellites, presents complexities. This research explores the data-fusion potential and limitations of Landsat-8/9 Operational Land Imager (OLI), Sentinel-2 Multispectral Instrument (MSI), and Sentinel-1 Synthetic Aperture (SAR) satellites to enhance surface water monitoring. By focusing on segmented surface water images, we demonstrate that combining optical and SAR data is generally effective and straightforward using a simple statistical thresholding algorithm. Kappa coefficients(κ) ranging from 0.80 to 0.95 indicate very strong harmony for integration across reservoirs, lakes, and river environments. In vegetative environments, integration with S1SAR shows weak harmony, with κ values ranging from 0.27 to 0.45, indicating the need for further studies. Global revisit interval maps reveal significant improvement in median revisit intervals from 15.87 to 22.81 days using L8/9 alone, to 4.51 to 7.77 days after incorporating S2, and further to 3.48 to 4.62 days after adding S1SAR. Even during wet season months, multi-satellite fusion maintained the median revisit intervals to less than a week. Maximizing all available open-source earth observation satellites is integral for advancing studies requiring more frequent surface water observations, such as flood, inundation, and hydrological modeling. Full article
Show Figures

Figure 1

21 pages, 5074 KiB  
Article
Research on the Threshold of the Transverse Gradient of the Floodplain in the Lower Yellow River Based on a Flood Risk Assessment Model
by Zhao Zheng, Ming Li, Liyu Quan, Guangzhang Ai, Chaojie Niu and Caihong Hu
Water 2024, 16(17), 2533; https://doi.org/10.3390/w16172533 - 6 Sep 2024
Viewed by 557
Abstract
Due to the influence of water and sediment conditions, engineering projects, channel erosion and siltation, river-related factors, and human activities (such as adjustments in floodplain production structures and village construction), there have been significant variations in the transverse gradient of the floodplain in [...] Read more.
Due to the influence of water and sediment conditions, engineering projects, channel erosion and siltation, river-related factors, and human activities (such as adjustments in floodplain production structures and village construction), there have been significant variations in the transverse gradient of the floodplain in the lower Yellow River. An irrational transverse gradient can lead to the rapid conversion of gravitational potential energy into kinetic energy during the flood evolution process, resulting in increased flow velocity and inundated areas. Exploring reasonable transverse gradients can provide technical support for floodplain management. Using “flood risk assessment” as a keyword, research papers from the Web of Science core database and CNKI published in the past five years were collected. Through a VOS viewer analysis of indicators, a flood risk assessment model based on the “Source–Path–Receptor–Consequence–Resilience” framework was established. A two-dimensional water and sediment model was used to simulate flood inundation scenarios with different transverse gradients in the same flood event, evaluate flood risks in the floodplain, and determine the optimal transverse gradient based on flood risk levels. The results indicate that, compared to low transverse gradients, moderate and high transverse gradients have a more significant driving effect on flood inundation, increasing flood risk opportunities for floodplains. Lower transverse gradients (i.e., TG = 10LG = 1.25‰) are the most favorable for flood protection in the floodplain after flood inundation. Full article
(This article belongs to the Special Issue Socio-Economics of Water Resources Management)
Show Figures

Figure 1

21 pages, 10428 KiB  
Article
Three Decades of Inundation Dynamics in an Australian Dryland Wetland: An Eco-Hydrological Perspective
by Indishe P. Senanayake, In-Young Yeo and George A. Kuczera
Remote Sens. 2024, 16(17), 3310; https://doi.org/10.3390/rs16173310 - 6 Sep 2024
Viewed by 628
Abstract
Wetland ecosystems are experiencing rapid degradation due to human activities, particularly the diversion of natural flows for various purposes, leading to significant alterations in wetland hydrology and their ecological functions. However, understanding and quantifying these eco-hydrological changes, especially concerning inundation dynamics, presents a [...] Read more.
Wetland ecosystems are experiencing rapid degradation due to human activities, particularly the diversion of natural flows for various purposes, leading to significant alterations in wetland hydrology and their ecological functions. However, understanding and quantifying these eco-hydrological changes, especially concerning inundation dynamics, presents a formidable challenge due to the lack of long-term, observation-based spatiotemporal inundation information. In this study, we classified wetland areas into ten equal-interval classes based on inundation probability derived from a dense, 30-year time series of Landsat-based inundation maps over an Australian dryland riparian wetland, Macquarie Marshes. These maps were then compared with three simplified vegetation patches in the area: river red gum forest, river red gum woodland, and shrubland. Our findings reveal a higher inundation probability over a small area covered by river red gum forest, exhibiting persistent inundation over time. In contrast, river red gum woodland and shrubland areas show fluctuating inundation patterns. When comparing percentage inundation with the Normalized Difference Vegetation Index (NDVI), we observed a notable agreement in peaks, with a lag time in NDVI response. A strong correlation between NDVI and the percentage of inundated area was found in the river red gum woodland patch. During dry, wet, and intermediate years, the shrubland patch consistently demonstrated similar inundation probabilities, while river red gum patches exhibited variable probabilities. During drying events, the shrubland patch dried faster, likely due to higher evaporation rates driven by exposure to solar radiation. However, long-term inundation probability exhibited agreement with the SAGA wetness index, highlighting the influence of topography on inundation probability. These findings provide crucial insights into the complex interactions between hydrological processes and vegetation dynamics in wetland ecosystems, underscoring the need for comprehensive monitoring and management strategies to mitigate degradation and preserve these vital ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing for Land Degradation and Drought Monitoring II)
Show Figures

Graphical abstract

13 pages, 2318 KiB  
Article
Socioeconomic Impact on Urban Resilience against Flood Damage
by Hyung Jun Park, Su Min Song, Dong Hyun Kim and Seung Oh Lee
Appl. Sci. 2024, 14(17), 7882; https://doi.org/10.3390/app14177882 - 4 Sep 2024
Viewed by 510
Abstract
While urban populations are rapidly increasing around the world, floods have been frequently and seriously occurring due to the climate crisis. As existing disaster prevention facilities have specific limitations in completely protecting against flood damages, the concept of resilience, which emphasizes the ability [...] Read more.
While urban populations are rapidly increasing around the world, floods have been frequently and seriously occurring due to the climate crisis. As existing disaster prevention facilities have specific limitations in completely protecting against flood damages, the concept of resilience, which emphasizes the ability to recover after becoming injured and harmed by a flood, is necessary to mitigate such damages. However, there is still a scarcity of studies that quantitatively show the relationship between the resilience and the socioeconomic costs, even though a variety of evaluation methods exist in the literature. This study aims to quantitively analyze the socioeconomic impact of flooding on the urban environment based on the concept of resilience. A method of evaluating four properties of resilience (redundancy, rapidity, resourcefulness, and robustness) through damage function and network analysis was used to measure changes in resilience against flood damages. In addition, to determine the socioeconomic impact of flooding, the costs incurred due to transportation delays and the lack of labor participation were evaluated. Differences in structural and social systems have led to variations in resilience and socioeconomic costs. As a future study, if the circumstances after flood events based on risk-based recovery can be evaluated, more effective urban flooding defense decisions would be expected. Full article
Show Figures

Figure 1

21 pages, 9533 KiB  
Article
An Algorithm for Generating Outdoor Floor Plans and 3D Models of Rural Houses Based on Backpack LiDAR
by Quanshun Zhu, Bingjie Zhang and Lailiang Cai
Sensors 2024, 24(17), 5723; https://doi.org/10.3390/s24175723 - 3 Sep 2024
Viewed by 409
Abstract
As the Rural Revitalization Strategy continues to progress, there is an increasing demand for the digitization of rural houses, roads, and roadside trees. Given the characteristics of rural areas, such as narrow roads, high building density, and low-rise buildings, the precise and automated [...] Read more.
As the Rural Revitalization Strategy continues to progress, there is an increasing demand for the digitization of rural houses, roads, and roadside trees. Given the characteristics of rural areas, such as narrow roads, high building density, and low-rise buildings, the precise and automated generation of outdoor floor plans and 3D models for rural areas is the core research issue of this paper. The specific research content is as follows: Using the point cloud data of the outer walls of rural houses collected by backpack LiDAR as the data source, this paper proposes an algorithm for drawing outdoor floor plans based on the topological relationship of sliced and rasterized wall point clouds. This algorithm aims to meet the needs of periodically updating large-scale rural house floor plans. By comparing the coordinates of house corner points measured with RTK, it is verified that the floor plans drawn by this algorithm can meet the accuracy requirements of 1:1000 topographic maps. Additionally, based on the generated outdoor floor plans, this paper proposes an algorithm for quickly generating outdoor 3D models of rural houses using the height information of wall point clouds. This algorithm can quickly generate outdoor 3D models of rural houses by longitudinally stretching the floor plans, meeting the requirements for 3D models in spatial analyses such as lighting and inundation. By measuring the distance from the wall point clouds to the 3D models and conducting statistical analysis, results show that the distances are concentrated between −0.1 m and 0.1 m. The 3D model generated by the method proposed in this paper can be used as one of the basic data for real 3D construction. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

Back to TopTop