Application of the Rainfall–Runoff–Inundation Model for Flood Risk Assessment in the Mekerra Basin, Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall and Runoff Climatology
2.3. Rainfall–Runoff–Inundation (RRI) Model
2.4. Data Collection
2.4.1. Rainfall and Runoff Data
2.4.2. Topographic and Watershed Data
2.4.3. Land Use
2.5. RRI Model Application
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Calibration and Validation Results
3.3. Simulation of Mekerra Flash Flood Event
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballais, J.-L.; Chave, S.; Dupont, N.; Masson, É.; Penven, M.-J. La méthode hydrogéomorphologique de détermination des zones inondables. Physio-Géo. Géographie Phys. Environ. 2011, 5, 173. [Google Scholar] [CrossRef]
- Randrianasolo, R. Evaluation de La Qualité Des Prévisions Pour l’aler Te Aux Crues. Master’s Thesis, Université Pierre et Marie Curie, Paris, France, 2009. [Google Scholar]
- Selek, B.; Tuncok, I.K.; Selek, Z. Changes in Climate Zones across Turkey. J. Water Clim. Chang. 2017, 9, 178–195. [Google Scholar] [CrossRef]
- Warwade, P.; Tiwari, S.; Ranjan, S.; Chandniha, S.K.; Adamowski, J. Spatio-Temporal Variation of Rainfall over Bihar State, India. J. Water Land Dev. 2018, 36, 183–197. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Jia, G.; Liu, Z.; Wang, D.; Hou, G. Characteristics of Rainfall and Runoff in Different Extreme Precipitation Events in the Beijing Mountain Area. Hydrol. Res. 2017, 49, 363–372. [Google Scholar] [CrossRef]
- Scott, D. Climate Change and Sustainable Tourism in the 21st Century. In Tourism Research: Policy, Planning, and Prospects; Departamento de Geografía, Universidad de Waterloo: Waterloo, ON, Canada, 2006; pp. 175–248. [Google Scholar]
- Koroma, A.O.; Saber, M.; Abdelbaki, C. Urban Flood Vulnerability Assessment in Freetown, Sierra Leone: AHP Approach. Hydrology 2024, 11, 158. [Google Scholar] [CrossRef]
- Abdi, I.; Meddi, M. Study on the Applicability of the SCS-CN-Based Models to Simulate Floods in the Semi-Arid Watersheds of Northern Algeria. Acta Geophys. 2021, 69, 217–230. [Google Scholar] [CrossRef]
- Hamitouche, Y.; Zeroual, A.; Meddi, M.; Assani, A.A.; Alkama, R.; Şen, Z.; Zhang, X. Projected Changes in Extreme Precipitation Patterns across Algerian Sub-Regions. Water 2024, 16, 1353. [Google Scholar] [CrossRef]
- Ziadi, S.R.; Keraghel, M.A. Flooding Vulnerability in Algiers (Algeria): An Analytic Hierarchy Process. Nat. Hazards 2024, 120, 6199–6221. [Google Scholar] [CrossRef]
- Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in Rainfall–Runoff Modeling and Evaluating Floodplain Inundation Maps in Arid Environments: Case Study of Ain Sefra City, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019, 78, 586. [Google Scholar] [CrossRef]
- Otmani, A.; Hazzab, A.; Atallah, M.; Apollonio, C.; Petroselli, A. Using Volunteered Geographic Information Data for Flood Mapping—Wadi Deffa El Bayadh Algeria. J. Appl. Water Eng. Res. 2023, 11, 464–480. [Google Scholar] [CrossRef]
- Yamani, K.; Hazzab, A.; Sekkoum, M.; Slimane, T. Mapping of Vulnerability of Flooded Area in Arid Region. Case Study: Area of Ghardaïa-Algeria. Model. Earth Syst. Environ. 2016, 2, 147. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.; Kantoush, S.A.; Saber, M.; Sumi, T. Rainfall-Runoff Modeling for Extreme Flash Floods in Wadi Samail, Oman. J. Jpn. Soc. Civ. Eng. Ser. B1 (Hydraul. Eng.) 2018, 74, I_691–I_696. [Google Scholar] [CrossRef]
- Arlis, A.P.; Farid, M.; Wahid, A.N.; Suryadi, Y.; Kuntoro, A.A. Prediction of Flooding Area in Batang Sinamar River Basin Based on Design Return Period Simulation by Using Rainfall Runoff Inundation Model. Environ. Sci. Proc. 2023, 25, 91. [Google Scholar] [CrossRef]
- Herath, R.D.; Pawar, U.; Aththanayake, D.M.; Siriwardhana, K.D.; Jayaneththi, D.I.; Palliyaguru, C.; Gunathilake, M.B.; Rathnayake, U. Rainfall-Runoff-Inundation (RRI) Model for Kalu River, Sri Lanka. Model. Earth Syst. Environ. 2024, 10, 1825–1839. [Google Scholar] [CrossRef]
- Saber, M.; Boulmaiz, T.; Guermoui, M.; Abdrabo, K.I.; Kantoush, S.A.; Sumi, T.; Boutaghane, H.; Nohara, D.; Mabrouk, E. Examining LightGBM and CatBoost Models for Wadi Flash Flood Susceptibility Prediction. Geocarto Int. 2022, 37, 7462–7487. [Google Scholar] [CrossRef]
- San, Z.M.L.T.; Zin, W.W.; Kawasaki, A.; Acierto, R.A.; Oo, T.Z. Developing Flood Inundation Map Using RRI and SOBEK Models: A Case Study of the Bago River Basin, Myanmar. J. Disaster Res. 2020, 15, 277–287. [Google Scholar] [CrossRef]
- Sriariyawat, A.; Kimmany, B.; Miyamoto, M.; Kakinuma, D.; Shakti, C.P.; Visessri, S. An Approach to Flood Hazard Mapping for the Chao Phraya River Basin Using Rainfall-Runoff-Inundation Model. J. Disaster Res. 2022, 17, 864–876. [Google Scholar] [CrossRef]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Oeurng, C.; Uk, S.; Takara, K.; Hu, M.; Han, D. Comparison of Gridded Precipitation Datasets for Rainfall-Runoff and Inundation Modeling in the Mekong River Basin. PLoS ONE 2020, 15, e0226814. [Google Scholar] [CrossRef]
- Sayama, T.; Matsumoto, K.; Kuwano, Y.; Takara, K. Application of Backpack-Mounted Mobile Mapping System and Rainfall–Runoff–Inundation Model for Flash Flood Analysis. Water 2019, 11, 963. [Google Scholar] [CrossRef]
- Atallah, M.; Hazzab, A.; Seddini, A.; Ghenaim, A.; Korichi, K. Hydraulic Flood Routing in an Ephemeral Channel: Wadi Mekerra, Algeria. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Singh, S.R.; Harirchian, E.; Monjardin, C.E.F.; Lahmer, T. GIS-Based Risk Assessment of Building Vulnerability in Flood Zones of Naic, Cavite, Philippines Using AHP and TOPSIS. GeoHazards 2024, 5, 1040–1073. [Google Scholar] [CrossRef]
- Yahiaoui, A.; Touaïbia, B.; Bouvier, C.; Dechemi, N. Watershed Flood Regime Modelling with the Flow-Duration-Frequency Approach as Applied to the Oued Mekerra Catchment in Western Algeria. Rev. Sci. L’eau 2011, 24, 103–115. [Google Scholar] [CrossRef]
- Korichi, K.; Hazzab, A. Hydrodynamic Investigation and Numerical Simulation of Intermittent and Ephemeral Flows in Semi-Arid Regions: Wadi Mekerra, Algeria. J. Hydrol. Hydromech. 2012, 60, 125–142. [Google Scholar] [CrossRef]
- Maref, N.; Seddini, A. Modeling of Flood Generation in Semi-Arid Catchment Using a Spatially Distributed Model: Case of Study Wadi Mekerra Catchment (Northwest Algeria). Arab. J. Geosci. 2018, 11, 116. [Google Scholar] [CrossRef]
- Korichi, K.H.; Hazzab, A.; Atallah, M. Flash Floods Risk Analysis in Ephemeral Streams: A Case Study on Wadi Mekerra (Northwestern Algeria). Arab. J. Geosci. 2016, 9, 589. [Google Scholar] [CrossRef]
- Sayama, T.; Ozawa, G.; Kawakami, T.; Nabesaka, S.; Fukami, K. Rainfall–Runoff–Inundation Analysis of the 2010 Pakistan Flood in the Kabul River Basin. Hydrol. Sci. J. 2012, 57, 298–312. [Google Scholar] [CrossRef]
- Nastiti, K.D.; Kim, Y.; Jung, K.; An, H. The Application of Rainfall-Runoff-Inundation (RRI) Model for Inundation Case in Upper Citarum Watershed, West Java-Indonesia. Procedia Eng. 2015, 125, 166–172. [Google Scholar] [CrossRef]
- Sayama, T.; Tatebe, Y.; Tanaka, S. An Emergency Response-Type Rainfall-Runoff-Inundation Simulation for 2011 Thailand Floods. J. Flood Risk Manag. 2017, 69, 65–78. [Google Scholar] [CrossRef]
- Shimizu, R.; Kaida, K.; Matsuda, M.; Uchida, T.; Sayama, T.; Kawahara, Y. Enhanced Rainfall-Runoff-Flood Simulation with Rri Model Incorporating River Vegetation Resistance Based on 2d Numerical Calculation Results and Slope Direction Surface Flow Flux. J. Jpn. Soc. Civ. Eng. Ser. B1 (Hydraul. Eng.) 2021, 77, 84–91. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; de Luis, M.; Beguería, S. An R Package for Daily Precipitation Climate Series Reconstruction. Environ. Model. Softw. 2017, 89, 190–195. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Kantoush, S.A.; Saber, M.; Abdel-Fattah, M.; Sumi, T. Integrated Strategies for the Management of Wadi Flash Floods in the Middle East and North Africa (MENA) Arid Zones: The ISFF Project. In Wadi Flash Floods: Challenges and Advanced Approaches for Disaster Risk Reduction; Sumi, T., Kantoush, S.A., Saber, M., Eds.; Natural Disaster Science and Mitigation Engineering: DPRI reports; Springer: Singapore, 2022; pp. 3–34. ISBN 9789811629044. [Google Scholar]
- Rawls, W.J.; Ahuja, L.R.; Brakensiek, D.L.; Shirmohammadi, A. Infiltration and Soil Water Movement; McGraw-Hill Inc.: New York, NY, USA, 1992. [Google Scholar]
- Mohanta, A.; Patra, K.C.; Sahoo, B.B. Anticipate Manning’s Coefficient in Meandering Compound Channels. Hydrology 2018, 5, 47. [Google Scholar] [CrossRef]
- Azamathulla, H.M.; Ahmad, Z.; Ab. Ghani, A. An Expert System for Predicting Manning’s Roughness Coefficient in Open Channels by Using Gene Expression Programming. Neural Comput. Applic. 2013, 23, 1343–1349. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Zhang, B.; Zhang, X.; Xu, Y.; Xiang, Y.; Chen, Y. Applicability of the Modified Green-Ampt Model Based on Suction Head Calculation in Water-Repellent Soil. Water 2023, 15, 2925. [Google Scholar] [CrossRef]
Data Type | Time Period | Frequency | Unit | Source | Missing Data (%) | Gap-Filling Method |
---|---|---|---|---|---|---|
Rainfall | 1975–2003 | Daily | mm | ANRH | 3% | RVs |
Runoff | October 1986, September 1994 | Hourly/Daily | m3/s | ANRH | / | / |
Parameter | Unit | Notation | Range | Cases 1 | Calibration | ||
---|---|---|---|---|---|---|---|
Crops | Land Use | Built Area | |||||
Channel roughness coefficient | m−1/3.s | ns_river | 0.015–0.04 | a, b, c | 0.015 | 0.015 | 0.015 |
Hillslope roughness coefficient | m−1/3.s | ns_slope | 0.15–1.0 | a, b, c | 0.15 | 0.15 | 0.15 |
Soil depth | m | soilepth | 0.1–2.0 | b, c | 0.45 | 1 | 2.0 |
Soil porosity | - | gammaa | 0.05–0.6 | b, c | 0.3 | 0.1 | 0.05 |
Vertical saturated hydraulic conductivity | ms−1 | Kv | 6.54 × 10−5 1.67 × 10−7 | b, c | 1.67 × 10−7 | 1.45 × 10−6 | x |
Suction at the vertical wetting front | m | Sf | 0.0495–0.3163 | b, c | 0.2185 | 0.2045 | x |
Lateral saturated hydraulic conductivity | m.s−1 | Ka | 0.01–0.3 | c | x | x | x |
Unsaturation effective porosity | - | Gamma | 0.02–0.4 | c | x | x | x |
Performance Characteristic | Calibration (1986 Event) | Validation (1994 Event) |
Correlation Coefficient | 0.97 | 0.94 |
0.94 | 0.89 | |
PBIAS | 0.006 | 0.013 |
NSE | 0.93 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afra, A.; Berrezel, Y.A.; Abdelbaki, C.; Megnounif, A.; Saber, M.; Benabdelkrim, M.E.A.; Kumar, N. Application of the Rainfall–Runoff–Inundation Model for Flood Risk Assessment in the Mekerra Basin, Algeria. GeoHazards 2025, 6, 2. https://doi.org/10.3390/geohazards6010002
Afra A, Berrezel YA, Abdelbaki C, Megnounif A, Saber M, Benabdelkrim MEA, Kumar N. Application of the Rainfall–Runoff–Inundation Model for Flood Risk Assessment in the Mekerra Basin, Algeria. GeoHazards. 2025; 6(1):2. https://doi.org/10.3390/geohazards6010002
Chicago/Turabian StyleAfra, Abdallah, Yacine Abdelbaset Berrezel, Cherifa Abdelbaki, Abdeslam Megnounif, Mohamed Saber, Mohammed El Amin Benabdelkrim, and Navneet Kumar. 2025. "Application of the Rainfall–Runoff–Inundation Model for Flood Risk Assessment in the Mekerra Basin, Algeria" GeoHazards 6, no. 1: 2. https://doi.org/10.3390/geohazards6010002
APA StyleAfra, A., Berrezel, Y. A., Abdelbaki, C., Megnounif, A., Saber, M., Benabdelkrim, M. E. A., & Kumar, N. (2025). Application of the Rainfall–Runoff–Inundation Model for Flood Risk Assessment in the Mekerra Basin, Algeria. GeoHazards, 6(1), 2. https://doi.org/10.3390/geohazards6010002