Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = internal tides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3475 KiB  
Article
Near-Inertial Oscillations of Thermocline in the Shelf Area off Vladivostok, the Sea of Japan, from a Set of Thermostrings
by Olga Trusenkova, Igor Yaroshchuk, Alexandra Kosheleva, Aleksandr Samchenko, Alexander Pivovarov and Vyacheslav Dubina
J. Mar. Sci. Eng. 2024, 12(12), 2263; https://doi.org/10.3390/jmse12122263 - 9 Dec 2024
Viewed by 540
Abstract
The shelf area off Vladivostok in the Sea of Japan is known by the intense internal wave activity investigated for many years. The present contribution to these studies is based on data collected on 3–14 October 2022, from four moorings aligned across isobaths [...] Read more.
The shelf area off Vladivostok in the Sea of Japan is known by the intense internal wave activity investigated for many years. The present contribution to these studies is based on data collected on 3–14 October 2022, from four moorings aligned across isobaths and equipped with thermostrings. Multivariate analysis is performed in the depth–time domain, while timescales and directions and speeds of temperature anomaly movement are estimated from wavelet transform. Approximately 50% of the variance results from vertical stratification changes, i.e., thermocline deepening or shoaling, and temperature anomalies on different timescales moved towards the shoaling seafloor. For the first time, near-inertial (NI) oscillations are detected throughout the record and turn out to be the most intense among the 6 to 70 h timescales, moving with the speeds of 0.41–0.55 m/s, although previous attention was paid to the semidiurnal internal tide. A frequency decrease, i.e., red shift, of the NI oscillations is detected towards shallower water, with the frequency eventually becoming subinertial, and is explained by anticyclonic relative vorticity at the eastern side of the mushroom-like structure detected from thermal satellite imagery. The semidiurnal and two-day oscillations were detected, moving with the speeds of 0.95–1.11 and 0.15–1.17 m/s, respectively. The two-day timescale, never reported before, is considered as a difference one caused by nonlinearity. These results are interpreted as the propagation of an internal wave generated at the steep slope offshore to the inner shelf. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

27 pages, 7430 KiB  
Article
Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon
by Diogo Miguel Carvalho, João Miguel Dias and Jorge Ferraz de Abreu
Sensors 2024, 24(23), 7677; https://doi.org/10.3390/s24237677 - 30 Nov 2024
Viewed by 569
Abstract
Maritime navigation safety relies on preventing accidents, such as collisions and groundings. However, several factors can exacerbate these risks, including inexistent or inadequate buoyage systems and nautical charts with outdated bathymetry. The International Hydrographic Organization (IHO) highlights high costs and traditional methods as [...] Read more.
Maritime navigation safety relies on preventing accidents, such as collisions and groundings. However, several factors can exacerbate these risks, including inexistent or inadequate buoyage systems and nautical charts with outdated bathymetry. The International Hydrographic Organization (IHO) highlights high costs and traditional methods as obstacles to updating bathymetric information, impacting both safety and socio-economic factors. Navigation in inland and coastal waters is particularly complex due to the presence of shallow intertidal zones that are not signaled, where navigation depends on tidal height, vessel draw, and local knowledge. To address this, recreational vessels can use electronic maritime sensors to share critical data with nearby vessels. This article introduces a low-cost maritime data sharing system using IoT technologies for both inland (e.g., Ria de Aveiro) and coastal waters. The system enables the collection and sharing of meteorological and oceanographic data, including depth, tide height, wind direction, and speed. Using a case study in the Ria de Aveiro lagoon, known for its navigational difficulties, the system was developed with a Contextual Design approach focusing on sailors’ needs. It allows for the real-time sharing of data, helping vessels to anticipate maneuvers for safer navigation. The results demonstrate the system’s potential to improve maritime safety in both inland and coastal areas. Full article
(This article belongs to the Special Issue Advanced Sensing Technologies for Marine Intelligent Systems)
Show Figures

Figure 1

18 pages, 9708 KiB  
Article
Behavior and Energy of the M2 Internal Tide in the Madagascar–Mascarene Region
by Qian Wu, Jing Meng, Xu Chen and Yulin Guo
Remote Sens. 2024, 16(22), 4299; https://doi.org/10.3390/rs16224299 - 18 Nov 2024
Viewed by 613
Abstract
Internal tides serve as essential intermediate steps in the cascading of oceanic energy, playing a crucial role in oceanic mixing. M2 internal tides are the dominant tidal constituent in many oceanic regions, significantly influencing ocean dynamics. The Madagascar–Mascarene Region has high-energy internal tides, [...] Read more.
Internal tides serve as essential intermediate steps in the cascading of oceanic energy, playing a crucial role in oceanic mixing. M2 internal tides are the dominant tidal constituent in many oceanic regions, significantly influencing ocean dynamics. The Madagascar–Mascarene Region has high-energy internal tides, but due to a lack of observational studies, their propagation remains underexplored and warrants further investigation. In this study, we used satellite altimetry data to capture the sea surface manifestation of the first-mode M2 internal tides in the region. The results show that the Mascarene Plateau plays a key role in shaping the region’s uneven internal tide distribution. The Mascarene Strait is the most intense generation area, with an east-west energy flux of 1.42 GW. Using the internal tidal energy concentration index, we decomposed the internal tidal beams, finding the primary beam oriented at 148°. These beams propagate outward for over 800 km, with a maximum distance exceeding 1000 km. Geostrophic currents intensify the northward refraction of westward-propagating internal tides in the Mascarene Basin, particularly between 15°S and 20°S. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

18 pages, 7302 KiB  
Article
Allelopathic Interactions Between the Green-Tide-Forming Ulva prolifera and the Golden-Tide-Forming Sargassum horneri Under Controlled Laboratory Conditions
by Ruibin Sun, Onjira Korboon, Wenfei Ma, Xingyue Ren, Xiaonan Wang, Narongrit Muangmai, Qikun Xing, Xu Gao and Jingyu Li
Plants 2024, 13(21), 2966; https://doi.org/10.3390/plants13212966 - 24 Oct 2024
Viewed by 610
Abstract
Harmful algal blooms (HABs) represent a significant global marine ecological disaster. In the Yellow Sea, green and golden tides often occur simultaneously or sequentially, suggesting that interspecific competition involves not only spatial and resource competition but also allelopathy. This study investigated the allelopathic [...] Read more.
Harmful algal blooms (HABs) represent a significant global marine ecological disaster. In the Yellow Sea, green and golden tides often occur simultaneously or sequentially, suggesting that interspecific competition involves not only spatial and resource competition but also allelopathy. This study investigated the allelopathic interactions between Ulva prolifera and Sargassum horneri using physiological and biochemical parameters, including relative growth rate (RGR), cell ultrastructure, chlorophyll fluorescence, enzyme activity, and metabolomics analysis. The results showed that S. horneri filtrate significantly inhibited U. prolifera growth, while U. prolifera filtrate had no significant effect on S. horneri. Both algal filtrates caused cellular damage and affected photosynthesis, enzyme activities, and metabolism. However, their allelopathic responses differed: U. prolifera may rely on internal compensatory mechanisms, while S. horneri may depend on defense strategies. These findings provide insights into the dynamics of green and golden tides and support the scientific control of HABs through allelopathy. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

17 pages, 11732 KiB  
Article
Two-Dimensional Legendre Polynomial Method for Internal Tide Signal Extraction
by Yunfei Zhang, Cheng Luo, Haibo Chen, Wei Cui and Xianqing Lv
Remote Sens. 2024, 16(18), 3447; https://doi.org/10.3390/rs16183447 - 17 Sep 2024
Viewed by 754
Abstract
This study employs the two-dimensional Legendre polynomial fitting (2-D LPF) method to fit M2 tidal harmonic constants from satellite altimetry data within the region of 53°E–131°E, 34°S–6°N, extracting internal tide signals acting on the sea surface. The M2 tidal harmonic constants are derived [...] Read more.
This study employs the two-dimensional Legendre polynomial fitting (2-D LPF) method to fit M2 tidal harmonic constants from satellite altimetry data within the region of 53°E–131°E, 34°S–6°N, extracting internal tide signals acting on the sea surface. The M2 tidal harmonic constants are derived from the sea surface height (SSH) data of the TOPEX/Poseidon (T/P), Jason-1, Jason-2, and Jason-3 satellites via t-tide analysis. We validate the 2-D LPF method against the 300 km moving average (300 km smooth) method and the one-dimensional Legendre polynomial fitting (1-D LPF) method. Through cross-validation across 42 orbits, the optimal polynomial orders are determined to be seven for 1-D LPF, and eight and seven for the longitudinal and latitudinal directions in 2-D LPF, respectively. The 2-D LPF method demonstrated superior spatial continuity and smoothness of internal tide signals. Further single-orbit correlation analysis confirmed generally higher correlation with topographic and density perturbations (correlation coefficients: 0.502, 0.620, 0.245; 0.420, 0.273, −0.101), underscoring its accuracy. Overall, the 2-D LPF method can use all regional data points, overcoming the limitations of single-orbit approaches and proving its effectiveness in extracting internal tide signals acting on the sea surface. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

15 pages, 10244 KiB  
Article
Identification of Floating Green Tide in High-Turbidity Water from Sentinel-2 MSI Images Employing NDVI and CIE Hue Angle Thresholds
by Lin Wang, Qinghui Meng, Xiang Wang, Yanlong Chen, Xinxin Wang, Jie Han and Bingqiang Wang
J. Mar. Sci. Eng. 2024, 12(9), 1640; https://doi.org/10.3390/jmse12091640 - 13 Sep 2024
Viewed by 559
Abstract
Remote sensing technology is widely used to obtain information on floating green tides, and thresholding methods based on indices such as the normalized difference vegetation index (NDVI) and the floating algae index (FAI) play an important role in such studies. However, as the [...] Read more.
Remote sensing technology is widely used to obtain information on floating green tides, and thresholding methods based on indices such as the normalized difference vegetation index (NDVI) and the floating algae index (FAI) play an important role in such studies. However, as the methods are influenced by many factors, the threshold values vary greatly; in particular, the error of data extraction clearly increases in situations of high-turbidity water (HTW) (NDVI > 0). In this study, high spatial resolution, multispectral images from the Sentinel-2 MSI mission were used as the data source. It was found that the International Commission on Illumination (CIE) hue angle calculated using remotely sensed equivalent multispectral reflectance data and the RGB method is extremely effective in distinguishing floating green tides from areas of HTW. Statistical analysis of Sentinel-2 MSI images showed that the threshold value of the hue angle that can effectively eliminate the effect of HTW is 218.94°. A test demonstration of the method for identifying the floating green tide in HTW in a Sentinel-2 MSI image was carried out using the identified threshold values of NDVI > 0 and CIE hue angle < 218.94°. The demonstration showed that the method effectively eliminates misidentification caused by HTW pixels (NDVI > 0), resulting in better consistency of the identification of the floating green tide and its distribution in the true color image. The method enables rapid and accurate extraction of information on floating green tide in HTW, and offers a new solution for the monitoring and tracking of green tides in coastal areas. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

31 pages, 17406 KiB  
Article
Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea
by Bulusu Subrahmanyam, V. S. N. Murty, Sarah B. Hall and Corinne B. Trott
Remote Sens. 2024, 16(18), 3408; https://doi.org/10.3390/rs16183408 - 13 Sep 2024
Viewed by 921
Abstract
We used NASA’s high-resolution (1/48° or 2.3 km, hourly) Estimating the Circulation and Climate of the Ocean (ECCO) estimates of salinity at a 1 m depth from November 2011 to October 2012 to detect semi-diurnal and diurnal internal tides (ITs) in the Andaman [...] Read more.
We used NASA’s high-resolution (1/48° or 2.3 km, hourly) Estimating the Circulation and Climate of the Ocean (ECCO) estimates of salinity at a 1 m depth from November 2011 to October 2012 to detect semi-diurnal and diurnal internal tides (ITs) in the Andaman Sea and determine their characteristics in three 2° × 2° boxes off the Myanmar coast (box A), central Andaman Sea (box B), and off the Thailand coast (box C). We also used observed salinity and temperature data for the above period at the BD12-moored buoy in the central Andaman Sea. ECCO salinity data were bandpass-filtered with 11–14 h and 22–26 h periods. Large variations in filtered ECCO salinity (~0.1 psu) in the boxes corresponded with near-surface imprints of propagating ITs. Observed data from the box B domain reveals strong salinity stratification (halocline) in the upper 40 m. Our analyses reveal that the shallow halocline affects the signatures of propagating semi-diurnal ITs reaching the surface, but diurnal ITs propagating in the halocline reach up to the surface and bring variability in ECCO salinity. In box A, the semi-diurnal IT characteristics are higher speeds (0.96 m/s) with larger wavelengths (45 km), that are closer to theoretical mode 2 estimates, but the diurnal ITs propagating in the box A domain, with a possible source over the shelf of Gulf of Martaban, attain lower values (0.45 m/s, 38 km). In box B, the propagation speed is lower (higher) for semi-diurnal (diurnal) ITs. Estimates for box C are closer to those for box A. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Ocean Salinity)
Show Figures

Figure 1

18 pages, 7384 KiB  
Article
Characteristics Analysis of Acoustic Doppler Current Profile Measurements in Northeast Taiwan Offshore
by Chung-Ru Ho, Kai-Ho Cheng, Zhe-Wen Zheng, Hung-Jen Lee and Tai-Wen Hsu
J. Mar. Sci. Eng. 2024, 12(9), 1632; https://doi.org/10.3390/jmse12091632 - 12 Sep 2024
Viewed by 661
Abstract
A comprehensive study was conducted at a wave energy device test site located off the northeastern coast of Taiwan to assess the influence of oceanic currents on experimental equipment. A bottom-mounted 600 kHz acoustic Doppler current profiler, equipped with integrated temperature and pressure [...] Read more.
A comprehensive study was conducted at a wave energy device test site located off the northeastern coast of Taiwan to assess the influence of oceanic currents on experimental equipment. A bottom-mounted 600 kHz acoustic Doppler current profiler, equipped with integrated temperature and pressure sensors, was deployed at a depth of approximately 31 m. This study, spanning from 6 June 2023 to 11 May 2024, recorded ocean current profiles by assembling data from 50 pings every 10 min, with a resolution of one meter per depth layer. The findings reveal that variations in water levels were predominantly influenced by the M2 tidal constituent, followed by the O1, K1, and S2 tides. Notably, seawater temperature fluctuations at the seabed were modulated by tides, especially the M2 tide. A significant drop in seawater temperature was also observed as the typhoon passed through the south of Taiwan. In terms of sea surface currents, the measured maximum current speed was 71.89 cm s−1, but the average current speed was only 15.47 cm s−1. Tidal currents indicated that the M4 and M2 tides were the most significant, with semimajor axes and inclination angles of 8.48 cm s−1 and 102.60°, and 7.00 cm s−1 and 97.76°, respectively. Seasonally, barotropic tidal currents were the strongest in winter. Additionally, internal tides were identified, with the first baroclinic mode being dominant. The zero-crossing depths varied between 14 and 18 m. During the summer, the M2 baroclinic tidal current displayed characteristics of the second baroclinic mode, with zero-crossing depths at approximately 7 m and 22 m. This node aligns with results from the empirical orthogonal function analysis and correlates with the depths’ significant shifts in seawater temperature as measured by a conductivity, temperature, and depth instrument. Despite the velocities of internal tides not being strong, the directional variance between surface and bottom flows presents critical considerations for the deployment and operation of moored wave energy devices. Full article
(This article belongs to the Special Issue Ocean Observations)
Show Figures

Figure 1

18 pages, 5626 KiB  
Article
Improving GNSS-IR Sea Surface Height Accuracy Based on a New Ionospheric Stratified Elevation Angle Correction Model
by Jiadi Zhu, Wei Zheng, Yifan Shen, Keke Xu and Hebing Zhang
Remote Sens. 2024, 16(17), 3270; https://doi.org/10.3390/rs16173270 - 3 Sep 2024
Viewed by 945
Abstract
Approximately 71% of the Earth’s surface is covered by vast oceans. With the exacerbation of global climate change, high-precision monitoring of sea surface height variations is of vital importance for constructing global ocean gravity fields and preventing natural disasters in the marine system. [...] Read more.
Approximately 71% of the Earth’s surface is covered by vast oceans. With the exacerbation of global climate change, high-precision monitoring of sea surface height variations is of vital importance for constructing global ocean gravity fields and preventing natural disasters in the marine system. Global Navigation Satellite System Interferometry Reflectometry (GNSS-IR) sea surface altimetry is a method of inferring sea surface height based on the signal-to-noise ratio of satellite signals. It enables the retrieval of sea surface height variations with high precision. However, navigation satellite signals are influenced by the ionosphere during propagation, leading to deviations in the measured values of satellite elevation angles from their true values, which significantly affects the accuracy of GNSS-IR sea surface altimetry. Based on this, the contents of this paper are as follows: Firstly, a new ionospheric stratified elevation angle correction model (ISEACM) was developed by integrating the International Reference Ionosphere Model (IRI) and ray tracing methods. This model aims to improve the accuracy of GNSS-IR sea surface altimetry by correcting the ionospheric refraction effects on satellite elevation angles. Secondly, four GNSS stations (TAR0, PTLD, GOM1, and TPW2) were selected globally, and the corrected sea surface height values obtained using ISEACM were compared with observed values from tide gauge stations. The calculated average Root Mean Square Error (RMSE) and Pearson Correlation Coefficient (PCC) were 0.20 m and 0.83, respectively, indicating the effectiveness of ISEACM in sea surface height retrieval. Thirdly, a comparative analysis was conducted between sea surface height retrieval before and after correction using ISEACM. The optimal RMSE and PCC values with tide gauge station observations were 0.15 m and 0.90, respectively, representing a 20.00% improvement in RMSE and a 4.00% improvement in correlation coefficient compared to traditional GNSS-IR retrieval heights. These experimental results demonstrate that correction with ISEACM can effectively enhance the precision of GNSS-IR sea surface altimetry, which is crucial for accurate sea surface height measurements. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

11 pages, 6977 KiB  
Article
Modal Decomposition of Internal Tides in the Luzon Strait through Two-Dimensional Fourier Bandpass Filtering
by Botao Xie, Qi Zhang, Feilong Lin, Weifang Jin and Zijian Cui
J. Mar. Sci. Eng. 2024, 12(9), 1477; https://doi.org/10.3390/jmse12091477 - 25 Aug 2024
Viewed by 998
Abstract
Internal tides are pivotal dynamic processes enhancing the mixing of oceanic waters and facilitating energy transfer across various scales within the ocean. In recent years, the proliferation of satellite altimetry observations has enabled global predictions of the elevation and phase of internal tides. [...] Read more.
Internal tides are pivotal dynamic processes enhancing the mixing of oceanic waters and facilitating energy transfer across various scales within the ocean. In recent years, the proliferation of satellite altimetry observations has enabled global predictions of the elevation and phase of internal tides. This study, leveraging the advanced global internal tide prediction model known as the Multivariate Inversion of Ocean Surface Topography-Internal Tide Model (MIOST-IT), employs a two-dimensional Fourier bandpass filtering approach to decompose the internal tides in the Luzon Strait, thereby addressing the east–west directional blind zones inherent in along-track satellite altimetry-based modal decomposition. To further elucidate the propagation trajectories of individual tidal modes in different directions, we introduce the directional Fourier filter method to characterize the spatial distribution features of each modal internal tide in the vicinity of the Luzon Strait. This work significantly enhances the accuracy and reliability of extracting parameters for distinct modal internal tides, furnishing a scientific basis for subsequent studies on internal tide dynamics and model refinement. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

14 pages, 20836 KiB  
Article
Identification of Clinical Value and Biological Effects of XIRP2 Mutation in Hepatocellular Carcinoma
by Dahuan Li, Xin Bao, Shan Lei, Wenpeng Cao, Zhirui Zeng and Tengxiang Chen
Viewed by 1327
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant digestive tumor. Numerous genetic mutations have been documented in HCC, yet the clinical significance of these mutations remains largely unexplored. The objective of this study is to ascertain the clinical value and biological effects of xin [...] Read more.
Hepatocellular carcinoma (HCC) is a prevalent malignant digestive tumor. Numerous genetic mutations have been documented in HCC, yet the clinical significance of these mutations remains largely unexplored. The objective of this study is to ascertain the clinical value and biological effects of xin actin binding repeat containing 2 (XIRP2) mutation in HCC. The gene mutation landscape of HCC was examined using data from the Cancer Genome Atlas and the International Cancer Genome Consortium databases. The prognostic significance of the XIRP2 mutation was assessed through KM plot analysis. The association between drug sensitivity and the XIRP2 mutation was investigated using the TIDE algorithm and CCK-8 experiments. The biological effects of the XIRP2 mutation were evaluated through qRT-PCR, protein stability experiments, and relevant biological experiments. The XIRP2 mutation is one of the high-frequency mutations in HCC, and is associated with poor prognosis. A total of 72 differentially expressed genes (DEGs) were observed in HCC tissues with the XIRP2 mutation as compared to those with the XIRP2 wildtype, and these DEGs were closely related to ion metabolic processes. The XIRP2 mutation was linked to alterations in the sensitivity of fludarabine, oxaliplatin, WEHI-539, and LCL-161. CCK-8 assays demonstrated that HCC cells carrying the XIRP2 mutation exhibited increased resistance to fludarabine and oxaliplatin, but enhanced sensitivity to WEHI-539 and LCL-161 as compared with those HCC cells with the XIRP2 wildtype. The XIRP2 mutation was found to have no impact on the mRNA levels of XIRP2 in tissues and cells, but it did enhance the stability of the XIRP2 protein. Mechanically, the inhibition of XIRP2 resulted in a significant increase in sensitivity to oxaliplatin through an elevation in zinc ions and a calcium ion overload. In conclusion, the XIRP2 mutation holds potential as a biomarker for predicting the prognosis and drug sensitivity of HCC and serves as a therapeutic target to enhance the efficacy of oxaliplatin. Full article
Show Figures

Figure 1

18 pages, 33776 KiB  
Article
A Novel Method for Analyzing Sandbar Distribution in Shelf-Type Tidal Deltas Using Sediment Dynamic Simulation
by Mingming Tang, Sichen Xiong, Qian Zhang, Ruifeng Hong, Chenyang Peng and Rong Xie
J. Mar. Sci. Eng. 2024, 12(7), 1102; https://doi.org/10.3390/jmse12071102 - 28 Jun 2024
Viewed by 996
Abstract
Shallow marine shelf sedimentation is a hot and difficult topic in today’s reservoir sedimentology research, and it is widely present in the world. The shallow marine shelf sedimentation is not only affected by complex hydrodynamic effects such as tides and waves, but also [...] Read more.
Shallow marine shelf sedimentation is a hot and difficult topic in today’s reservoir sedimentology research, and it is widely present in the world. The shallow marine shelf sedimentation is not only affected by complex hydrodynamic effects such as tides and waves, but also controlled by bottom tectonic features, forming a complex and varied sedimentation pattern. During the Middle Jurassic period, the northern part of West Siberian Basin was characterized by a shallow marine shelf sedimentary environment. In the central reion of this basin, a typical tectonic uplift zone developed, forming a tectonic background of “one uplift zone between two depressions”. Simultaneously, the dominant influence of tides in the shallow marine shelf environment facilitated the formation of a typical shelf-type tidal delta sedimentation system in the Jurassic strata of the northern part of West Siberian Basin. This sedimentation constitutes a significant natural gas reservoir, and it is important to investigate the sedimentary evolution of shelf-type tidal deltas and to clarify the internal structure and distribution of sedimentary sand bodies and interlayers in shelf-type tidal deltas, which is the basis for the fine development of this type of reservoir. This paper takes the Jurassic strata in the Y region of northern part of West Siberian Basin as the research object, and conducts numerical simulation based on sedimentary dynamics for the shelf-type tidal delta sedimentation formed under the tectonic background of “one uplift zone between two depressions”. In addition, tidal amplitude and initial water level were selected for different hydrodynamic factors to study the main controlling factors of shelf-type tidal delta sedimentation. The simulation results show that tidal amplitude is positively correlated with three-dimensional configuration characteristic parameters of the sedimentary sand bodies, and the development of tidal bars becomes more and more limited as the initial water level increases. This paper systematically investigates the sedimentary evolution of shelf-type tidal delta under the tectonic background of “one uplift zone between two depressions” by the sedimentary dynamics method, which deepens the understanding of the shelf-type tidal delta sedimentation process and provides a new thinking for the development of this sedimentary reservoir type (School of Geosciences China University of Petroleum (East China)). Full article
Show Figures

Figure 1

14 pages, 6136 KiB  
Article
Semidiurnal Internal Tide Interference in the Northern South China Sea
by Wenhui Wang, Jiahui Li and Xiaodong Huang
J. Mar. Sci. Eng. 2024, 12(5), 811; https://doi.org/10.3390/jmse12050811 - 13 May 2024
Viewed by 894
Abstract
Multiwave interference plays a crucial role in shaping the spatial variations of internal tides. Based on a combination of in situ mooring and altimeter data, interference of semidiurnal internal tides was investigated in the northern South China Sea. Mooring observations indicate the observed [...] Read more.
Multiwave interference plays a crucial role in shaping the spatial variations of internal tides. Based on a combination of in situ mooring and altimeter data, interference of semidiurnal internal tides was investigated in the northern South China Sea. Mooring observations indicate the observed kinetic-to-potential energy ratio and group speed are both relatively lower than the theoretical values of mode-1 semidiurnal internal tides, indicating the presence of partly-standing waves. This is consistent with the altimeter result that the mooring was located at the antinode within the interference pattern formed by the superposition of the westward and southward semidiurnal internal tides from the Luzon Strait and the continental slope of the southern Taiwan Strait. However, the kinetic-to-potential energy ratio and group velocity were notably changed when an anticyclonic eddy passed by the mooring. By employing the ray-tracing method, we identified that mesoscale processes may induce a phase difference in the semidiurnal internal tides between the Luzon Strait and the continental slope of the southern Taiwan Strait. This alteration further leads to changes in the positions of nodes and antinodes within the interference pattern of the semidiurnal internal tides. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography—2nd Edition)
Show Figures

Figure 1

26 pages, 21642 KiB  
Article
Studying the Internal Wave Generation Mechanism in the Northern South China Sea Using Numerical Simulation, Synthetic Aperture Radar, and In Situ Measurements
by Kan Zeng, Ruyin Lyu, Hengyu Li, Rongqing Suo, Tao Du and Mingxia He
Remote Sens. 2024, 16(8), 1440; https://doi.org/10.3390/rs16081440 - 18 Apr 2024
Cited by 1 | Viewed by 1241
Abstract
The internal waves in the South China Sea are highly correlated with the tidal currents in the Luzon Strait, which makes it possible to establish an internal wave prediction model based on internal wave kinematics. However, the kinematic model requires the input of [...] Read more.
The internal waves in the South China Sea are highly correlated with the tidal currents in the Luzon Strait, which makes it possible to establish an internal wave prediction model based on internal wave kinematics. However, the kinematic model requires the input of the exact location and time of the initial internal wave for which the generation mechanism of internal waves in the northern South China Sea must be well understood. By analyzing the internal wave field in the northern South China Sea (SCS) simulated using the MIT General Circulation Model (MITgcm) and observations from satellite synthetic aperture radar (SAR) and mooring temperature–salinity–depth (TSD) chains, the source regions and propagation initiation times of internal waves are identified for three typical tidal phases, i.e., the diurnal-tide-dominated phase (DTP), transition tide phase (TTP), and semidiurnal-tide-dominated phase (STP). The generation procedures of Type A and Type B internal waves are discussed in detail with those data. The present study reveals that Type A and Type B waves are generated at the eastern and western ridges, respectively, and both commence their westward propagation at the peak of the eastward tidal flow. The dynamics of lee waves and the resonance effect with double ridges constitute the generation mechanisms of internal waves in the northern SCS. Combined with varying configurations of tidal conditions, topography, and stratification, the generation procedures of Type A and Type B waves in the DTP, TTP, and STP are elucidated with the generation mechanism in a unified and self-consistent way. In short, during DTP, weaker A waves alternate with weaker B waves each day; during TTP, strong A waves and strong B waves appear alternately every day; and there are two weak A waves per day during the STP. The generation mechanism can help in developing future empirical models for generating internal waves using tidal currents, topography, and stratification without requiring complex fluid dynamics calculations. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Second Edition))
Show Figures

Graphical abstract

19 pages, 10444 KiB  
Article
Effect of Internal Waves on the Hydrodynamics of a Mediterranean Sea Strait
by Nikolaos Th. Fourniotis
J. Mar. Sci. Eng. 2024, 12(4), 532; https://doi.org/10.3390/jmse12040532 - 23 Mar 2024
Cited by 1 | Viewed by 1243
Abstract
In the present work, the effects of wind- and tide-induced internal waves in the Rio-Antirio Strait in western Greece were studied by using three-dimensional numerical simulations. For the wind-induced flow in the strait, it emerged that the internal waves’ initiation is associated with [...] Read more.
In the present work, the effects of wind- and tide-induced internal waves in the Rio-Antirio Strait in western Greece were studied by using three-dimensional numerical simulations. For the wind-induced flow in the strait, it emerged that the internal waves’ initiation is associated with the direction of the wind. Tidal action, with or without the combined action of wind, also generates internal waves in the strait, with amplitudes higher than 20 m. The action of the internal waves causes a subsurface inflow of colder waters from the Gulf of Corinth to the Gulf of Patras, as has been also simulated for the case of the wind-induced flow, generating strong hypolimnetic currents. The exchange flowrate between the Gulf of Patras and the Gulf of Corinth appeared to undergo significant modification for the wind-induced flow and had little effect for the pure tidal flow (in windless conditions) due to the development and action of the internal waves at the strait. The combined action of the tide and the wind was found to marginally affect the exchange flowrate between the two gulfs compared to the pure tidal flow. The interaction between the Coriolis effect and internal waves, at least away from the strait, forms a characteristic horizontal structure of flow. The structure of turbulence in the near strait area under the action of internal waves generated by the wind and/or tide was also discussed and compared with the corresponding barotropic flow. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop