Characteristics Analysis of Acoustic Doppler Current Profile Measurements in Northeast Taiwan Offshore
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sea Level
3.2. Seawater Temperature
3.3. Current
3.3.1. Barotropic Tidal Current
3.3.2. Baroclinic Tidal Current
3.3.3. EOF Analysis
3.3.4. Rotary Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, L.; Wilman, E.N.; Laurance, W.F. How green is ‘green’ energy? Trends. Ecol. Evol. 2017, 32, 922–935. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Arent, D.J.; Wise, A.; Gelman, R. The status and prospects of renewable energy for combating global warming. Energy Econ. 2011, 33, 584–593. [Google Scholar] [CrossRef]
- Sher, F.; Curnick, O.; Azizan, M.T. Sustainable conversion of renewable energy sources. Sustainability 2021, 13, 2940. [Google Scholar] [CrossRef]
- Voigt, C. Oceans and Climate Change: Implications for UNCLOS and the UN Climate Regime. In The Environmental Rule of Law for Oceans: Designing Legal Solutions; Platjouw, F.M., Pozdnakova, A., Eds.; Cambridge University Press: Cambridge, UK, 2023; pp. 17–30. [Google Scholar]
- Lehmann, M.; Karimpour, F.; Goudey, C.A.; Jacobson, P.T.; Alam, M.R. Ocean wave energy in the United States: Current status and future perspectives. Renew. Sustain. Energy Rev. 2017, 74, 1300–1313. [Google Scholar] [CrossRef]
- Veerabhadrappa, K.; Suhas, B.G.; Mangrulkar, C.K.; Kumar, R.S.; Mudakappanavar, V.S.; Seetharamu, K.N. Power generation using ocean waves: A review. Glob. Trans. Proc. 2022, 3, 359–370. [Google Scholar] [CrossRef]
- Gelfenbaum, G. Coastal currents. In Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 259–260. [Google Scholar]
- Klemas, V. Remote sensing of coastal and ocean currents: An overview. J. Coast. Res. 2012, 28, 576–586. [Google Scholar] [CrossRef]
- Li, M.; Rong, Z. Effects of tides on freshwater and volume transports in the Changjiang River plume. J. Geophys. Res. Oceans 2012, 117, C06027. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Egbert, G.D.; Ray, R.D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 2000, 405, 775–778. [Google Scholar] [CrossRef]
- Baines, P.G. On internal tide generation models. Deep-Sea Res. I Oceanogr. Res. Pap. 1982, 29, 307–338. [Google Scholar] [CrossRef]
- Garrett, C.; Kunze, E. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 2007, 39, 57–87. [Google Scholar] [CrossRef]
- Subeesh, M.P.; Unnikrishnan, A.S.; Fernando, V.; Agarwadekar, Y.; Khalap, S.T.; Satelkar, N.P.; Shenoi, S.S.C. Observed tidal currents on the continental shelf off the west coast of India. Cont. Shelf Res. 2013, 69, 123–140. [Google Scholar] [CrossRef]
- Zaron, E.D. Internal tides. In Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, J.K., Bokuniewicz, H.J., Yager, P.L., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 633–641. [Google Scholar]
- Rattray, M., Jr. On the coastal generation of internal tides. Tellus 1960, 12, 54–62. [Google Scholar] [CrossRef]
- Shepard, F.P. Progress of internal waves along submarine canyons. Mar. Geol. 1975, 19, 131–138. [Google Scholar] [CrossRef]
- Duda, T.F.; Lynch, J.F.; Irish, J.D.; Beardsley, R.C.; Ramp, S.R.; Chiu, C.S.; Tang, T.Y.; Yang, Y.J. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Ocean. Eng. 2004, 29, 1105–1130. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, J.; Lv, X. The essential observations for reconstructing full-depth tidal currents. Front. Mar. Sci. 2022, 9, 959014. [Google Scholar] [CrossRef]
- Bravo, L.; Ramos, M.; Sobarzo, M.; Pizarro, O.; Valle-Levinson, A. Barotropic and baroclinic semidiurnal tidal currents in two contrasting coastal upwelling zones of Chile. J. Geophys. Res. Oceans 2013, 118, 1226–1238. [Google Scholar] [CrossRef]
- Edwards, C.R.; Seim, H.E. Complex EOF analysis as a method to separate barotropic and baroclinic velocity structure in shallow water. J. Atmos. Ocean. Technol. 2008, 25, 808–821. [Google Scholar] [CrossRef]
- López, M.; Flores-Mateos, L.; Candela, J. Tidal currents at the sills of the Northern Gulf of California. Cont. Shelf Res. 2021, 227, 104513. [Google Scholar] [CrossRef]
- Jithin, A.K.; Unnikrishnan, A.S.; Fernando, V.; Subeesh, M.P.; Fernandes, R.; Khalap, S.; Narayan, S.; Agarvadekar, Y.; Gaonkar, M.; Kankonkar, A.; et al. Observed tidal currents on the continental shelf off the east coast of India. Cont. Shelf Res. 2017, 141, 51–67. [Google Scholar] [CrossRef]
- Li, M.; Xie, L.; Zong, X.; Li, J.; Li, M.; Yan, T.; Han, R. Tidal currents in the coastal waters east of Hainan Island in winter. J. Oceanol. Limnol. 2022, 40, 438–455. [Google Scholar] [CrossRef]
- Kaihatu, J.M.; Handler, R.A.; Marmorino, G.O.; Shay, L.K. Empirical orthogonal function analysis of ocean surface currents using complex and real-vector methods. J. Atmos. Ocean. Technol. 1998, 15, 927–941. [Google Scholar] [CrossRef]
- Hall, P.; Davies, A.M. Analysis of time-varying wind-induced currents in the North Channel of the Irish Sea, using empirical orthogonal functions and harmonic decomposition. Cont. Shelf Res. 2002, 22, 1269–1300. [Google Scholar] [CrossRef]
- Kuo, N.J.; Ho, C.R. ENSO effect on the sea surface wind and sea surface temperature in the Taiwan Strait. Geophys. Res. Lett. 2004, 31, L13309. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Lu, C.Y.; Zheng, Q.; Ho, C.R. Characteristic analysis of sea surface currents around Taiwan island from CODAR observations. Remote Sens. 2021, 13, 3025. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Chen, Y.R. Influences of tidal effect on upper ocean responses to typhoon passages surrounding shore region off northeast Taiwan. J. Mar. Sci. Eng. 2022, 10, 1419. [Google Scholar] [CrossRef]
- Kristensen, L.; Christiansen, H.H.; Caline, F. Temperatures in coastal permafrost in the Svea area, Svalbard. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 3–28 June 2008. [Google Scholar]
- Kim, T.W.; Cho, Y.K.; You, K.W.; Jung, K.T. Effect of tidal flat on seawater temperature variation in the southwest coast of Korea. J. Geophys. Res. 2010, 115, C02007. [Google Scholar] [CrossRef]
- Hsu, P.C.; Lee, H.J.; Zheng, Q.; Lai, J.W.; Su, F.C.; Ho, C.R. Tide-induced periodic sea surface temperature drops in the coral reef area of Nanwan Bay, southern Taiwan. J. Geophys. Res. Oceans 2020, 125, e2019JC015226. [Google Scholar] [CrossRef]
- Asplin, L.; Lin, F.; Budgell, W.P.; Strand, Ø. Rapid water temperature variations at the northern shelf of the Yellow Sea. Aquac. Environ. Interact. 2021, 13, 111–119. [Google Scholar] [CrossRef]
- Chen, K.; Huang, C.F.; Zheng, Z.W.; Lin, S.F.; Liu, J.Y.; Guo, J. Optimum estimation of coastal currents using moving vehicles. J. Atmos. Ocean. Technol. 2023, 40, 1619–1629. [Google Scholar] [CrossRef]
- Godin, G. The Analysis of Tides; University of Toronto Press: Toronto, ON, Canada, 1972; 264p. [Google Scholar]
- Pu, X.; Shi, J.Z.; Hu, G.D. The effect of stratification on the vertical structure of the tidal ellipse in the Changjiang River estuary, China. J. Hydroenviron. Res. 2017, 15, 75–94. [Google Scholar] [CrossRef]
- Yan, T.; Qi, Y.; Jing, Z.; Cai, S. Seasonal and spatial features of barotropic and baroclinic tides in the northwestern South China Sea. J. Geophys. Res. Oceans 2020, 125, e2018JC014860. [Google Scholar] [CrossRef]
- Zaron, E.D.; Musgrave, R.C.; Egbert, G.D. Baroclinic tidal energetics inferred from satellite altimetry. J. Phys. Oceanogr. 2022, 52, 1015–1032. [Google Scholar] [CrossRef]
- Shearman, R.K. Observations of near-inertial current variability on the New England shelf. J. Geophys. Res. Oceans 2005, 110, C02012. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Wang, C.; Qi, F.; Duan, H.; Xu, J. Observations of internal tides off the coast of Shandong Peninsula, China. Estuar. Coast. Shelf Sci. 2020, 245, 106944. [Google Scholar] [CrossRef]
- Chandna, S.; Walden, A.T. Statistical properties of the estimator of the rotary coefficient. IEEE Trans. Signal Process. 2010, 59, 1298–1303. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Z.; Zhang, Y.; Chu, Q.; Liu, X.; Hou, Y.; Zhao, X. Internal tides and their intraseasonal variability on the continental slope northeast of Taiwan island derived from mooring observations and satellite data. Remote Sens. 2021, 14, 59. [Google Scholar] [CrossRef]
Constituent | Q1 | O1 | K1 | N2 | M2 | S2 | MO3 |
Period (hour) | 26.87 | 25.82 | 23.93 | 12.66 | 12.42 | 12.00 | 8.39 |
Amplitude (cm) | 3.44 | 15.89 | 19.27 | 5.98 | 23.50 | 8.03 | 0.37 |
Phase (°) | 63.91 | 79.89 | 103.26 | 6.48 | 27.92 | 24.51 | 260.53 |
Constituent | M3 | MK3 | MN4 | M4 | MS4 | M6 | 2MS6 |
Period (hour) | 8.28 | 8.18 | 6.27 | 6.21 | 6.10 | 4.14 | 4.09 |
Amplitude (cm) | 0.51 | 0.31 | 0.55 | 1.33 | 0.99 | 0.38 | 0.33 |
Phase (°) | 174.99 | 257.15 | 141.59 | 148.49 | 170.95 | 234.40 | 274.10 |
Typhoon ID | Typhoon | Warning Period |
---|---|---|
202305 | Doksuri | 2023-07-24 20:30~2023-07-28 17:30 |
202306 | Khanun | 2023-08-01 20:30~2023-08-04 11:30 |
202309 | Saola | 2023-08-28 23:30~2023-08-31 14:30 |
202311 | Haikui | 2023-09-01 20:30~2023-09-05 08:30 |
202314 | Koinu | 2023-10-02 23:30~2023-10-06 11:30 |
Entire Period | Summer | Autumn | Winter | Spring | ||
---|---|---|---|---|---|---|
Max speed (cm s−1) | 71.89 | 63.31 | 66.89 | 71.89 | 66.68 | |
Eastward | 67.20 | 46.00 | 44.80 | 67.20 | 38.00 | |
Westward | 49.20 | 46.40 | 49.20 | 40.70 | 41.30 | |
Northward | 62.40 | 51.00 | 59.00 | 61.30 | 62.40 | |
Southward | 63.30 | 63.30 | 59.50 | 59.60 | 51.80 | |
Mean speed ± standard deviation (cm s−1) | 15.47 ± 5.89 | 14.49 ± 9.20 | 15.76 ± 9.68 | 16.23 ± 9.98 | 15.32 ± 9.62 | |
Eastward | 7.11 ± 5.89 | 6.55 ± 5.43 | 7.55 ± 6.04 | 7.63 ± 6.51 | 6.45 ± 5.14 | |
Westward | 8.12 ± 6.40 | 8.08 ± 6.62 | 8.85 ± 6.88 | 7.65 ± 5.97 | 7.83 ± 5.95 | |
Northward | 13.55 ± 10.18 | 12.26 ± 9.25 | 13.57 ± 10.35 | 14.32 ± 10.48 | 14.01 ± 10.44 | |
Southward | 9.94 ± 8.26 | 9.73 ± 8.09 | 9.70 ± 7.80 | 10.53 ± 9.09 | 9.82 ± 8.00 |
Tidal Constituent | Season | Semimajor Axis (cm s−1) 1 | Semiminor Axis (cm s−1) 1 | Inclination (°) | Phase (°) | Ellipticity |
---|---|---|---|---|---|---|
M2 | Entire period | 7.00 ± 0.28 | 1.84 ± 0.11 | 97.76 | 244.60 | 0.26 |
Summer | 6.84 ± 0.60 | 1.92 ± 0.25 | 101.30 | 248.58 | 0.28 | |
Autumn | 6.89 ± 0.55 | 1.85 ± 0.27 | 98.48 | 249.97 | 0.27 | |
Winter | 7.15 ± 0.44 | 1.84 ± 0.12 | 95.41 | 236.83 | 0.26 | |
Spring | 7.08 ± 0.63 | 1.68 ± 0.23 | 95.72 | 243.87 | 0.24 | |
S2 | Entire period | 2.47 ± 0.27 | 0.44 ± 0.10 | 95.73 | 258.77 | 0.18 |
Summer | 1.79 ± 0.58 | 0.37 ± 0.24 | 93.96 | 244.64 | 0.21 | |
Autumn | 2.27 ± 0.57 | 0.55 ± 0.28 | 105.13 | 261.29 | 0.24 | |
Winter | 3.35 ± 0.44 | 0.42 ± 0.13 | 91.78 | 268.90 | 0.12 | |
Spring | 2.70 ± 0.59 | 0.46 ± 0.20 | 92.73 | 255.08 | 0.17 | |
K1 | Entire period | 1.01 ± 0.20 | −0.09 ± 0.07 | 88.52 | 216.03 | −0.09 |
Summer | 0.69 ± 0.23 | −0.21 ± 0.23 | 44.81 | 264.34 | −0.31 | |
Autumn | 0.63 ± 0.28 | 0.05 ± 0.15 | 108.99 | 177.06 | 0.08 | |
Winter | 2.12 ± 0.34 | 0.26 ± 0.12 | 89.67 | 219.26 | 0.12 | |
Spring | 0.88 ± 0.37 | 0.02 ± 0.13 | 82.21 | 227.04 | 0.02 | |
O1 | Entire period | 0.80 ± 0.21 | −0.07 ± 0.07 | 94.27 | 158.92 | −0.09 |
Summer | 0.37 ± 0.25 | −0.19 ± 0.17 | 114.19 | 214.86 | −0.51 | |
Autumn | 0.29 ± 0.22 | 0.01 ± 0.12 | 74.00 | 201.31 | 0.02 | |
Winter | 2.01 ± 0.27 | −0.13 ± 0.10 | 89.15 | 145.71 | −0.06 | |
Spring | 0.73 ± 0.37 | −0.12 ± 0.14 | 102.41 | 135.77 | −0.16 | |
M4 | Entire period | 8.48 ± 0.38 | 0.60 ± 0.14 | 102.60 | 234.93 | 0.07 |
Summer | 8.38 ± 0.68 | 0.54 ± 0.35 | 106.27 | 254.30 | 0.06 | |
Autumn | 7.34 ± 0.66 | 0.68 ± 0.35 | 104.90 | 240.11 | 0.09 | |
Winter | 10.74 ± 0.75 | 0.44 ± 0.20 | 99.67 | 224.71 | 0.04 | |
Spring | 8.06 ± 0.77 | 0.29 ± 0.37 | 101.02 | 223.80 | 0.04 | |
MS4 | Entire period | 5.55 ± 0.38 | 0.54 ± 0.17 | 102.83 | 256.92 | 0.10 |
Summer | 4.33 ± 0.65 | 0.40 ± 0.31 | 107.65 | 283.47 | 0.09 | |
Autumn | 6.00 ± 0.71 | 0.88 ± 0.27 | 104.52 | 253.26 | 0.15 | |
Winter | 5.93 ± 0.68 | 0.28 ± 0.19 | 99.31 | 259.10 | 0.05 | |
Spring | 7.22 ± 0.79 | 0.51 ± 0.38 | 101.57 | 245.78 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-R.; Cheng, K.-H.; Zheng, Z.-W.; Lee, H.-J.; Hsu, T.-W. Characteristics Analysis of Acoustic Doppler Current Profile Measurements in Northeast Taiwan Offshore. J. Mar. Sci. Eng. 2024, 12, 1632. https://doi.org/10.3390/jmse12091632
Ho C-R, Cheng K-H, Zheng Z-W, Lee H-J, Hsu T-W. Characteristics Analysis of Acoustic Doppler Current Profile Measurements in Northeast Taiwan Offshore. Journal of Marine Science and Engineering. 2024; 12(9):1632. https://doi.org/10.3390/jmse12091632
Chicago/Turabian StyleHo, Chung-Ru, Kai-Ho Cheng, Zhe-Wen Zheng, Hung-Jen Lee, and Tai-Wen Hsu. 2024. "Characteristics Analysis of Acoustic Doppler Current Profile Measurements in Northeast Taiwan Offshore" Journal of Marine Science and Engineering 12, no. 9: 1632. https://doi.org/10.3390/jmse12091632
APA StyleHo, C. -R., Cheng, K. -H., Zheng, Z. -W., Lee, H. -J., & Hsu, T. -W. (2024). Characteristics Analysis of Acoustic Doppler Current Profile Measurements in Northeast Taiwan Offshore. Journal of Marine Science and Engineering, 12(9), 1632. https://doi.org/10.3390/jmse12091632