Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = interactive geometric operators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 20140 KiB  
Article
Development and Experimental Validation of a Sense-and-Avoid System for a Mini-UAV
by Marco Fiorio, Roberto Galatolo and Gianpietro Di Rito
Viewed by 647
Abstract
This paper provides an overview of the three-year effort to design and implement a prototypical sense-and-avoid (SAA) system based on a multisensory architecture leveraging data fusion between optical and radar sensors. The work was carried out within the context of the Italian research [...] Read more.
This paper provides an overview of the three-year effort to design and implement a prototypical sense-and-avoid (SAA) system based on a multisensory architecture leveraging data fusion between optical and radar sensors. The work was carried out within the context of the Italian research project named TERSA (electrical and radar technologies for remotely piloted aircraft systems) undertaken by the University of Pisa in collaboration with its industrial partners, aimed at the design and development of a series of innovative technologies for remotely piloted aircraft systems of small scale (MTOW < 25 Kgf). The system leverages advanced computer vision algorithms and an extended Kalman filter to enhance obstacle detection and tracking capabilities. The “Sense” module processes environmental data through a radar and an electro-optical sensor, while the “Avoid” module utilizes efficient geometric algorithms for collision prediction and evasive maneuver computation. A novel hardware-in-the-loop (HIL) simulation environment was developed and used for validation, enabling the evaluation of closed-loop real-time interaction between the “Sense” and “Avoid” subsystems. Extensive numerical simulations and a flight test campaign demonstrate the system’s effectiveness in real-time detection and the avoidance of non-cooperative obstacles, ensuring compliance with UAV aero mechanical and safety constraints in terms of minimum separation requirements. The novelty of this research lies in (1) the design of an innovative and efficient visual processing pipeline tailored for SWaP-constrained mini-UAVs, (2) the formulation an EKF-based data fusion strategy integrating optical data with a custom-built Doppler radar, and (3) the development of a unique HIL simulation environment with realistic scenery generation for comprehensive system evaluation. The findings underscore the potential for deploying such advanced SAA systems in tactical UAV operations, significantly contributing to the safety of flight in non-segregated airspaces Full article
Show Figures

Figure 1

10 pages, 3005 KiB  
Article
Cathode Thermal Experiment Improves Performance of Magnetron Injection Gun for 170 GHz Gyrotron
by Yichi Zhang, Xu Zeng, Jinjun Feng, Dongshuo Gao, Wenteng Hao, Boyang Li and Kun Li
Electronics 2025, 14(2), 346; https://doi.org/10.3390/electronics14020346 - 17 Jan 2025
Viewed by 318
Abstract
This paper details the design and fabrication of a triode–anode magnetron injection gun (MIG) for a 170 GHz gyrotron for use in magnetic confinement thermonuclear fusion. To solve the mismatch problem of electric and magnetic fields in the electron emission area caused by [...] Read more.
This paper details the design and fabrication of a triode–anode magnetron injection gun (MIG) for a 170 GHz gyrotron for use in magnetic confinement thermonuclear fusion. To solve the mismatch problem of electric and magnetic fields in the electron emission area caused by geometric deformation under the thermal field, the temperature of the MIG was tested to accurately describe the thermal field distribution, and geometric dimension variables under the operating temperature were simulated. By analyzing the electric and magnetic fields under the thermal field, the design scheme of the MIG was optimized to achieve the goals of reducing the spread of electron beam velocity in the interaction region and improving the interaction efficiency. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

27 pages, 5429 KiB  
Article
Terrain Traversability via Sensed Data for Robots Operating Inside Heterogeneous, Highly Unstructured Spaces
by Amir Gholami and Alejandro Ramirez-Serrano
Sensors 2025, 25(2), 439; https://doi.org/10.3390/s25020439 - 13 Jan 2025
Viewed by 489
Abstract
This paper presents a comprehensive approach to evaluating the ability of multi-legged robots to traverse confined and geometrically complex unstructured environments. The proposed approach utilizes advanced point cloud processing techniques integrating voxel-filtered cloud, boundary and mesh generation, and dynamic traversability analysis to enhance [...] Read more.
This paper presents a comprehensive approach to evaluating the ability of multi-legged robots to traverse confined and geometrically complex unstructured environments. The proposed approach utilizes advanced point cloud processing techniques integrating voxel-filtered cloud, boundary and mesh generation, and dynamic traversability analysis to enhance the robot’s terrain perception and navigation. The proposed framework was validated through rigorous simulation and experimental testing with humanoid robots, showcasing the potential of the proposed approach for use in applications/environments characterized by complex environmental features (navigation inside collapsed buildings). The results demonstrate that the proposed framework provides the robot with an enhanced capability to perceive and interpret its environment and adapt to dynamic environment changes. This paper contributes to the advancement of robotic navigation and path-planning systems by providing a scalable and efficient framework for environment analysis. The integration of various point cloud processing techniques into a single architecture not only improves computational efficiency but also enhances the robot’s interaction with its environment, making it more capable of operating in complex, hazardous, unstructured settings. Full article
(This article belongs to the Special Issue Intelligent Control Systems for Autonomous Vehicles)
Show Figures

Figure 1

32 pages, 24504 KiB  
Article
Archival Research, Underwater Optical Surveys, and 3D Modelling: Three Stages for Shaping the Wreck of the Steamship Bengala (Isola di Capo Rizzuto, Crotone, Italy)
by Salvatore Medaglia, Fabio Bruno, Ana Castelli, Matteo Collina, Barbara Davidde Petriaggi, Luca De Rosa, Julieta Frere, Fabrizio Fuoco, Guillermo Gutiérrez, Antonio Lagudi, Francesco Megna and Raffaele Peluso
Viewed by 816
Abstract
Bengala, a steamer that sank in 1889 near Capo Rizzuto, Italy, was a relatively new vessel for its time, with an unusually short 18-year service life, given that steamers of the period typically operated for 30 to 40 years. Despite its brief [...] Read more.
Bengala, a steamer that sank in 1889 near Capo Rizzuto, Italy, was a relatively new vessel for its time, with an unusually short 18-year service life, given that steamers of the period typically operated for 30 to 40 years. Despite its brief history, SS Bengala played a significant role in the development of Italy’s young merchant navy, undergoing multiple ownership changes and serving various Italian shipping companies. Employed mainly along the route to Southeast Asia, it transported Italian migrants overseas and also participated in troop raids during the Italian military expedition to Eritrea in 1887. Despite its historical significance, no iconographic material has yet been found to depict SS Bengala, and archival research conducted in Italy and England has not uncovered any naval plans, photographs, or drawings of the ship. To overcome this gap, the authors employed new technologies and historical information to create a virtual reconstruction. This research combined archival sources with underwater surveys, including a detailed 3D survey by divers and archaeologists. Archival research, including consultation of official documents, provided critical information on the ship’s dimensions, superstructure, rigging, materials, and construction methods. The 3D modelling of the ship’s external hull, based on precise geometric data from the wreck site, offers a first step towards virtual reconstruction. The modelling is grounded in photogrammetric surveying techniques, ensuring high accuracy in the reconstruction process. The model can be used in augmented reality (AR) applications to enhance underwater exploration, allowing divers to visualise the reconstructed ship in its original environment. Additionally, it supports museum exhibits, interactive visualisations, and educational games, making it a valuable resource for engaging the public with maritime history and archaeology. Full article
(This article belongs to the Topic 3D Documentation of Natural and Cultural Heritage)
Show Figures

Figure 1

18 pages, 4645 KiB  
Article
Passive Aeroelastic Control of a Near-Ground Airfoil with a Nonlinear Vibration Absorber
by Kailash Dhital and Benjamin Chouvion
Aerospace 2024, 11(12), 1043; https://doi.org/10.3390/aerospace11121043 - 20 Dec 2024
Viewed by 572
Abstract
This study explores the use of a passive control technique to mitigate aeroelastic effects on a wing operating near the ground. An aeroelastic model, based on a typical airfoil section, equipped with a nonlinear tuned vibration absorber (NLTVA), is established to study the [...] Read more.
This study explores the use of a passive control technique to mitigate aeroelastic effects on a wing operating near the ground. An aeroelastic model, based on a typical airfoil section, equipped with a nonlinear tuned vibration absorber (NLTVA), is established to study the interactions between the airfoil’s dynamics, aerodynamics, and the nonlinear energy dissipation mechanisms. Geometric nonlinearity is incorporated into the airfoil’s dynamics to account for possible large wing deflection and rotation. The flow is modeled based on the nonlinear unsteady discrete vortex method with the ground effect simulated using the mirror image method. Stability analyses are conducted to study the influence of NLTVA parameters on flutter mitigation and the bifurcation behavior of the airfoil near the ground. The numerical results demonstrate that the NLTVA effectively delays the onset of flutter and promotes a supercritical bifurcation in the presence of ground effect. Optimally tuning the NLTVA’s linear parameters significantly increases flutter speed, while selecting the optimal nonlinear parameter is key to preventing subcritical behavior near the ground and reducing the amplitude of post-flutter limit cycle oscillations. Overall, this study highlights the potential of the NLTVA in enhancing the aeroelastic stability of flying vehicles with highly flexible wings, especially under the influence of ground effects during takeoff and landing. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume IV)
Show Figures

Figure 1

19 pages, 371 KiB  
Article
New Results of Differential Subordination for a Specific Subclass of p-Valent Meromorphic Functions Involving a New Operator
by Nihad Hameed Shehab, Abdul Rahman S. Juma, Luminița-Ioana Cotîrlă and Daniel Breaz
Axioms 2024, 13(12), 878; https://doi.org/10.3390/axioms13120878 - 18 Dec 2024
Viewed by 426
Abstract
The present article aims to significantly improve geometric function theory by making an important contribution to p-valent meromorphic and analytic functions. It focuses on subordination, which describes the relationships of analytic functions. In order to achieve this, we utilize a technique that [...] Read more.
The present article aims to significantly improve geometric function theory by making an important contribution to p-valent meromorphic and analytic functions. It focuses on subordination, which describes the relationships of analytic functions. In order to achieve this, we utilize a technique that is based on the properties of differential subordination. This approach, which is one of the most recent developments in this field, may obtain a number of conclusions about differential subordination for p-valent meromorphic functions described by the new operator IHp,q,s j,pν1,n,α,lJ(ζ)  within the porous unit disk Δ. Numerous mathematical and practical issues involving orthogonal polynomials, such as system identification, signal processing, fluid dynamics, antenna technology, and approximation theory, can benefit from the results presented in this article. The knowledge and comprehension of the unit’s analytical functions and its interacting higher relations are also greatly expanded by this text. Full article
(This article belongs to the Special Issue Advances in Geometric Function Theory and Related Topics)
22 pages, 23478 KiB  
Article
Target Detection and Characterization of Multi-Platform Remote Sensing Data
by Koushikey Chhapariya, Emmett Ientilucci, Krishna Mohan Buddhiraju and Anil Kumar
Remote Sens. 2024, 16(24), 4729; https://doi.org/10.3390/rs16244729 - 18 Dec 2024
Viewed by 800
Abstract
Detecting targets in remote sensing imagery, particularly when identifying sparsely distributed materials, is crucial for applications such as defense, mineral exploration, agriculture, and environmental monitoring. The effectiveness of detection and the precision of the results are influenced by several factors, including sensor configurations, [...] Read more.
Detecting targets in remote sensing imagery, particularly when identifying sparsely distributed materials, is crucial for applications such as defense, mineral exploration, agriculture, and environmental monitoring. The effectiveness of detection and the precision of the results are influenced by several factors, including sensor configurations, platform properties, interactions between targets and their background, and the spectral contrast of the targets. Environmental factors, such as atmospheric conditions, also play a significant role. Conventionally, target detection in remote sensing has relied on statistical methods that typically assume a linear process for image formation. However, to enhance detection performance, it is critical to account for the geometric and spectral variabilities across multiple imaging platforms. In this research, we conducted a comprehensive target detection experiment using a unique benchmark multi-platform hyperspectral dataset, where man-made targets were deployed on various surface backgrounds. Data were collected using a hand-held spectroradiometer, UAV-mounted hyperspectral sensors, and airborne platforms, all within a half-hour time window. Multi-spectral space-based sensors (i.e., Worldview and Landsat) also flew over the scene and collected data. The experiment took place on 23 July 2021, at the Rochester Institute of Technology’s Tait Preserve in Penfield, NY, USA. We validated the detection outcomes through receiver operating characteristic (ROC) curves and spectral similarity metrics across various detection algorithms and imaging platforms. This multi-platform analysis provides critical insights into the challenges of hyperspectral target detection in complex, real-world landscapes, demonstrating the influence of platform variability on detection performance and the necessity for robust algorithmic approaches in multi-source data integration. Full article
Show Figures

Graphical abstract

19 pages, 12688 KiB  
Article
Comprehensive Study on the Thrust Estimation and Anti-Freezing Lubricant of Pipe Jacking in Frozen Soil
by Kai Wen, Wei Zeng, Qing Ye, Hideki Shimada, Siliang Qin and Benhao Fu
Coatings 2024, 14(12), 1474; https://doi.org/10.3390/coatings14121474 - 21 Nov 2024
Viewed by 589
Abstract
Recent advancements in underground construction have led to the widespread utilization of pipe jacking. However, the engineering challenges posed by frozen ground in pipe jacking projects have not been extensively studied. This research aims to address the critical challenges linked to employing pipe [...] Read more.
Recent advancements in underground construction have led to the widespread utilization of pipe jacking. However, the engineering challenges posed by frozen ground in pipe jacking projects have not been extensively studied. This research aims to address the critical challenges linked to employing pipe jacking in frozen ground for underground construction. It is widely recognized that the accurate calculation of jacking thrust and mitigation of pipe–soil interaction plays a crucial role in determining the success or failure of pipe jacking operations. To explore these issues, this study conducted numerical simulations and comparative analyses, considering various factors such as soil properties, geometric dimensions, and burial depth, to assess their influence on jacking thrust. Additionally, the study also examines the freeze–thaw effect on concrete pipes and the injected lubricant. The results indicate that the numerical model, which considers the temperature effects and static friction instead of sliding friction, provides a more reliable estimation of jacking thrust in frozen ground compared to traditional theoretical models. Furthermore, the freezing point depression method was successfully employed in the development of an anti-freezing lubricant, which can effectively reduce pipe–soil interaction even at extremely low temperatures of up to −10 °C. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Recognition and Scoring Physical Exercises via Temporal and Relative Analysis of Skeleton Nodes Extracted from the Kinect Sensor
by Raana Esmaeeli, Mohammad Javad Valadan Zoej, Alireza Safdarinezhad and Ebrahim Ghaderpour
Sensors 2024, 24(20), 6713; https://doi.org/10.3390/s24206713 - 18 Oct 2024
Cited by 1 | Viewed by 771
Abstract
Human activity recognition is known as the backbone of the development of interactive systems, such as computer games. This process is usually performed by either vision-based or depth sensors. So far, various solutions have been developed for this purpose; however, all the challenges [...] Read more.
Human activity recognition is known as the backbone of the development of interactive systems, such as computer games. This process is usually performed by either vision-based or depth sensors. So far, various solutions have been developed for this purpose; however, all the challenges of this process have not been completely resolved. In this paper, a solution based on pattern recognition has been developed for labeling and scoring physical exercises performed in front of the Kinect sensor. Extracting the features from human skeletal joints and then generating relative descriptors among them is the first step of our method. This has led to quantification of the meaningful relationships between different parts of the skeletal joints during exercise performance. In this method, the discriminating descriptors of each exercise motion are used to identify the adaptive kernels of the Constrained Energy Minimization method as a target detector operator. The results indicated an accuracy of 95.9% in the labeling process of physical exercise motions. Scoring the exercise motions was the second step after the labeling process, in which a geometric method was used to interpolate numerical quantities extracted from descriptor vectors to transform into semantic scores. The results demonstrated the scoring process coincided with the scores derived by the sports coach by a 99.5 grade in the R2 index. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 16982 KiB  
Article
Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization
by Aiste Skog, Razmik A. Hovhannisyan and Vladimir M. Krasnov
Nanomaterials 2024, 14(20), 1634; https://doi.org/10.3390/nano14201634 - 12 Oct 2024
Viewed by 715
Abstract
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex—the smallest quantized object in superconductors—can enable drastic miniaturization [...] Read more.
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex—the smallest quantized object in superconductors—can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg–Landau equations. The cell represents a fluxonic quantum dot containing a small superconducting island, an asymmetric notch for the vortex entrance, a guiding track, and a vortex trap. We determine the optimal geometrical parameters for operation at zero magnetic field and the conditions for controllable vortex manipulation by short current pulses. We report ultrafast vortex motion with velocities more than an order of magnitude faster than those expected for macroscopic superconductors. This phenomenon is attributed to strong interactions with the edges of a mesoscopic island, combined with the nonlinear reduction of flux-flow viscosity due to the nonequilibrium effects in the track. Our results show that such cells can be scaled down to sizes comparable to the London penetration depth, ∼100 nm, and can enable ultrafast switching on the picosecond scale with ultralow energy per operation, ∼1019 J. Full article
(This article belongs to the Special Issue Quantum Computing and Nanomaterial Simulations)
Show Figures

Figure 1

21 pages, 604 KiB  
Article
New Results on Differential Subordination and Superordination for Multivalent Functions Involving New Symmetric Operator
by Abdul Rahman S. Juma, Nihad Hameed Shehab, Daniel Breaz, Luminiţa-Ioana Cotîrlă, Maslina Darus and Alin Danciu
Symmetry 2024, 16(10), 1326; https://doi.org/10.3390/sym16101326 - 8 Oct 2024
Viewed by 735
Abstract
This article aims to significantly advance geometric function theory by providing a valuable contribution to analytic and multivalent functions. It focuses on differential subordination and superordination, which characterize the interactions between analytic functions. To achieve our goal, we employ a method that relies [...] Read more.
This article aims to significantly advance geometric function theory by providing a valuable contribution to analytic and multivalent functions. It focuses on differential subordination and superordination, which characterize the interactions between analytic functions. To achieve our goal, we employ a method that relies on the characteristics of differential subordination and superordination. As one of the latest advancements in this field, this technique is able to derive several results about differential subordination and superordination for multivalent functions defined by the new operator Mλ,pmv,ρ;ηFξ within the open unit disk A. Additionally, by employing the technique, the differential sandwich outcome is achieved. Therefore, this work presents crucial exceptional instances that follow the results. The findings of this paper can be applied to a wide range of mathematical and engineering problems, including system identification, orthogonal polynomials, fluid dynamics, signal processing, antenna technology, and approximation theory. Furthermore, this work significantly advances the knowledge and understanding of the analytical functions of the unit and its interactive higher relations. The characteristics and consequences of differential subordination theory are symmetric to those of differential superordination theory. By combining them, sandwich-type theorems can be derived. Full article
15 pages, 4361 KiB  
Article
Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies
by Andrzej Szymon Borkowski and Alicja Kubrat
Eng 2024, 5(4), 2395-2409; https://doi.org/10.3390/eng5040125 - 26 Sep 2024
Cited by 2 | Viewed by 2410
Abstract
Building information modeling (BIM) is the hottest topic of the last decade in the construction sector. BIM is interacting with other technologies toward the realization of digital twins. The integration of laser scanning technology and BIM is progressing. Increasingly, solid, mesh models are [...] Read more.
Building information modeling (BIM) is the hottest topic of the last decade in the construction sector. BIM is interacting with other technologies toward the realization of digital twins. The integration of laser scanning technology and BIM is progressing. Increasingly, solid, mesh models are being semantically enriched for BIM. A point cloud can provide an excellent source of data for developing a BIM model. The BIM model will be refined not only geometrically but can also be saturated with non-graphical data. The problem is the lack of a clear methodology for compiling such models based on TLS and images. The research and development work between universities and companies has put modern digital solutions into practice. Thus, the purpose of this work was to develop a universal methodology for the acquisition and extraction of data from disconnected sources. In this paper, three BIM models were made based on point clouds derived from laser scanning. The case studies presented confirm the validity of the “scan to BIM approach, especially in the context of historic buildings (HBIMs). The paper posits that the integration of laser scanning, digital photogrammetry and BIM provides value in the preservation of heritage buildings. In the process of the practical work and an in-depth literature study, the ever-present limitations of BIM were identified as research challenges. The paper contributes to the discussion on the use of BIM in the design, construction and operation of buildings, including historic buildings. The acronym HBIM (heritage building information modeling) will increasingly resonate in the academic and practical work of the discipline of conservation and maintenance of historic buildings and cultural heritage sites. Full article
Show Figures

Figure 1

39 pages, 23218 KiB  
Review
CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review
by Soo-Jin Jeong
Energies 2024, 17(18), 4696; https://doi.org/10.3390/en17184696 - 20 Sep 2024
Cited by 2 | Viewed by 1247
Abstract
The growing demand to reduce emissions of pollutants and CO2 from internal combustion engines has led to a critical need for the development of ultra-lean burn engines that can maintain combustion stability while mitigating the risk of knock. One of the most [...] Read more.
The growing demand to reduce emissions of pollutants and CO2 from internal combustion engines has led to a critical need for the development of ultra-lean burn engines that can maintain combustion stability while mitigating the risk of knock. One of the most effective techniques is the pre-chamber spark-ignition (PCSI) system, where the primary combustion within the cylinder is initiated by high-energy reactive gas jets generated by pilot combustion in the pre-chamber. Due to the complex physical and chemical processes involved in PCSI systems, performing 3D CFD simulations is crucial for in-depth analysis and achieving optimal design parameters. Moreover, combining a detailed CFDs model with a calibrated 0D/1D model is expected to provide a wealth of new insights that are difficult to gather through experimental methods alone, making it an indispensable tool for improving the understanding and optimization of these advanced engine systems. In this context, numerous previous studies have utilized CFD models to optimize key design parameters, including the geometric configuration of the pre-chamber, and to study combustion characteristics under various operating conditions in PCSI engines. Recent studies indicate that several advanced models designed for conventional spark-ignition (SI) engines may not accurately predict performance under the demanding conditions of Turbulent Jet Ignition (TJI) systems, particularly when operating in lean mixtures and environments with strong turbulence–chemistry interactions. This review highlights the pivotal role of Computational Fluid Dynamics (CFDs) in optimizing the design of pre-chamber spark-ignition (PCSI) engines. It explores key case studies and examines both the advantages and challenges of utilizing CFDs, not only as a predictive tool but also as a critical component in the design process for improving PCSI engine performance. Full article
Show Figures

Figure 1

20 pages, 6723 KiB  
Article
Design and Experiment of an Inter-Row Weeding Machine Applied in Soybean and Corn Strip Compound Planting (SCSCP)
by Zihao Tang, Xiaobo Xi, Baofeng Zhang, Yangjie Shi, Yajuan Wang and Ruihong Zhang
Agronomy 2024, 14(9), 2136; https://doi.org/10.3390/agronomy14092136 - 19 Sep 2024
Viewed by 1036
Abstract
To address the lack of specialized machinery for the mechanical weeding of SCSCP in the Huang Huai Hai region, this study designs a mechanized inter-row weeding machine for SCSCP. The machine features a reciprocating weeding shovel and an adaptive contouring mechanism for cultivation [...] Read more.
To address the lack of specialized machinery for the mechanical weeding of SCSCP in the Huang Huai Hai region, this study designs a mechanized inter-row weeding machine for SCSCP. The machine features a reciprocating weeding shovel and an adaptive contouring mechanism for cultivation and soil loosening. This paper details the machine’s principles by analyzing the geometric relationship and mechanical model between the corresponding profiling quantities, which determine the relevant parameters for adaptive contouring to ensure stable operation on undulating ground. Furthermore, by optimizing the design of the weeding shovel’s reciprocating motion mechanism, combining EDEM simulation with the weeding shovel–soil interaction, it has been determined that, at various PTO shaft speeds, the optimal weeding efficacy is achieved with a blade-type weeding shovel structure when operating at a forward speed of 3.5 km/h. Field experiments were conducted with different PTO shaft speeds and weeding depths, using weeding and seedling injury rates as performance indicators. The results showed that, based on the optimal speed, the PTO shaft speed is 760 r/min, the operating depth is 3–5 cm, and the average row weeding rate is 90.4%. The average soybean and corn seedling injury rate is 3.4% and 4.2%, meeting the technical requirements for mechanical weeding. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

21 pages, 7311 KiB  
Article
A Digital Twin System for Adaptive Aligning of Large Cylindrical Components
by Wei Fan, Ruoyao Xiao, Jieru Zhang, Linayu Zheng and Jian Zhou
Appl. Sci. 2024, 14(18), 8307; https://doi.org/10.3390/app14188307 - 14 Sep 2024
Viewed by 904
Abstract
Most large aerospace cylindrical components still adopt a manual aligning method with low automation, large manual intervention, and heavy dependence on operator workers, resulting in the low quality and efficiency of large component aligning, which seriously prolongs the manufacturing time of aerospace products. [...] Read more.
Most large aerospace cylindrical components still adopt a manual aligning method with low automation, large manual intervention, and heavy dependence on operator workers, resulting in the low quality and efficiency of large component aligning, which seriously prolongs the manufacturing time of aerospace products. To cope with this issue, based on closed-loop adaptive control and digital twin (DT) technologies, an adaptive aligning system for large cylindrical components, i.e., the DT aligning system, is proposed in this study. For the DT aligning system, through the DT multi-dimensional modeling, i.e., geometric modeling, physical modeling, functional modeling, and data modeling, it can be divided into a physical space, a virtue space, and twin data. Note that the association, mapping, and interaction between physical space and virtual space of the aligning system can be realized via the twin data, thereby realizing real-time virtual display, monitoring, and control of the large component aligning. In addition, based on the measured pose data, aligning stress, and predicted aligning error, an adaptive force/position control method for large component aligning is proposed, and it can achieve real-time decision-making and precise execution of the aligning process. Finally, through application validation, the DT process system can realize the real-time status perception and process execution decision during the large component aligning. Finally, through experimental validation, it is found that the proposed system, i.e., the DT aligning system, can improve the quality and efficiency of the large aerospace cylindrical component aligning, as well as the automation and intelligent level of the aligning system. Full article
Show Figures

Figure 1

Back to TopTop